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FINITENESS PROPERTIES FINITENESS PROPERTIES FOR SPACES AND GROUPS

FINITENESS PROPERTIES FOR SPACES AND GROUPS

A recurring theme in topology is to determine the geometric and
homological finiteness properties of spaces and groups.

For instance, to decide whether a path-connected space X is
homotopy equivalent to a CW-complex with finite k -skeleton.
A group G has property Fk if it admits a classifying space K (G,1)
with finite k -skeleton.

F1: G is finitely generated;
F2: G is finitely presentable.

G has property FPk if the trivial ZG-module Z admits a projective
ZG-resolution which is finitely generated in all dimensions up to k .

The following implications (none of which can be reversed) hold:

G is of type Fk ñ G is of type FPk

ñ Hi(G,Z) is finitely generated, for all i ď k
ñ bi(G) ă 8, for all i ď k .

Moreover, FPk &F2 ñ Fk .
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FINITENESS PROPERTIES BIERI–NEUMANN–STREBEL–RENZ INVARIANTS

BIERI–NEUMANN–STREBEL–RENZ INVARIANTS

(Bieri–Neumann–Strebel 1987) For a f.g. group G, let

Σ1(G) = tχ P S(G) | Cχ(G) is connectedu,

where S(G) = (Hom(G,R)zt0u)/R+ and Cχ(G) is the induced
subgraph of Cay(G) on vertex set Gχ = tg P G | χ(g) ě 0u.

Σ1(G) is an open set, independent of generating set for G.

(Bieri, Renz 1988)

Σk (G,Z) =
 

χ P S(G) | the monoid Gχ is of type FPk
(

.

In particular, Σ1(G,Z) = Σ1(G).

The Σ-invariants control the finiteness properties of normal
subgroups N ŸG for which G/N is free abelian:

N is of type FPk ðñ S(G,N) Ď Σk (G,Z)

where S(G,N) = tχ P S(G) | χ(N) = 0u. In particular:
ker(χ : G � Z) is f.g. ðñ t˘χu Ď Σ1(G).
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FINITENESS PROPERTIES BIERI–NEUMANN–STREBEL–RENZ INVARIANTS

Fix a connected CW-complex X with finite k -skeleton, for some
k ě 1. Let G = π1(X , x0).

For each χ P S(X ) := S(G), set

yZGχ =
!

λ P ZG | tg P suppλ | χ(g) ă cu is finite, @c P R
)

.

This is a ring, contains ZG as a subring; hence, a ZG-module.

(Farber, Geoghegan, Schütz 2010)

Σq(X ,Z) := tχ P S(X ) | Hi(X , yZG´χ) = 0, @ i ď qu.

(Bieri) G is of type FPk ùñ Σq(G,Z) = Σq(K (G,1),Z), @q ď k .
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FINITENESS PROPERTIES DWYER–FRIED SETS

DWYER–FRIED SETS

For a fixed r P N, the connected, regular covers Y Ñ X with
group of deck-transformations Zr are parametrized by the
Grassmannian of r -planes in H1(X ,Q).

Moving about this variety, and recording when b1(Y ), . . . ,bi(Y )
are finite defines subsets Ωi

r (X ) Ď Grr (H1(X ,Q)), which we call
the Dwyer–Fried invariants of X .

These sets depend only on the homotopy type of X . Hence, if G is
a f.g. group, we may define Ωi

r (G) := Ωi
r (K (G,1)).

EXAMPLE

Let K be a knot in S3. If X = S3zK , then dimQ H1(X ab,Q) ă 8, and so
Ω1

1(X ) = tptu. But H1(X ab,Z) need not be a f.g. Z-module.
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FINITENESS PROPERTIES DWYER–FRIED SETS

THEOREM

Let G be a f.g. group, and ν : G � Zr an epimorphism, with kernel Γ.
Suppose Ωk

r (G) = H, and Γ is of type Fk´1. Then bk (Γ) = 8.

Proof: Set X = K (G,1); then X ν = K (Γ,1). Since Γ is of type
Fk´1, we have bi(X ν) ă 8 for i ď k ´ 1. Since Ωk

r (X ) = H, we
must have bk (X ν) = 8.

It follows that Hk (Γ,Z) is not f.g., and Γ is not of type FPk .

COROLLARY

Let G be a f.g. group, and suppose Ω3
1(G) = H. Let ν : G � Z be an

epimorphism. If the group Γ = ker(ν) is f.p., then b3(Γ) = 8.
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FINITENESS PROPERTIES THE STALLINGS GROUP

THE STALLINGS GROUP

Let Y = S1 _S1 and X = Y ˆY ˆY . Clearly, X is a classifying
space for G = F2 ˆ F2 ˆ F2.

Let ν : G Ñ Z be the homomorphism taking each standard
generator to 1. Set Γ = ker(ν).

Stallings (1963) showed that Γ is finitely presented:

Γ = xa,b, c, x , y | [x ,a], [y ,a], [x ,b], [y ,b], [a´1x , c], [a´1y , c], [b´1a, c]y

Stallings then showed, via a Mayer-Vietoris argument, that
H3(Γ,Z) is not finitely generated.

Alternate explanation: Ω3
1(X ) = H. Thus, by the previous

Corollary, a stronger statement holds: b3(Γ) is not finite.
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FINITENESS PROPERTIES KOLLÁR’S QUESTION

KOLLÁR’S QUESTION

QUESTION (J. KOLLÁR 1995)

Given a smooth, projective variety M, is the fundamental group
G = π1(M) commensurable, up to finite kernels, with another group,
π, admitting a K (π,1) which is a quasi-projective variety?

(Two groups, G1 and G2, are said to be commensurable up to finite
kernels if there is a zig-zag of groups and homomorphisms connecting
them, with all arrows of finite kernel and cofinite image.)

THEOREM (DIMCA–PAPADIMA–S. 2009)
For each k ě 3, there is a smooth, irreducible, complex projective
variety M of complex dimension k ´ 1, such that π1(M) is of type Fk´1,
but not of type FPk .

Further examples given by Llosa Isenrich and Bridson (2016/17).
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ALGEBRAIC MODELS AND COHOMOLOGY JUMP LOCI COMMUTATIVE DIFFERENTIAL GRADED ALGEBRAS

COMMUTATIVE DIFFERENTIAL GRADED ALGEBRAS

Let A = (A‚, d) be a commutative, differential graded algebra over
a field k of characteristic 0. That is:

A =
À

iě0 Ai , where Ai are k-vector spaces.

The multiplication ¨ : Ai bAj Ñ Ai+j is graded-commutative, i.e.,
ab = (´1)|a||b|ba for all homogeneous a and b.
The differential d : Ai Ñ Ai+1 satisfies the graded Leibnitz rule, i.e.,
d(ab) = d(a)b + (´1)|a|a d(b).

A CDGA A is of finite-type (or q-finite) if it is connected (i.e.,
A0 = k ¨ 1) and dimAi ă 8 for all i ď q.

H‚(A) inherits an algebra structure from A.

A cdga morphism ϕ : A Ñ B is both an algebra map and a cochain
map. Hence, it induces a morphism ϕ˚ : H‚(A)Ñ H‚(B).
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ALGEBRAIC MODELS AND COHOMOLOGY JUMP LOCI COMMUTATIVE DIFFERENTIAL GRADED ALGEBRAS

A map ϕ : A Ñ B is a quasi-isomorphism if ϕ˚ is an isomorphism.
Likewise, ϕ is a q-quasi-isomorphism (for some q ě 1) if ϕ˚ is an
isomorphism in degrees ď q and is injective in degree q + 1.

Two cdgas, A and B, are (q-)equivalent (»q) if there is a zig-zag of
(q-)quasi-isomorphisms connecting A to B.

A cdga A is formal (or just q-formal) if it is (q-)equivalent to
(H‚(A),d = 0).

A CDGA is q-minimal if it is of the form (
Ź

V ,d), where the
differential structure is the inductive limit of a sequence of Hirsch
extensions of increasing degrees, and V i = 0 for i ą q.

Every CDGA A with H0(A) = k admits a q-minimal model, Mq(A)
(i.e., a q-equivalence Mq(A)Ñ A with Mq(A) = (

Ź

V ,d) a
q-minimal cdga), unique up to iso.
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ALGEBRAIC MODELS AND COHOMOLOGY JUMP LOCI ALGEBRAIC MODELS FOR SPACES

ALGEBRAIC MODELS FOR SPACES

Given any (path-connected) space X , there is an associated
Sullivan Q-cdga, APL(X ), such that H‚(APL(X )) = H‚(X ,Q).

An algebraic (q-)model (over k) for X is a k-cgda (A,d) which is
(q-) equivalent to APL(X )bQ k.

If M is a smooth manifold, then ΩdR(M) is a model for M (over R).

Examples of spaces having finite-type models include:

Formal spaces (such as compact Kähler manifolds, hyperplane
arrangement complements, toric spaces, etc).
Smooth quasi-projective varieties, compact solvmanifolds,
Sasakian manifolds, etc.
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ALGEBRAIC MODELS AND COHOMOLOGY JUMP LOCI CHARACTERISTIC VARIETIES

CHARACTERISTIC VARIETIES

Let pG = Hom(G,C˚) = H1(X ,C˚) be the character group of
G = π1(X ).

The characteristic varieties of X are the sets

V i(X ) = tρ P pG | Hi(X ,Cρ) ‰ 0u.

If X has finite k -skeleton, then V i(X ) is a Zariski closed subset of
the algebraic group pG, for each i ď k .

The varieties V i(X ) are homotopy-type invariants of X .

V1(X ) depends only on G = π1(X ). Set V i(G) := V i(K (G,1)).
Then V1(G) = V1(G/G2).

EXAMPLE (S.–YANG–ZHANG – 2015)

Let f P Z[t˘1
1 , . . . , t˘1

n ] be an Laurent polynomial with f (1) = 0. There
is then a f.p. group G with Gab = Zn such that V1(G) = V(f ).
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ALGEBRAIC MODELS AND COHOMOLOGY JUMP LOCI RESONANCE VARIETIES OF A CDGA

RESONANCE VARIETIES OF A CDGA

Let A = (A‚, d) be a connected, finite-type CDGA over C.

For each a P Z 1(A) – H1(A), we get a cochain complex,

(A‚, δa) : A0 δ0
a // A1 δ1

a // A2 δ2
a // ¨ ¨ ¨ ,

with differentials δi
a(u) = a ¨ u + du, for all u P Ai .

The resonance varieties of A are the affine varieties

Ri(A) = ta P H1(A) | H i(A‚, δa) ‰ 0u.

If X is a connected, finite-type CW-complex, we get the usual
resonance varieties by setting Ri(X ) := Ri(H‚(X ,C)).
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ALGEBRAIC MODELS AND COHOMOLOGY JUMP LOCI INFINITESIMAL FINITENESS OBSTRUCTIONS

INFINITESIMAL FINITENESS OBSTRUCTIONS

QUESTION

Let X be a connected CW-complex with finite q-skeleton. Does X
admit a q-finite q-model A?

THEOREM

If X is as above, then, for all i ď q:
(Dimca–Papadima 2014) V i(X )(1) – Ri(A)(0).
In particular, if X is q-formal, then V i(X )(1) – Ri(X )(0).

(Macinic, Papadima, Popescu, S. 2017) TC0(Ri(A)) Ď Ri(X ).
(Budur–Wang 2017) All the irreducible components of V i(X )
passing through the origin of H1(X ,C˚) are algebraic subtori.

EXAMPLE

Let G be a f.p. group with Gab = Zn and V1(G) = tt P (C˚)n |
řn

i=1 ti = nu. Then G admits no 1-finite 1-model.
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ALGEBRAIC MODELS AND COHOMOLOGY JUMP LOCI INFINITESIMAL FINITENESS OBSTRUCTIONS

THEOREM (PAPADIMA–S. 2017)

Suppose X is (q + 1) finite, or X admits a q-finite q-model. Then
bi(Mq(X )) ă 8, for all i ď q + 1.

COROLLARY

Let G be a f.g. group. Assume that either G is finitely presented, or G
has a 1-finite 1-model. Then b2(M1(G)) ă 8.

EXAMPLE

Consider the free metabelian group G = Fn / F2n with n ě 2.
We have V1(G) = V1(Fn) = (C˚)n, and so G passes the
Budur–Wang test.
But b2(M1(G)) = 8, and so G admits no 1-finite 1-model (and is
not finitely presented).
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BOUNDING THE Σ AND Ω-INVARIANTS BOUNDING THE Σ-INVARIANTS

BOUNDING THE Σ-INVARIANTS

Let exp : H1(X ,C)Ñ H1(X ,C˚) be the coefficient homomorphism
induced by C Ñ C˚, z ÞÑ ez .

Given a Zariski closed subset W Ă H1(X ,C˚), set

τ1(W ) = tz P H1(X ,C) | exp(λz) P W , @λ P Cu.

τ1(W ) is a finite union of rationally defined linear subspaces.

Set τk
1 (W ) = τ1(W )XH1(X , k) for k Ă C; W i(X ) =

Ť

jďi V j(X ).

THEOREM (PAPADIMA–S. 2010)

Σi(X ,Z) Ď S(X )zS(τR
1 (W i(X )). (:)

If X is formal, we may replace τR
1 (W i(X )) with

Ť

jďi Rj(X ,R).

EXAMPLE (KOBAN–MCCAMMOND–MEIER 2015)

Σ1(Pn) = R1(Pn,R)A.
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BOUNDING THE Σ AND Ω-INVARIANTS BOUNDING THE Ω-INVARIANTS

BOUNDING THE Ω-INVARIANTS

THEOREM (DWYER–FRIED 1987, PAPADIMA–S. 2010)

Let ν : π1(X ) � Zr be an epimorphism. Then
Àk

i=0 Hi(X ν,C) is
finite-dimensional if and only if the algebraic torus im

(
ν̂ : xZr ãÑ {π1(X )

)
intersects Wk (X ) in only finitely many points.

COROLLARY (S. 2014)

Ωi
r (X ) =

 

P P Grr (H1(X ,Q))
ˇ

ˇ dim
(
exp(P bC)XW i(X )

)
= 0

(

.

Given a homogeneous variety V Ă kn, the set
σr (V ) =

 

P P Grr (kn)
ˇ

ˇP XV ‰ t0u
(

is Zariski closed.

THEOREM (S. 2012/2014)

Ωi
r (X ) Ď Grr (H1(X ,Q))zσr

(
τQ

1 (W i(X ))
)
.

If the upper bound for the Σ-invariants is attained, then the upper
bound for the Ω-invariants is also attained.
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THE RFRp PROPERTY RFRp GROUPS

RFRp GROUPS

Let G be a f.g. group and let p be a prime.

We say that G is residually finite rationally p if there exists a
sequence of subgroups G = G0 ą ¨ ¨ ¨ ą Gi ą Gi+1 ą ¨ ¨ ¨ such that

1 Gi+1 ŸGi .
2

Ş

iě0 Gi = t1u.
3 Gi /Gi+1 is an elementary abelian p-group.
4 ker(Gi Ñ H1(Gi ,Q)) ă Gi+1.

The class of RFRp groups is closed under taking subgroups, finite
direct products, and finite free products.
Finitely generated free groups; closed, orientable surface groups;
and right-angled Artin groups are RFRp, for all p.
Finite groups and non-abelian nilpotent groups are not RFRp, for
any p.
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THE RFRp PROPERTY RFRp GROUPS

THEOREM (KOBERDA–S. 2016)

Let G be a f.g. group which is RFRp for some prime p. Then:

G is residually finite. In particular, if G is finitely presented, then G
has a solvable word problem.

G is torsion-free.
G is residually torsion-free polycyclic.

THEOREM

Let G be a f.p. group which is non-abelian and RFRp for infinitely many
primes p. Then:

G is bi-orderable.
The maximal k-step solvable quotients G/G(k) are not finitely
presented, for any k ě 2.
Σ1(G)A ‰ H.
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THE RFRp PROPERTY RFRp GROUPS

LARGE GROUPS

A finitely generated group G is said to be large if there is a finite-index
subgroup H ă G which surjects onto a free, non-cyclic group.

THEOREM (KOBERDA 2014)

An f.p. group G is large if and only if there exists a finite-index
subgroup K ă G such that V1(K ) has infinitely many torsion points.

THEOREM (KS 2016)

Let G be a f.p. group which is non-abelian and RFRp for infinitely many
primes p. Then G is large.

PROPOSITION (PS 2017, FOLLOWS FROM ARAPURA)

Let X be a quasi-projective manifold. Then π1(X ) is large if and only if
there is a finite cover Y Ñ X and a regular, surjective map from Y to a
smooth curve C with χ(C) ă 0, so that the generic fiber is connected.
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THE RFRp PROPERTY BOUNDARY MANIFOLDS

BOUNDARY MANIFOLDS OF PLANE CURVES

Let C be a (reduced) algebraic curve in CP2.
The boundary manifold of C is defined as MC = BT , where T is a
regular neighborhood of C.
M = MC is a closed, oriented graph-manifold over a graph Γ.

EXAMPLE

Suppose C is smooth. Then C – Σg , where g = (d´1
2 ), and d = deg(C).

Thus, MC is a circle bundle over Σg with Euler number e = d2.

In this example, π1(M) is not RFRp, for any prime p, provided d ě 2.

EXAMPLE

Suppose C = C Y L consists of a smooth conic and a transverse line.
The graph Γ is a square, the vertex manifolds are thickened tori
S1 ˆS1 ˆ I, and MC is the Heisenberg nilmanifold.

In this example, π1(M) is not RFRp, for any prime p.
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THE RFRp PROPERTY BOUNDARY MANIFOLDS

QUESTION

For which plane algebraic curves C is the fundamental group of the
boundary manifold MC an RFRp group (for some p or all primes p)?

THEOREM (KS 2016)

Let C be an algebraic curve in C2, with boundary manifold M. Suppose
that each irreducible component of C is smooth and transverse to the
line at infinity, and all singularities of C are of type A. Then π1(M) is
RFRp, for all primes p.

COROLLARY

If M is the boundary manifold of a line arrangement in C2, then π1(M)
is RFRp, for all primes p.

CONJECTURE

Arrangement groups are RFRp, for all primes p.
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LIE ALGEBRAS AND FINITE MODELS ASSOCIATED GRADED LIE ALGEBRAS

ASSOCIATED GRADED LIE ALGEBRAS

The lower central series of a group G is defined inductively by
γ1G = G and γk+1G = [γkG,G].

This forms a filtration of G by characteristic subgroups. The LCS
quotients, γkG/γk+1G, are abelian groups.

The group commutator induces a graded Lie algebra structure on

gr(G, k) =
à

kě1(γkG/γk+1G)bZ k.

Assume G is finitely generated. Then gr(G) is also finitely
generated (in degree 1) by gr1(G) = H1(G,k).

For instance, gr(Fn) is the free graded Lie algebra Ln := Lie(kn).
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LIE ALGEBRAS AND FINITE MODELS HOLONOMY LIE ALGEBRAS

HOLONOMY LIE ALGEBRAS

Let A be a 1-finite cdga. Set Ai = (Ai)˚.

Let µ˚ : A2 Ñ A1 ^A1 be the dual to the multiplication map
µ : A1 ^A1 Ñ A2.

Let d˚ : A2 Ñ A1 be the dual of the differential d : A1 Ñ A2.

The holonomy Lie algebra of A is the quotient

h(A) = Lie(A1)/xim(µ˚ + d˚)y.

For a f.g. group G, set h(G) := h(H‚(G,k)). There is then a
canonical surjection h(G) � gr(G), which is an isomorphism
precisely when gr(G) is quadratic.
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LIE ALGEBRAS AND FINITE MODELS MALCEV LIE ALGEBRAS

MALCEV LIE ALGEBRAS

Let G be a f.g. group. The successive quotients of G by the terms
of the LCS form a tower of finitely generated, nilpotent groups,

¨ ¨ ¨ // G/γ4G // G/γ3G // G/γ2G = Gab .

(Malcev 1951) It is possible to replace each nilpotent quotient Nk
by Nk b k, the (rationally defined) nilpotent Lie group associated to
the discrete, torsion-free nilpotent group Nk /tors(Nk ).

The inverse limit, M(G) = lim
ÐÝk (G/γkG)b k, is a prounipotent,

filtered Lie group, called the prounipotent completion of G over k.

The pronilpotent Lie algebra

m(G) := lim
ÐÝ

k
Lie((G/γkG)b k),

endowed with the inverse limit filtration, is called the Malcev Lie
algebra of G (over k).
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LIE ALGEBRAS AND FINITE MODELS MALCEV LIE ALGEBRAS

By dualizing the canonical filtration of M1(G), we obtain a tower
of central extensions of finite-dimensional nilpotent Lie algebras,

¨ ¨ ¨ // // mn+1 // // mn // // ¨ ¨ ¨ // // m1 = t0u ;

m(G) is isomorphic to the inverse limit of this tower.

The group-algebra kG has a natural Hopf algebra structure, with
comultiplication ∆(g) = g b g and counit the augmentation map.

(Quillen 1968) The I-adic completion of the group-algebra,
xkG = lim

ÐÝk kG/Ik , is a filtered, complete Hopf algebra.

An element x P xkG is called primitive if p∆x = x pb1 + 1pbx . The set
of all such elements, with bracket [x , y ] = xy ´ yx , and endowed
with the induced filtration, is a complete, filtered Lie algebra.

We then have m(G) – Prim(xkG) and gr(m(G)) – gr(G).

(Sullivan 1977) G is 1-formal ðñ m(G) is quadratic.
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LIE ALGEBRAS AND FINITE MODELS FINITENESS OBSTRUCTIONS FOR GROUPS

FINITENESS OBSTRUCTIONS FOR GROUPS

LEMMA

For n ě 2, the graded vector space L2n/[Ln,L2n] is infinite-dimensional.

THEOREM (PS 2017)

Let G be a f.g. group which has a free, non-cyclic quotient. Then:

G/G2 is not finitely presentable.

G/G2 does not admit a 1-finite 1-model.

THEOREM (PS 2017)

A f.g. group G admits a 1-finite 1-model A if and only if m(G) is the lcs
completion of a finitely presented Lie algebra, namely,

m(G) – zh(A).
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