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COHOMOLOGY JUMP LOCI RESONANCE VARIETIES OF A CDGA

RESONANCE VARIETIES OF A CDGA

Let A “ pA‚,dq be a commutative, differential graded C-algebra.
Multiplication ¨ : Ai b Aj Ñ Ai`j is graded-commutative.
Differential d : Ai Ñ Ai`1 satisfies the graded Leibnitz rule.

Assume
A is connected, i.e., A0 “ C.
A is of finite-type, i.e., dim Ai ă 8 for all i ě 0.

For each a P Z 1pAq – H1pAq, we get a cochain complex,

pA‚, δaq : A0 δ0
a // A1 δ1

a // A2 δ2
a // ¨ ¨ ¨ ,

with differentials δi
apuq “ a ¨ u ` d u, for all u P Ai .

Resonance varieties:

RipAq “ ta P H1pAq | H ipA‚, δaq ‰ 0u.
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COHOMOLOGY JUMP LOCI RESONANCE VARIETIES OF A CDGA

Fix C-basis te1, . . . ,enu for H1pAq, and let tx1, . . . , xnu be dual
basis for H1pAq “ H1pAq_.

Identify SympH1pAqq with S “ Crx1, . . . , xns, the coordinate ring of
the affine space H1pAq.

Define a cochain complex of free S-modules,

pA‚bS, δq : ¨ ¨ ¨ // Ai b S δi
// Ai`1 b S δi`1

// Ai`2 b S // ¨ ¨ ¨ ,

where δipu b sq “
řn

j“1 eju b sxj ` d u b s.

The specialization of Ab S at a P H1pAq coincides with pA, δaq.

The cohomology support loci rRipAq “ supppH ipA‚ b S, δqq are
subvarieties of H1pAq.
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COHOMOLOGY JUMP LOCI RESONANCE VARIETIES OF A CDGA

Let pA‚ b S, Bq be the dual chain complex.

The homology support loci rRipAq “ supppHipA‚ b S, Bqq are
subvarieties of H1pAq.

Using a result of [Papadima–S. 2014], we obtain:

THEOREM

For each q ě 0, the duality isomorphism H1pAq – H1pAq restricts to an
isomorphism

Ť

iďq RipAq –
Ť

iďq
rRipAq.

We also have RipAq – RipAq.

In general, though, rRipAq fl rRipAq.

If d “ 0, then all the resonance varieties of A are homogeneous.

In general, though, they are not.
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COHOMOLOGY JUMP LOCI RESONANCE VARIETIES OF A CDGA

EXAMPLE

Let A be the exterior algebra on generators a,b in degree 1,
endowed with the differential given by d a “ 0 and d b “ b ¨ a.
H1pAq “ C, generated by a. Set S “ Crxs. Then:

A‚ b S : S
B2“

´

0
x´1

¯

// S2 B1“p x 0 q // S .

Hence, H1pA‚ b Sq “ S{px ´ 1q, and so rR1pAq “ t1u. Using the
above theorem, we conclude that R1pAq “ t0,1u.
R1pAq is a non-homogeneous subvariety of C.
H1pA‚ b Sq “ S{pxq, and so rR1pAq “ t0u ‰ rR1pAq.
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COHOMOLOGY JUMP LOCI RESONANCE VARIETIES OF A SPACE

RESONANCE VARIETIES OF A SPACE

Let X be a connected, finite-type CW-complex.

We may take A “ H˚pX ,Cq with d “ 0, and get the usual
resonance varieties, RipX q :“ RipAq.

Or, we may take pA,dq to be a finite-type cdga, weakly equivalent
to Sullivan’s model APLpX q, if such a cdga exists.

If X is formal, then (H˚pX ,Cq,d “ 0) is such a finite-type model.

Finite-type cdga models exist even for possibly non-formal
spaces, such as nilmanifolds and solvmanifolds, Sasakian
manifolds, smooth quasi-projective varieties, etc.
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COHOMOLOGY JUMP LOCI RESONANCE VARIETIES OF A SPACE

THEOREM (MACINIC, PAPADIMA, POPESCU, S. – 2013)

Suppose there is a finite-type CDGA pA,dq such that APLpX q » A.
Then, for each i ě 0, the tangent cone at 0 to the resonance variety
RipAq is contained in RipX q.

In general, we cannot replace TC0pRipAqq by RipAq.

EXAMPLE

Let X “ S1, and take A “
Ź

pa,bq with d a “ 0, d b “ b ¨ a.
Then R1pAq “ t0,1u is not contained in R1pX q “ t0u, though
TC0pR1pAqq “ t0u is.
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COHOMOLOGY JUMP LOCI RESONANCE VARIETIES OF A SPACE

A rationally defined CDGA pA,dq has positive weights if each Ai

can be decomposed into weighted pieces Ai
α, with positive weights

in degree 1, and in a manner compatible with the CDGA structure:
1 Ai “

À

αPZ Ai
α.

2 A1
α “ 0, for all α ď 0.

3 If a P Ai
α and b P Aj

β , then ab P Ai`j
α`β and d a P Ai`1

α .

A space X is said to have positive weights if APLpX q does.
If X is formal, then X has positive weights, but not conversely.

THEOREM (DIMCA–PAPADIMA 2014, MPPS)

Suppose there is a rationally defined, finite-type CDGA pA,dq with
positive weights, and a q-equivalence between APLpX q and A
preserving Q-structures. Then, for each i ď q,

1 RipAq is a finite union of rationally defined linear subspaces of
H1pAq.

2 RipAq Ď RipX q.
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COHOMOLOGY JUMP LOCI RESONANCE VARIETIES OF A SPACE

EXAMPLE

Let X be the 3-dimensional Heisenberg nilmanifold.
All cup products of degree 1 classes vanish; thus,
R1pX q “ H1pX ,Cq “ C2.
Model A “

Ź

pa,b, cq generated in degree 1, with d a “ d b “ 0
and d c “ a ¨ b.
This is a finite-dimensional model, with positive weights:
wtpaq “ wtpbq “ 1, wtpcq “ 2.
Writing S “ Crx , ys, we get

A‚ b S : ¨ ¨ ¨ // S3

¨

˝

y 0 0
´x 0 0
1 ´x ´y

˛

‚

// S3 p x y 0 q // S .

Hence H1pA‚ b Sq “ S{px , yq, and so R1pAq “ t0u.
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COHOMOLOGY JUMP LOCI CHARACTERISTIC VARIETIES

CHARACTERISTIC VARIETIES

Let X be a finite-type, connected CW-complex.
π “ π1pX , x0q: a finitely generated group.
CharpX q “ Hompπ,C˚q: an abelian, algebraic group.
CharpX q0 – pC˚qn, where n “ b1pX q.

Characteristic varieties of X :

V ipX q “ tρ P CharpX q | H ipX ,Cρq ‰ 0u.

THEOREM (LIBGOBER 2002, DIMCA–PAPADIMA–S. 2009)

τ1pV ipX qq Ď TC1pV ipX qq Ď RipX q

Here, if W Ă pC˚qn is an algebraic subset, then

τ1pW q :“ tz P Cn | exppλzq P W , for all λ P Cu.

This is a finite union of rationally defined linear subspaces of Cn.
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COHOMOLOGY JUMP LOCI CHARACTERISTIC VARIETIES

THEOREM (DIMCA–PAPADIMA 2014)

Suppose APLpX q is q-equivalent to a finite-type model pA,dq. Then
V ipX qp1q – RipAqp0q, for all i ď q.

COROLLARY

If X is a q-formal space, then V ipX qp1q – RipX qp0q, for all i ď q.

A precursor to corollary can be found in work of Green–Lazarsfeld
on the cohomology jump loci of compact Kähler manifolds.
The case when q “ 1 was first established in [DPS-2009].
Further developments in work of Budur–Wang [2013].
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COHOMOLOGY JUMP LOCI THE TANGENT CONE THEOREM

THE TANGENT CONE THEOREM

THEOREM

Suppose APLpX q is q-equivalent to a finite-type CDGA A. Then, @i ď q,
1 TC1pV ipX qq “ TC0pRipAqq.
2 If, moreover, A has positive weights, and the q-equivalence

APLpX q » A preserves Q-structures, then TC1pV ipX qq “ RipAq.

THEOREM (DPS-2009, DP-2014)

Suppose X is a q-formal space. Then, for all i ď q,

τ1pV ipX qq “ TC1pV ipX qq “ RipX q.
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COHOMOLOGY JUMP LOCI THE TANGENT CONE THEOREM

COROLLARY

If X is q-formal, then, for all i ď q,

1 All irreducible components of RipX q are rationally defined
subspaces of H1pX ,Cq.

2 All irreducible components of V ipX q which pass through the origin
are algebraic subtori of CharpX q0, of the form exppLq, where L
runs through the linear subspaces comprising RipX q.

The Tangent Cone theorem can be used to detect non-formality.

EXAMPLE

Let π “ xx1, x2 | rx1, rx1, x2ssy.
Then V1pπq “ tt1 “ 1u, and so
τ1pV1pπqq “ TC1pV1pπqq “ tx1 “ 0u.
On the other hand, R1pπq “ C2, and so π is not 1-formal.
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COHOMOLOGY JUMP LOCI THE TANGENT CONE THEOREM

EXAMPLE (DPS 2009)

Let π “ xx1, . . . , x4 | rx1, x2s, rx1, x4srx´2
2 , x3s, rx´1

1 , x3srx2, x4sy. Then
R1pπq “ tz P C4 | z2

1 ´ 2z2
2 “ 0u: a quadric which splits into two linear

subspaces over R, but is irreducible over Q. Thus, π is not 1-formal.

EXAMPLE (S.–YANG–ZHAO 2015)

Let π be a finitely presented group with πab “ Z3 and

V1pπq “
 

pt1, t2, t3q P pC˚q3 | pt2 ´ 1q “ pt1 ` 1qpt3 ´ 1q
(

,

This is a complex, 2-dimensional torus passing through the origin, but
this torus does not embed as an algebraic subgroup in pC˚q3. Indeed,

τ1pV1pπqq “ tx2 “ x3 “ 0u Y tx1 ´ x3 “ x2 ´ 2x3 “ 0u.

Hence, π is not 1-formal.
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QUASI-PROJECTIVE VARIETIES GYSIN MODELS AND COHOMOLOGY JUMP LOCI

GYSIN MODELS

Let X be a (connected) smooth quasi-projective variety.
Let X be a “good" compactification, i.e., X “ XzD, for some
normal-crossings divisor D “ tD1, . . . ,Dmu.
Algebraic model: A “ ApX ,Dq (Morgan’s Gysin model): a
rationally defined, bigraded CDGA, with Ai “

À

p`q“i Ap,q and

Ap,q “
à

|S|“q
Hp

´

č

kPS

Dk ,C
¯

p´qq

Multiplication Ap,q ¨ Ap1,q1 Ď Ap`p1,q`q1 from cup-product in X .
Differential d : Ap,q Ñ Ap`2,q´1 from intersections of divisors.
Model has positive weights: wtpAp,qq “ p ` 2q.
Improved version by Dupont [2013]: divisor D is allowed to have
“arangement-like" singularities.
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QUASI-PROJECTIVE VARIETIES GYSIN MODELS AND COHOMOLOGY JUMP LOCI

Suppose X “ Σ is a connected, smooth algebraic curve.

Then Σ admits a canonical compactification, Σ, and thus, a
canonical Gysin model, ApΣq.

EXAMPLE

Let Σ “ E˚ be a once-punctured elliptic curve. Then Σ “ E , and

ApΣq “
ľ

pa,b,eq{pae,beq

where a,b are in bidegree p1,0q and e in bidegree p0,1q, while
d a “ d b “ 0 and d e “ ab.
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QUASI-PROJECTIVE VARIETIES GYSIN MODELS AND COHOMOLOGY JUMP LOCI

THE TANGENT CONE THEOREM

THEOREM (BUDUR, WANG 2013)
Let X be a smooth quasi-projective variety. Then each characteristic
variety V ipX q is a finite union of torsion-translated subtori of CharpX q.

THEOREM

Let ApX q be a Gysin model for X . Then, for each i ě 0,

τ1pV ipX qq “ TC1pV ipX qq “ RipApX qq Ď RipX q.

Moreover, if X is q-formal, the last inclusion is an equality, for all i ď q.

EXAMPLE

Let X be the C˚-bundle over E “ S1 ˆ S1 with e “ 1. Then
V1pX q “ t1u, and so τ1pV1pX qq “ TC1pV1pX qq “ t0u. On the other
hand, R1pX q “ C2, and so X is not 1-formal.
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QUASI-PROJECTIVE VARIETIES GYSIN MODELS AND COHOMOLOGY JUMP LOCI

A holomorphic map f : X Ñ Σ is admissible if f is surjective, has
connected generic fiber, and the target Σ is a connected, smooth
complex curve with χpX q ă 0.

THEOREM (ARAPURA 1997)

The map f ÞÑ f ˚pCharpΣqq yields a bijection between the set EX of
equivalence classes of admissible maps X Ñ Σ and the set of
positive-dimensional, irreducible components of V1pX q containing 1.

THEOREM (DP 2014, MPPS 2013)

R1pApX qq “
ď

fPEX

f ˚pH1pApΣqqq.

THEOREM (DPS 2009)

Suppose X is 1-formal. Then R1pX q “
Ť

fPEX
f ˚pH1pΣ,Cqq. Moreover,

all the linear subspaces in this decomposition have dimension ě 2,
and any two distinct ones intersect only at 0.
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QUASI-PROJECTIVE VARIETIES HYPERPLANE ARRANGEMENTS AND MILNOR FIBERS

HYPERPLANE ARRANGEMENTS

An arrangement of hyperplanes is a finite set A of codimension-1
linear subspaces in Cn.

Its complement, MpAq “ C`z
Ť

HPA H, is a Stein manifold; thus, it
is homotopic to a connected, finite cell complex of dimension n.

The space M “ MpAq is formal, and so the OS-algebra
A “ H˚pM,Cq (with zero differential) is a model for M.

THEOREM (FALK–YUZVINSKY 2007)

The set EM is in bijection with multinets on sub-arrangements of A.
Each such k-multinet gives rise to a pk ´ 1q-dimensional linear
subspace of the resonance variety R1pMq Ă H1pM,Cq, and all
components of R1pMq arise in this fashion.
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QUASI-PROJECTIVE VARIETIES HYPERPLANE ARRANGEMENTS AND MILNOR FIBERS

MILNOR FIBRATION

For each H P A let αH be a linear form with kerpαHq “ H, and let
Q “

ś

HPA αH be a defining polynomial for A.

The restriction of the map Q : Cn Ñ C to the complement is a
smooth fibration, Q : M Ñ C˚.

The typical fiber of this fibration, Q´1p1q, is called the Milnor fiber
of the arrangement, and is denoted by F “ F pAq.

The monodromy diffeomorphism, h : F Ñ F , is given by
hpzq “ expp2πi{mqz, where m “ |A|.

A

F

h

F
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QUASI-PROJECTIVE VARIETIES HYPERPLANE ARRANGEMENTS AND MILNOR FIBERS

PROBLEM

Let A be a hyperplane arrangement, with Milnor fiber F “ F pAq.

1 Find a good compactification F .

2 Does the monodromy h : F Ñ F extend to a diffeomorphism
h̄ : F Ñ F?

3 Write down an explicit presentation for the resulting Gysin model,
ApF q.

4 Compute the resonance varieties RipApF qq and RipF q, and decide
whether they depend only on the intersection lattice of A.

5 Decide whether these varieties coincide, and, if so, whether F pAq
is formal.
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QUASI-PROJECTIVE VARIETIES HYPERPLANE ARRANGEMENTS AND MILNOR FIBERS

EXAMPLE (ZUBER 2010)

Let A be the arrangement in C3 defined by

Q “ pz3
1 ´ z3

2 qpz
3
1 ´ z3

3 qpz
3
2 ´ z3

3 q.

The variety R1pMq Ă C9 has 12 local components (from triple
points), and 4 essential components (from 3-nets).

One of these 3-nets corresponds to the rational map CP2 99K CP1,
pz1, z2, z3q ÞÑ pz3

1 ´ z3
2 , z

3
2 ´ z3

3 q.

This map can be used to construct a 4-dimensional subtorus
T “ exppLq inside CharpF pAqq “ pC˚q12.

The linear subspace L Ă H1pF pAq,Cq is not a component of
R1pF pAqq.

Thus, the tangent cone formula is violated, and so the Milnor fiber
F pAq is not 1-formal.
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QUASI-PROJECTIVE VARIETIES ELLIPTIC ARRANGEMENTS

ELLIPTIC ARRANGEMENTS

An elliptic arrangement is a collection A “ tH1, . . . ,Hmu of
subvarieties in a product of elliptic curves En.

Each Hi P A is required to be of the form Hi “ f´1
i pζiq, for some

ζi P E and some homomorphism fi : Eˆn Ñ E given by

fipz1, . . . , znq “

n
ÿ

j“1

cijzj pcij P Zq.

Let corank “ n´ rankpcijq and say A is essential if corankpAq “ 0.

THEOREM (DENHAM, S., YUZVINSKY 2014)

If A is essential, then the complement MpAq is a Stein manifold.
MpAq is both a duality space and an abelian duality space of
dimension n ` r , where r “ corankpAq.
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QUASI-PROJECTIVE VARIETIES ELLIPTIC ARRANGEMENTS

Let LpAq denote the poset of all connected components of
intersections elliptic hyperplanes from A, ordered by inclusion.

We say A is unimodular if all subspaces in LpAq are connected.

Let ApAq “
Ź

pa1,b1, . . . ,an,bn,e1, . . . ,emq{IpAq, where IpAq is
the ideal generated by the Orlik–Solomon relations among the
e1is, together with f ˚i paq ¨ ei and f ˚i pbq ¨ ei , for 1 ď i ď m.

Define d : A‚pAq Ñ A‚`1pAq by setting d ai “ d bi “ 0 and
d ei “ f ˚i paq ¨ f

˚
i pbq.

THEOREM (BIBBY 2013)

Let A be an unimodular elliptic arrangement, and let pApAq,dq be the
(rationally defined) CDGA from above. There is then a weak
equivalence APLpMpAqq » ApAq preserving Q-structures.

ALEX SUCIU (NORTHEASTERN) ALGEBRAIC MODELS AND JUMP LOCI PISA, FEB. 24, 2015 25 / 28



QUASI-PROJECTIVE VARIETIES ELLIPTIC ARRANGEMENTS

THEOREM

Let A be an unimodular elliptic arrangement. Then, for each i ě 0,

τ1pV ipMpAqqq “ TC1pV ipMpAqqq “ RipApAqq Ď RipMpAqq,

with equality for i ď q if MpAq if q-formal.

PROBLEM

Let A be an unimodular elliptic arrangement, with complement MpAq
and intersection poset LpAq.

1 Is the cohomology algebra H˚pMpAq,Cq determined by LpAq?
2 Are the resonance varieties RipApAqq and RipMpAqq determined

by LpAq?
3 Is there a combinatorial criterion to decide whether these varieties

coincide, and, if so, whether MpAq is formal?
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QUASI-PROJECTIVE VARIETIES ELLIPTIC ARRANGEMENTS

EXAMPLE

Let A be the arrangement in Eˆ2 defined by the polynomial
f “ z1z2pz1 ´ z2q.

Then MpAq “ ConfpE˚,2q, the configuration space of 2 labeled
points on a punctured elliptic curve.

Direct computation yields

R1pMpAqq “ tpx1, x2, y1, y2q P C4 | x1y2 ´ x2y1 “ 0u,

R1pApAqq “ tx1 “ y1 “ 0uYtx2 “ y2 “ 0uYtx1`x2 “ y1`y2 “ 0u.

Thus, MpAq is not 1-formal.

ALEX SUCIU (NORTHEASTERN) ALGEBRAIC MODELS AND JUMP LOCI PISA, FEB. 24, 2015 27 / 28



QUASI-PROJECTIVE VARIETIES ELLIPTIC ARRANGEMENTS
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