GEOMETRIC AND HOMOLOGICAL FINITENESS PROPERTIES

Alex Suciu

Northeastern University

Mini-Workshop on Interactions between low-dimensional topology and complex algebraic geometry

Mathematisches Forshungsinstitut, Oberwolfach

October 27, 2017

FINITENESS PROPERTIES FOR SPACES AND GROUPS

- A recurring theme in topology is to determine the geometric and homological finiteness properties of spaces and groups.
- For instance, to decide whether a path-connected space *X* is homotopy equivalent to a CW-complex with finite *k*-skeleton.
- A group *G* has property F_k if it admits a classifying space K(G, 1) with finite *k*-skeleton.
 - F₁: G is finitely generated;
 - F₂: G is finitely presentable.
- *G* has property FP_k if the trivial $\mathbb{Z}G$ -module \mathbb{Z} admits a projective $\mathbb{Z}G$ -resolution which is finitely generated in all dimensions up to *k*.
- The following implications (none of which can be reversed) hold:

 $G \text{ is of type } \mathsf{F}_k \Rightarrow G \text{ is of type } \mathsf{FP}_k \\ \Rightarrow H_i(G, \mathbb{Z}) \text{ is finitely generated, for all } i \leq k \\ \Rightarrow b_i(G) < \infty, \text{ for all } i \leq k.$

• Moreover, $FP_k \& F_2 \Rightarrow F_k$.

BIERI-NEUMANN-STREBEL-RENZ INVARIANTS

• (Bieri-Neumann-Strebel 1987) For a f.g. group G, let

 $\Sigma^{1}(G) = \{\chi \in S(G) \mid C_{\chi}(G) \text{ is connected}\},\$

where $S(G) = (\text{Hom}(G, \mathbb{R}) \setminus \{0\}) / \mathbb{R}^+$ and $C_{\chi}(G)$ is the induced subgraph of Cay(*G*) on vertex set $G_{\chi} = \{g \in G \mid \chi(g) \ge 0\}$.

- $\Sigma^{1}(G)$ is an open set, independent of generating set for *G*.
- (Bieri, Renz 1988)

 $\Sigma^k(G, \mathbb{Z}) = \{\chi \in S(G) \mid \text{the monoid } G_{\chi} \text{ is of type } FP_k\}.$ In particular, $\Sigma^1(G, \mathbb{Z}) = \Sigma^1(G).$

• The Σ -invariants control the finiteness properties of normal subgroups $N \lhd G$ for which G/N is free abelian:

N is of type $FP_k \iff S(G, N) \subseteq \Sigma^k(G, \mathbb{Z})$

where $S(G, N) = \{\chi \in S(G) \mid \chi(N) = 0\}$. In particular:

 $\ker(\chi\colon \boldsymbol{G}\twoheadrightarrow\mathbb{Z}) \text{ is f.g.} \Longleftrightarrow \{\pm\chi\} \subseteq \Sigma^1(\boldsymbol{G}).$

- Fix a connected CW-complex X with finite k-skeleton, for some $k \ge 1$. Let $G = \pi_1(X, x_0)$.
- For each $\chi \in S(X) := S(G)$, set

 $\widehat{\mathbb{Z}G}_{\chi} = \Big\{ \lambda \in \mathbb{Z}^{G} \mid \{ g \in \operatorname{supp} \lambda \mid \chi(g) < c \} \text{ is finite, } \forall c \in \mathbb{R} \Big\}.$

This is a ring, contains $\mathbb{Z}G$ as a subring; hence, a $\mathbb{Z}G$ -module.

• (Farber, Geoghegan, Schütz 2010)

 $\Sigma^{q}(X,\mathbb{Z}):=\{\chi\in \mathcal{S}(X)\mid H_{i}(X,\widehat{\mathbb{Z}G}_{-\chi})=0, \ \forall i\leqslant q\}.$

• (Bieri) *G* is of type $FP_k \implies \Sigma^q(G, \mathbb{Z}) = \Sigma^q(K(G, 1), \mathbb{Z}), \forall q \leq k$.

DWYER-FRIED SETS

- For a fixed $r \in \mathbb{N}$, the connected, regular covers $Y \to X$ with group of deck-transformations \mathbb{Z}^r are parametrized by the Grassmannian of *r*-planes in $H^1(X, \mathbb{Q})$.
- Moving about this variety, and recording when $b_1(Y), \ldots, b_i(Y)$ are finite defines subsets $\Omega_r^i(X) \subseteq Gr_r(H^1(X, \mathbb{Q}))$, which we call the *Dwyer–Fried invariants* of *X*.
- These sets depend only on the homotopy type of X. Hence, if G is a f.g. group, we may define Ωⁱ_r(G) := Ωⁱ_r(K(G, 1)).

EXAMPLE

Let *K* be a knot in *S*³. If $X = S^3 \setminus K$, then dim_Q $H_1(X^{ab}, \mathbb{Q}) < \infty$, and so $\Omega_1^1(X) = \{pt\}$. But $H_1(X^{ab}, \mathbb{Z})$ need not be a f.g. \mathbb{Z} -module.

THEOREM

Let *G* be a f.g. group, and $\nu : G \to \mathbb{Z}^r$ an epimorphism, with kernel Γ . Suppose $\Omega_r^k(G) = \emptyset$, and Γ is of type F_{k-1} . Then $b_k(\Gamma) = \infty$.

Proof: Set X = K(G, 1); then X^ν = K(Γ, 1). Since Γ is of type F_{k-1}, we have b_i(X^ν) < ∞ for i ≤ k − 1. Since Ω^k_r(X) = Ø, we must have b_k(X^ν) = ∞.

It follows that $H_k(\Gamma, \mathbb{Z})$ is not f.g., and Γ is not of type FP_k .

COROLLARY

Let *G* be a f.g. group, and suppose $\Omega_1^3(G) = \emptyset$. Let $\nu: G \twoheadrightarrow \mathbb{Z}$ be an epimorphism. If the group $\Gamma = \ker(\nu)$ is f.p., then $b_3(\Gamma) = \infty$.

THE STALLINGS GROUP

- Let $Y = S^1 \vee S^1$ and $X = Y \times Y \times Y$. Clearly, X is a classifying space for $G = F_2 \times F_2 \times F_2$.
- Let ν: G → Z be the homomorphism taking each standard generator to 1. Set Γ = ker(ν).
- Stallings (1963) showed that Γ is finitely presented:

 $\Gamma = \langle a, b, c, x, y \mid [x, a], [y, a], [x, b], [y, b], [a^{-1}x, c], [a^{-1}y, c], [b^{-1}a, c] \rangle$

- Stallings then showed, via a Mayer-Vietoris argument, that H₃(Γ, Z) is not finitely generated.
- Alternate explanation: Ω³₁(X) = Ø. Thus, by the previous Corollary, a stronger statement holds: b₃(Γ) is not finite.

KOLLÁR'S QUESTION

QUESTION (J. KOLLÁR 1995)

Given a smooth, projective variety M, is the fundamental group $G = \pi_1(M)$ commensurable, up to finite kernels, with another group, π , admitting a $K(\pi, 1)$ which is a quasi-projective variety?

(Two groups, G_1 and G_2 , are said to be *commensurable up to finite kernels* if there is a zig-zag of groups and homomorphisms connecting them, with all arrows of finite kernel and cofinite image.)

THEOREM (DIMCA–PAPADIMA–S. 2009)

For each $k \ge 3$, there is a smooth, irreducible, complex projective variety *M* of complex dimension k - 1, such that $\pi_1(M)$ is of type F_{k-1} , but not of type F_k .

Further examples given by Llosa Isenrich and Bridson (2016/17).

COMMUTATIVE DIFFERENTIAL GRADED ALGEBRAS

- Let A = (A[•], d) be a commutative, differential graded algebra over a field k of characteristic 0. That is:
 - $A = \bigoplus_{i \ge 0} A^i$, where A^i are k-vector spaces.
 - The multiplication $: A^i \otimes A^j \to A^{i+j}$ is graded-commutative, i.e., $ab = (-1)^{|a||b|} ba$ for all homogeneous *a* and *b*.
 - The differential d: $A^i \rightarrow A^{i+1}$ satisfies the graded Leibnitz rule, i.e., d(*ab*) = d(*a*)*b* + (-1)^{|*a*|}*a*d(*b*).
- A CDGA *A* is of *finite-type* (or *q-finite*) if it is connected (i.e., $A^0 = \mathbb{k} \cdot 1$) and dim $A^i < \infty$ for all $i \leq q$.
- $H^{\bullet}(A)$ inherits an algebra structure from A.
- A cdga morphism φ: A → B is both an algebra map and a cochain map. Hence, it induces a morphism φ*: H•(A) → H•(B).

- A map φ: A → B is a quasi-isomorphism if φ* is an isomorphism. Likewise, φ is a q-quasi-isomorphism (for some q ≥ 1) if φ* is an isomorphism in degrees ≤ q and is injective in degree q + 1.
- Two cdgas, A and B, are (q-)equivalent (≃q) if there is a zig-zag of (q-)quasi-isomorphisms connecting A to B.
- A cdga A is formal (or just q-formal) if it is (q-)equivalent to $(H^{\bullet}(A), d = 0)$.
- A CDGA is *q*-minimal if it is of the form (∧ V, d), where the differential structure is the inductive limit of a sequence of Hirsch extensions of increasing degrees, and Vⁱ = 0 for i > q.
- Every CDGA A with $H^0(A) = \Bbbk$ admits a *q*-minimal model, $\mathcal{M}_q(A)$ (i.e., a *q*-equivalence $\mathcal{M}_q(A) \to A$ with $\mathcal{M}_q(A) = (\bigwedge V, d)$ a *q*-minimal cdga), unique up to iso.

ALGEBRAIC MODELS FOR SPACES

- Given any (path-connected) space X, there is an associated Sullivan Q-cdga, A_{PL}(X), such that H[•](A_{PL}(X)) = H[•](X, Q).
- An algebraic (q-)model (over k) for X is a k-cgda (A, d) which is (q-) equivalent to A_{PL}(X) ⊗_Q k.
- If *M* is a smooth manifold, then $\Omega_{dR}(M)$ is a model for *M* (over \mathbb{R}).
- Examples of spaces having finite-type models include:
 - Formal spaces (such as compact Kähler manifolds, hyperplane arrangement complements, toric spaces, etc).
 - Smooth quasi-projective varieties, compact solvmanifolds, Sasakian manifolds, etc.

CHARACTERISTIC VARIETIES

• Let $\widehat{G} = \text{Hom}(G, \mathbb{C}^*) = H^1(X, \mathbb{C}^*)$ be the character group of $G = \pi_1(X)$.

The characteristic varieties of X are the sets
Vⁱ(X) = {ρ ∈ Ĝ | H_i(X, C_ρ) ≠ 0}.

- If X has finite k-skeleton, then Vⁱ(X) is a Zariski closed subset of the algebraic group G, for each i ≤ k.
- The varieties $\mathcal{V}^{i}(X)$ are homotopy-type invariants of X.
- $\mathcal{V}^1(X)$ depends only on $G = \pi_1(X)$. Set $\mathcal{V}^i(G) := \mathcal{V}^i(K(G, 1))$. Then $\mathcal{V}^1(G) = \mathcal{V}^1(G/G'')$.

EXAMPLE (S.-YANG-ZHANG - 2015)

Let $f \in \mathbb{Z}[t_1^{\pm 1}, \dots, t_n^{\pm 1}]$ be an Laurent polynomial with f(1) = 0. There is then a f.p. group *G* with $G_{ab} = \mathbb{Z}^n$ such that $\mathcal{V}^1(G) = \mathbf{V}(f)$.

ALEX SUCIU (NORTHEASTERN) GEOMETRIC AND HOMOLOGICAL FINITENESS MFO MINI-WORKSHOP 2017 12 / 27

RESONANCE VARIETIES OF A CDGA

• Let $A = (A^{\bullet}, d)$ be a connected, finite-type CDGA over \mathbb{C} .

• For each $a \in Z^1(A) \cong H^1(A)$, we get a cochain complex,

$$(A^{\bullet}, \delta_a): A^0 \xrightarrow{\delta_a^0} A^1 \xrightarrow{\delta_a^1} A^2 \xrightarrow{\delta_a^2} \cdots,$$

with differentials $\delta_a^i(u) = a \cdot u + d u$, for all $u \in A^i$.

• The resonance varieties of A are the affine varieties

$$\mathcal{R}^{i}(A) = \{ a \in H^{1}(A) \mid H^{i}(A^{\bullet}, \delta_{a}) \neq 0 \}.$$

If X is a connected, finite-type CW-complex, we get the usual resonance varieties by setting Rⁱ(X) := Rⁱ(H[●](X, C)).

INFINITESIMAL FINITENESS OBSTRUCTIONS

QUESTION

Let X be a connected CW-complex with finite q-skeleton. Does X admit a q-finite q-model A?

THEOREM

If X is as above, then, for all $i \leq q$:

- (Dimca–Papadima 2014) $\mathcal{V}^i(X)_{(1)} \cong \mathcal{R}^i(A)_{(0)}$. In particular, if X is q-formal, then $\mathcal{V}^i(X)_{(1)} \cong \mathcal{R}^i(X)_{(0)}$.
- (Macinic, Papadima, Popescu, S. 2017) $TC_0(\mathcal{R}^i(A)) \subseteq \mathcal{R}^i(X)$.
- (Budur–Wang 2017) All the irreducible components of Vⁱ(X) passing through the origin of H¹(X, C^{*}) are algebraic subtori.

EXAMPLE

Let *G* be a f.p. group with $G_{ab} = \mathbb{Z}^n$ and $\mathcal{V}^1(G) = \{t \in (\mathbb{C}^*)^n \mid \sum_{i=1}^n t_i = n\}$. Then *G* admits no 1-finite 1-model.

ALEX SUCIU (NORTHEASTERN) GEOMETRIC AND HOMOLOGICAL FINITENESS MFO MINI-WORKSHOP 2017 14 / 27

THEOREM (PAPADIMA-S. 2017)

Suppose X is (q + 1) finite, or X admits a q-finite q-model. Then $b_i(\mathcal{M}_q(X)) < \infty$, for all $i \leq q + 1$.

COROLLARY

Let G be a f.g. group. Assume that either G is finitely presented, or G has a 1-finite 1-model. Then $b_2(\mathcal{M}_1(G)) < \infty$.

EXAMPLE

- Consider the free metabelian group $G = F_n / F''_n$ with $n \ge 2$.
- We have $\mathcal{V}^1(G) = \mathcal{V}^1(F_n) = (\mathbb{C}^*)^n$, and so *G* passes the Budur–Wang test.
- But b₂(M₁(G)) = ∞, and so G admits no 1-finite 1-model (and is not finitely presented).

BOUNDING THE Σ -INVARIANTS

Let exp: H¹(X, C) → H¹(X, C*) be the coefficient homomorphism induced by C → C*, z ↦ e^z.

• Given a Zariski closed subset $W \subset H^1(X, \mathbb{C}^*)$, set $\tau_1(W) = \{z \in H^1(X, \mathbb{C}) \mid \exp(\lambda z) \in W, \forall \lambda \in \mathbb{C}\}.$

• $\tau_1(W)$ is a finite union of rationally defined linear subspaces.

• Set $\tau_1^{\Bbbk}(W) = \tau_1(W) \cap H^1(X, \Bbbk)$ for $\Bbbk \subset \mathbb{C}$; $\mathcal{W}^i(X) = \bigcup_{j \leqslant i} \mathcal{V}^j(X)$.

THEOREM (PAPADIMA-S. 2010)

 $\Sigma^{i}(X,\mathbb{Z}) \subseteq \mathcal{S}(X) \setminus \mathcal{S}(\tau_{1}^{\mathbb{R}}(\mathcal{W}^{i}(X))).$

(†)

If X is formal, we may replace $\tau_1^{\mathbb{R}}(\mathcal{W}^i(X))$ with $\bigcup_{j \leq i} \mathcal{R}^j(X, \mathbb{R})$.

EXAMPLE (KOBAN-MCCAMMOND-MEIER 2015)

 $\Sigma^1(\boldsymbol{P}_n) = \mathcal{R}^1(\boldsymbol{P}_n, \mathbb{R})^{\complement}.$

Bounding the Ω -invariants

THEOREM (DWYER-FRIED 1987, PAPADIMA-S. 2010)

Let $v: \pi_1(X) \to \mathbb{Z}^r$ be an epimorphism. Then $\bigoplus_{i=0}^k H_i(X^v, \mathbb{C})$ is finite-dimensional if and only if the algebraic torus im $(\hat{v}: \mathbb{Z}^r \hookrightarrow \pi_1(X))$ intersects $\mathcal{W}^k(X)$ in only finitely many points.

COROLLARY (S. 2014)

 $\Omega^{i}_{r}(X) = \big\{ \boldsymbol{P} \in \mathrm{Gr}_{r}(H^{1}(X, \mathbb{Q})) \ \big| \ \dim \big(\exp(\boldsymbol{P} \otimes \mathbb{C}) \cap \mathcal{W}^{i}(X) \big) = \boldsymbol{0} \big\}.$

Given a homogeneous variety $V \subset \mathbb{k}^n$, the set $\sigma_r(V) = \{ P \in Gr_r(\mathbb{k}^n) \mid P \cap V \neq \{0\} \}$ is Zariski closed.

THEOREM (S. 2012/2014)

 $\Omega^{i}_{r}(X) \subseteq \operatorname{Gr}_{r}(H^{1}(X, \mathbb{Q})) \setminus \sigma_{r}(\tau^{\mathbb{Q}}_{1}(\mathcal{W}^{i}(X))).$

If the upper bound for the Σ -invariants is attained, then the upper bound for the Ω -invariants is also attained.

RFRp GROUPS

- Let G be a f.g. group and let p be a prime.
- We say that G is residually finite rationally p if there exists a sequence of subgroups G = G₀ > · · · > G_i > G_{i+1} > · · · such that

 - 3 G_i/G_{i+1} is an elementary abelian *p*-group.
- The class of RFRp groups is closed under taking subgroups, finite direct products, and finite free products.
- Finitely generated free groups; closed, orientable surface groups; and right-angled Artin groups are RFRp, for all p.
- Finite groups and non-abelian nilpotent groups are not RFRp, for any p.

THEOREM (KOBERDA-S. 2016)

Let G be a f.g. group which is RFRp for some prime p. Then:

- G is residually finite. In particular, if G is finitely presented, then G has a solvable word problem.
- G is torsion-free.
- G is residually torsion-free polycyclic.

THEOREM

Let G be a f.p. group which is non-abelian and RFRp for infinitely many primes p. Then:

- G is bi-orderable.
- The maximal k-step solvable quotients $G/G^{(k)}$ are not finitely presented, for any $k \ge 2$.
- $\Sigma^1(\mathbf{G})^{c} \neq \emptyset$.

LARGE GROUPS

A finitely generated group *G* is said to be *large* if there is a finite-index subgroup H < G which surjects onto a free, non-cyclic group.

THEOREM (KOBERDA 2014)

An f.p. group G is large if and only if there exists a finite-index subgroup K < G such that $\mathcal{V}^1(K)$ has infinitely many torsion points.

THEOREM (KS 2016)

Let G be a f.p. group which is non-abelian and RFRp for infinitely many primes p. Then G is large.

PROPOSITION (PS 2017, FOLLOWS FROM ARAPURA)

Let X be a quasi-projective manifold. Then $\pi_1(X)$ is large if and only if there is a finite cover $Y \to X$ and a regular, surjective map from Y to a smooth curve C with $\chi(C) < 0$, so that the generic fiber is connected.

BOUNDARY MANIFOLDS OF PLANE CURVES

- Let C be a (reduced) algebraic curve in \mathbb{CP}^2 .
- The *boundary manifold* of C is defined as $M_C = \partial T$, where T is a regular neighborhood of C.
- $M = M_{\mathcal{C}}$ is a closed, oriented graph-manifold over a graph Γ .

EXAMPLE

Suppose C is smooth. Then $C \cong \Sigma_g$, where $g = \binom{d-1}{2}$, and $d = \deg(C)$. Thus, M_C is a circle bundle over Σ_g with Euler number $e = d^2$.

In this example, $\pi_1(M)$ is not RFR*p*, for any prime *p*, provided $d \ge 2$.

EXAMPLE

Suppose $C = C \cup L$ consists of a smooth conic and a transverse line. The graph Γ is a square, the vertex manifolds are thickened tori $S^1 \times S^1 \times I$, and M_C is the Heisenberg nilmanifold.

In this example, $\pi_1(M)$ is not RFR*p*, for any prime *p*.

ALEX SUCIU (NORTHEASTERN) GEOMETRIC AND HOMOLOGICAL FINITENESS MFO MINI-WORKSHOP 2017 21 / 27

QUESTION

For which plane algebraic curves C is the fundamental group of the boundary manifold M_C an RFRp group (for some p or all primes p)?

Тнеогем (KS 2016)

Let C be an algebraic curve in \mathbb{C}^2 , with boundary manifold M. Suppose that each irreducible component of C is smooth and transverse to the line at infinity, and all singularities of C are of type A. Then $\pi_1(M)$ is RFRp, for all primes p.

COROLLARY

If *M* is the boundary manifold of a line arrangement in \mathbb{C}^2 , then $\pi_1(M)$ is RFRp, for all primes *p*.

CONJECTURE

Arrangement groups are RFR*p*, for all primes *p*.

Associated graded Lie Algebras

- The *lower central series* of a group *G* is defined inductively by $\gamma_1 G = G$ and $\gamma_{k+1} G = [\gamma_k G, G]$.
- This forms a filtration of *G* by characteristic subgroups. The LCS quotients, $\gamma_k G / \gamma_{k+1} G$, are abelian groups.
- The group commutator induces a graded Lie algebra structure on

$$\operatorname{gr}(G, \Bbbk) = \bigoplus_{k \ge 1} (\gamma_k G / \gamma_{k+1} G) \otimes_{\mathbb{Z}} \Bbbk.$$

- Assume *G* is finitely generated. Then gr(G) is also finitely generated (in degree 1) by $gr_1(G) = H_1(G, \Bbbk)$.
- For instance, $gr(F_n)$ is the free graded Lie algebra $\mathbb{L}_n := \text{Lie}(\mathbb{k}^n)$.

HOLONOMY LIE ALGEBRAS

- Let *A* be a 1-finite cdga. Set $A_i = (A^i)^*$.
- Let $\mu^* \colon A_2 \to A_1 \land A_1$ be the dual to the multiplication map $\mu \colon A^1 \land A^1 \to A^2$.
- Let $d^*: A_2 \to A_1$ be the dual of the differential $d: A^1 \to A^2$.
- The holonomy Lie algebra of A is the quotient

 $\mathfrak{h}(\boldsymbol{A}) = \operatorname{Lie}(\boldsymbol{A}_1) / \langle \operatorname{im}(\boldsymbol{\mu}^* + \boldsymbol{d}^*) \rangle.$

For a f.g. group G, set h(G) := h(H[●](G, k)). There is then a canonical surjection h(G) → gr(G), which is an isomorphism precisely when gr(G) is quadratic.

MALCEV LIE ALGEBRAS

• Let *G* be a f.g. group. The successive quotients of *G* by the terms of the LCS form a tower of finitely generated, nilpotent groups,

 $\cdots \longrightarrow G/\gamma_4 G \longrightarrow G/\gamma_3 G \longrightarrow G/\gamma_2 G = G_{ab} .$

- (Malcev 1951) It is possible to replace each nilpotent quotient N_k by $N_k \otimes k$, the (rationally defined) nilpotent Lie group associated to the discrete, torsion-free nilpotent group $N_k / tors(N_k)$.
- The inverse limit, $\mathfrak{M}(G) = \lim_{k \to K} (G/\gamma_k G) \otimes \Bbbk$, is a prounipotent, filtered Lie group, called the *prounipotent completion* of *G* over \Bbbk .
- The pronilpotent Lie algebra

$$\mathfrak{m}(G) := \varprojlim_k \mathfrak{Lie}((G/\gamma_k G) \otimes \Bbbk),$$

endowed with the inverse limit filtration, is called the *Malcev Lie* algebra of G (over \Bbbk).

 By dualizing the canonical filtration of M₁(G), we obtain a tower of central extensions of finite-dimensional nilpotent Lie algebras,

 $\cdots \longrightarrow \mathfrak{m}_{n+1} \longrightarrow \mathfrak{m}_n \longrightarrow \cdots \longrightarrow \mathfrak{m}_1 = \{\mathbf{0}\};$

 $\mathfrak{m}(G)$ is isomorphic to the inverse limit of this tower.

- The group-algebra $\Bbbk G$ has a natural Hopf algebra structure, with comultiplication $\Delta(g) = g \otimes g$ and counit the augmentation map.
- (Quillen 1968) The *l*-adic completion of the group-algebra, $\widehat{\Bbbk G} = \lim_{k} \underline{\& G} / l^k$, is a filtered, complete Hopf algebra.
- An element $x \in \widehat{\Bbbk G}$ is called *primitive* if $\widehat{\Delta x} = x \widehat{\otimes} 1 + 1 \widehat{\otimes} x$. The set of all such elements, with bracket [x, y] = xy yx, and endowed with the induced filtration, is a complete, filtered Lie algebra.
- We then have $\mathfrak{m}(G) \cong \operatorname{Prim}(\widehat{\Bbbk G})$ and $\operatorname{gr}(\mathfrak{m}(G)) \cong \operatorname{gr}(G)$.
- (Sullivan 1977) *G* is 1-formal $\iff \mathfrak{m}(G)$ is quadratic.

FINITENESS OBSTRUCTIONS FOR GROUPS

LEMMA

For $n \ge 2$, the graded vector space $\mathbb{L}''_n / [\mathbb{L}_n, \mathbb{L}''_n]$ is infinite-dimensional.

THEOREM (PS 2017)

Let G be a f.g. group which has a free, non-cyclic quotient. Then:

- G/G" is not finitely presentable.
- G/G" does not admit a 1-finite 1-model.

Theorem (PS 2017)

A f.g. group G admits a 1-finite 1-model A if and only if $\mathfrak{m}(G)$ is the lcs completion of a finitely presented Lie algebra, namely,

 $\mathfrak{m}(G) \cong \widehat{\mathfrak{h}(A)}.$