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FINITENESS PROPERTIES FINITENESS PROPERTIES FOR SPACES AND GROUPS

FINITENESS PROPERTIES FOR SPACES AND GROUPS

o A recurring theme in topology is to determine the geometric and
homological finiteness properties of spaces and groups.
o For instance, to decide whether a path-connected space X is
homotopy equivalent to a CW-complex with finite k-skeleton.
o A group G has property Fy if it admits a classifying space K(G, 1)
with finite k-skeleton.
o Fq: Gis finitely generated;
o Fo: Gis finitely presentable.
o G has property FPy if the trivial ZG-module Z admits a projective
Z G-resolution which is finitely generated in all dimensions up to k.

o The following implications (none of which can be reversed) hold:

Gis of type Fx = G is of type FP
= H;(G, Z) is finitely generated, for all i < k
= bi(G) < o, for all i < k.
o Moreover, FP, & Fo = Fy.
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FINITENESS PROPERTIES BIERI-NEUMANN-STREBEL—RENZ INVARIANTS

BIERI-NEUMANN-STREBEL-RENZ INVARIANTS

o (Bieri-Neumann-Strebel 1987) For a f.g. group G, let
1 (G) = {x € S(G) | Cx(G) is connectedy},
where S(G) = (Hom(G, R)\{0})/R* and C,(G) is the induced
subgraph of Cay(G) on vertex set G, = {ge G| x(g) = 0}.
o 2'(G) is an open set, independent of generating set for G.
o (Bieri, Renz 1988)
¥¥(G,Z) = {x € S(G) | the monoid Gy is of type FP}.
In particular, 2 (G, Z) = ='(G).
o The X-invariants control the finiteness properties of normal
subgroups N < G for which G/ N is free abelian:
N is of type FPx < S(G, N) < X%(G, Z)
where S(G,N) = {x € S(G) | x(N) = 0}. In particular:
ker(x: G — Z) is f.g. < {+x} = Z'(G).
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FINITENESS PROPERTIES BIERI-NEUMANN-STREBEL—RENZ INVARIANTS

o Fix a connected CW-complex X with finite k-skeleton, for some
k>1.LetG= 7'[1(X,Xo).

o Foreach x € S(X) := S(G), set
ZE‘X = {A e ZC% | {gesuppA | x(g) < c}is finite, Vc e ]R}.
This is a ring, contains ZG as a subring; hence, a ZG-module.

o (Farber, Geoghegan, Schiitz 2010)

29(X,Z) := {x € S(X) | H(X,ZG_,) =0, Vi < q}.
o (Bieri) Gis of type FPy, — %9(G,Z) =X9(K(G,1),Z), ¥q < k.

ALEX SUCIU (NORTHEASTERN) GEOMETRIC AND HOMOLOGICAL FINITENESS MFO MINI-WORKSHOP 2017 4/27



FINITENESS PROPERTIES DWYER-FRIED SETS

DWYER-FRIED SETS

o For afixed r € IN, the connected, regular covers Y — X with
group of deck-transformations Z" are parametrized by the
Grassmannian of r-planes in H'(X, Q).

o Moving about this variety, and recording when b;(Y), ..., bi(Y)
are finite defines subsets Q. (X) < Gr.(H'(X,Q)), which we call
the Dwyer—Fried invariants of X.

o These sets depend only on the homotopy type of X. Hence, if G is
a f.g. group, we may define O, (G) := QL(K(G, 1)).

EXAMPLE

Let K be a knot in S3. If X = S3\K, then dimq H; (X3, Q) < o, and so
Ql(X) = {pt}. But H; (X3, Z) need not be a f.g. Z-module.
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FINITENESS PROPERTIES DWYER-FRIED SETS

Let G be afg. group, andv: G — Z' an epimorphism, with kernel T.

THEOREM
Suppose Q0K (G) = &, and T is of type Fx_1. Then by (T) = . |

o Proof: Set X = K(G, 1);then X" = K(T', 1). Since T is of type
Fxk_1, we have b;(X") < oo for i < k — 1. Since Qf(X) = &, we
must have by (X") = .

It follows that H (T, Z) is not f.g., and I is not of type FPy.

Let G be a f.g. group, and suppose Q3 (G) = &. Letv: G — Z be an

COROLLARY
epimorphism. If the group T = ker(v) is f.p., then b3(T') = co.
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FINITENESS PROPERTIES THE STALLINGS GROUP

THE STALLINGS GROUP

oletY=S"vS"and X = Y x Y x Y. Clearly, X is a classifying
space for G = F> x Fp x Fo.

o Letv: G — Z be the homomorphism taking each standard
generator to 1. Set I' = ker(v).

o Stallings (1963) showed that T' is finitely presented:
[={abcxyl|xa,lyallxbllyblla'xcllaycl[b ac])
o Stallings then showed, via a Mayer-Vietoris argument, that
Hs3(T, Z) is not finitely generated.

o Alternate explanation: Q3(X) = . Thus, by the previous
Corollary, a stronger statement holds: bs(T') is not finite.
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FINITENESS PROPERTIES KOLLAR’S QUESTION

KOLLAR’S QUESTION

QUESTION (J. KOLLAR 1995)

Given a smooth, projective variety M, is the fundamental group
G = 11(M) commensurable, up to finite kernels, with another group,
7, admitting a K (7t, 1) which is a quasi-projective variety?

(Two groups, Gy and Go, are said to be commensurable up to finite
kernels if there is a zig-zag of groups and homomorphisms connecting
them, with all arrows of finite kernel and cofinite image.)

THEOREM (DIMCA-PAPADIMA-S. 2009)

For each k > 3, there is a smooth, irreducible, complex projective
variety M of complex dimension k — 1, such that 7t (M) is of type Fy_1,
but not of type FP.

Further examples given by Llosa Isenrich and Bridson (2016/17).
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ALGEBRAIC MODELS AND COHOMOLOGY JUMP LOCI COMMUTATIVE DIFFERENTIAL GRADED ALGEBRAS

COMMUTATIVE DIFFERENTIAL GRADED ALGEBRAS

o Let A= (A*,d) be a commutative, differential graded algebra over
a field k of characteristic 0. That is:

o A= @;=9A’, where A’ are k-vector spaces.

o The multiplication -: A'®@ A — At/ is graded-commutative, i.e.,
ab = (—1)/@lbIpa for all homogeneous a and b.

o The differential d: A’ — A/ satisfies the graded Leibnitz rule, i.e.,
d(ab) = d(a)b+ (—1)lalad(b).

o A CDGA Ais of finite-type (or g-finite) it it is connected (i.e.,
A® =k-1)and dimA < o forall i < g.

o H*(A) inherits an algebra structure from A.

o A cdga morphism ¢: A — Bis both an algebra map and a cochain
map. Hence, it induces a morphism ¢*: H*(A) — H*(B).
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ALGEBRAIC MODELS AND COHOMOLOGY JUMP LOCI COMMUTATIVE DIFFERENTIAL GRADED ALGEBRAS

o Amap ¢: A— Bis a quasi-isomorphism if ¢* is an isomorphism.
Likewise, ¢ is a g-quasi-isomorphism (for some g > 1) if ¢* is an
isomorphism in degrees < g and is injective in degree g + 1.

o Two cdgas, A and B, are (q-)equivalent (~) if there is a zig-zag of
(g-)quasi-isomorphisms connecting A to B.

o Acdga Ais formal (or just g-formal) if it is (g-)equivalent to
(H*(A),d =0).

o A CDGA is g-minimal if it is of the form (/\ V, d), where the
differential structure is the inductive limit of a sequence of Hirsch
extensions of increasing degrees, and V' = 0 for i > q.

o Every cDGA A with H°(A) = k admits a g-minimal model, Mq(A)
(i.e., a g-equivalence Mg4(A) — Awith My(A) = (A V,d) a
g-minimal cdga), unique up to iso.
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ALGEBRAIC MODELS AND COHOMOLOGY JUMP LOCI ALGEBRAIC MODELS FOR SPACES

ALGEBRAIC MODELS FOR SPACES

o Given any (path-connected) space X, there is an associated
Sullivan Q-cdga, Apr(X), such that H*(ApL(X)) = H*(X, Q).

o An algebraic (q-)model (over k) for X is a k-cgda (A, d) which is
(g-) equivalent to App,(X) ®q k.
o If M is a smooth manifold, then Q4r (M) is a model for M (over R).

o Examples of spaces having finite-type models include:

o Formal spaces (such as compact K&hler manifolds, hyperplane
arrangement complements, toric spaces, etc).

o Smooth quasi-projective varieties, compact solvmanifolds,
Sasakian manifolds, etc.
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ALGEBRAIC MODELS AND COHOMOLOGY JUMP LOCI CHARACTERISTIC VARIETIES

CHARACTERISTIC VARIETIES
o LetG= Hom(G, C*) = H'(X,C*) be the character group of
G= US| (X)
o The characteristic varieties of X are the sets
Vi(X) = {oe G| Hi(X,C,) # 0}.

o If X has finite k-skeleton, then V/(X) is a Zariski closed subset of
the algebraic group G, for each i < k.

o The varieties V'(X) are homotopy-type invariants of X.

o V'(X) depends only on G = {(X). Set V/(G) := VI(K(G, 1)).
Then V'(G) = V!(G/G).

EXAMPLE (S.-YANG-ZHANG — 2015)

Let fe Z[t', ... t7'] be an Laurent polynomial with f(1) = 0. There
is then a f.p. group G with G, = Z" such that V' (G) = V(f).
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ALGEBRAIC MODELS AND COHOMOLOGY JUMP LOCI RESONANCE VARIETIES OF A CDGA

RESONANCE VARIETIES OF A CDGA

o Let A= (A*,d) be a connected, finite-type CDGA over C.
o Foreach ae Z'(A) = H'(A), we get a cochain complex,

0 1 2
(A%, 6,): AO 2 At o pp %

with differentials 65(u) = a-u+du, forall ue A'.
o The resonance varieties of A are the affine varieties
R(A) = {ae H'(A) | H(A*,5,) + 0}.
o If X is a connected, finite-type CW-complex, we get the usual
resonance varieties by setting R'(X) := R'(H*(X, C)).

ALEX SUCIU (NORTHEASTERN) GEOMETRIC AND HOMOLOGICAL FINITENESS MFO MINI-WORKSHOP 2017

13 /27



ALGEBRAIC MODELS AND COHOMOLOGY JUMP LOCI INFINITESIMAL FINITENESS OBSTRUCTIONS

INFINITESIMAL FINITENESS OBSTRUCTIONS
QUESTION

Let X be a connected CW-complex with finite g-skeleton. Does X
admit a g-finite g-model A?

THEOREM
If X is as above, then, for all i < q:
o (Dimca—Papadima 2014) V(X)) = R/(A) ).
In particular, if X is q-formal, then V'(X) 1) = R'(X) o)
o (Macinic, Papadima, Popescu, S. 2017) TCo(R/(A)) < R/(X).

o (Budur-Wang 2017) All the irreducible components of V'(X)
passing through the origin of H' (X, C*) are algebraic subtori.

EXAMPLE

Let G be a f.p. group with G,, = Z" and V' (G) = {t e (C*)" |
37, t; = n}. Then G admits no 1-finite 1-model.
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ALGEBRAIC MODELS AND COHOMOLOGY JUMP LOCI INFINITESIMAL FINITENESS OBSTRUCTIONS

THEOREM (PAPADIMA-S. 2017)

Suppose X is (q + 1) finite, or X admits a g-finite g-model. Then
bi(Mg(X)) <o, foralli < q+1.

COROLLARY

Let G be a f.g. group. Assume that either G is finitely presented, or G
has a 1-finite 1-model. Then bo(M;(G)) < 0.

EXAMPLE
o Consider the free metabelian group G = F, / F} with n > 2.
o We have V'(G) = V'(F,) = (C*)", and so G passes the
Budur—Wang test.

o But bo(M1(G)) = w0, and so G admits no 1-finite 1-model (and is
not finitely presented).
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BOUNDING THE X AND ()-INVARIANTS BOUNDING THE X-INVARIANTS

BOUNDING THE 2-INVARIANTS
o Letexp: H'(X,C) — H'(X,C*) be the coefficient homomorphism
induced by C — C*, z — €~.
o Given a Zariski closed subset W < H'(X,C*), set
(W) = {ze H'(X,C) | exp(Az) € W, YA € C}.
o 11(W) is a finite union of rationally defined linear subspaces.
o Set (W) = 74 (W) n H'(X, k) for k =« C; W/(X) = U;<; V/(X).

THEOREM (PAPADIMA-S. 2010)
Y(X,Z) < S(X\S(TROW/(X)). mJ

If X is formal, we may replace ={ (W'(X)) with | J;; R/ (X, R).

EXAMPLE (KOBAN-MCCAMMOND-MEIER 2015)
> (Py) = R'(Pp, R)C. J
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BOUNDING THE % AND Q)-INVARIANTS BOUNDING THE Q)-INVARIANTS
BOUNDING THE ()-INVARIANTS
THEOREM (DWYER-FRIED 1987, PAPADIMA-S. 2010)

Letv: mty(X) — Z'" be an epimorphism. Then P 0

Hi(X"
finite-dimensional if and only if the algebraic torus im (7 : Z — 714 (X )

intersects WX (X) in only finitely many points.

COROLLARY (S. 2014)
QL(X) = {P e Gr,(H'(X,Q)) | dim (exp(P®C) n W/(X)) = 0}.

Given a homogeneous variety V < k”, the set
or(V) = {PeGr(k")| P~V # {0}} is Zariski closed.

THEOREM (S. 2012/2014)
QLX) < Gr,(H'(X,Q))\or (TR(W'(X))).

If the upper bound for the L-invariants is attained, then the upper
bound for the Q) -invariants is also attained.

ALEX SUCIU (NORTHEASTERN) GEOMETRIC AND HOMOLOGICAL FINITENESS MFO MINI-WORKSHOP 2017

17 / 27



THE RFRp PROPERTY RFRp GROUPS

RFRp GROUPS

o Let Gbe af.g. group and let p be a prime.

o We say that G is residually finite rationally p if there exists a
sequence of subgroups G = Gy > --- > G; > Gj,¢ > --- such that
@ G1<G.
@ ﬂ,’zo Gj - {1}
@ G;/Gj,1 is an elementary abelian p-group.
@ ker(G; — H1(G;,Q)) < Giy1.
o The class of RFRp groups is closed under taking subgroups, finite
direct products, and finite free products.

o Finitely generated free groups; closed, orientable surface groups;
and right-angled Artin groups are RFRp, for all p.

o Finite groups and non-abelian nilpotent groups are not RFRp, for
any p.
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THE RFRp PROPERTY RFRp GROUPS

THEOREM (KOBERDA-S. 2016)
Let G be a f.g. group which is RFRp for some prime p. Then:

o G is residually finite. In particular, if G is finitely presented, then G
has a solvable word problem.

o G is torsion-free.
o G is residually torsion-free polycyclic.

THEOREM

Let G be a f.p. group which is non-abelian and RFRp for infinitely many
primes p. Then:

o G is bi-orderable.

o The maximal k-step solvable quotients G/ G*) are not finitely
presented, for any k > 2.

o 21 (G) # .
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THE RFRp PROPERTY RFRp GROUPS

LARGE GROUPS

A finitely generated group G is said to be large if there is a finite-index
subgroup H < G which surjects onto a free, non-cyclic group.

THEOREM (KOBERDA 2014)

An f.p. group G is large if and only if there exists a finite-index
subgroup K < G such that V' (K) has infinitely many torsion points.

THEOREM (KS 2016)

Let G be a f.p. group which is non-abelian and RFRp for infinitely many
primes p. Then G is large.

PROPOSITION (PS 2017, FOLLOWS FROM ARAPURA)

Let X be a quasi-projective manifold. Then rt1(X) is large if and only if
there is a finite cover Y — X and a regular, surjective map from Y to a
smooth curve C with x(C) < 0, so that the generic fiber is connected.
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THE RFRp PROPERTY BOUNDARY MANIFOLDS

BOUNDARY MANIFOLDS OF PLANE CURVES

o Let C be a (reduced) algebraic curve in CIP2.
o The boundary manifold of C is defined as M = 0T, where T is a
regular neighborhood of C.

o M = M is a closed, oriented graph-manifold over a graph T'.
EXAMPLE
Suppose C is smooth. Then C =~ %4, where g = (%), and d = deg(C).
Thus, M. is a circle bundle over =4 with Euler number e = d?.
In this example, 771 (M) is not RFRp, for any prime p, provided d > 2.
EXAMPLE
Suppose C = C u L consists of a smooth conic and a transverse line.

The graph T is a square, the vertex manifolds are thickened tori
S x 8! x I, and M, is the Heisenberg nilmanifold.

In this example, 7r1 (M) is not RFRp, for any prime p.
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THE RFRp PROPERTY BOUNDARY MANIFOLDS

QUESTION

For which plane algebraic curves C is the fundamental group of the
boundary manifold Mz an RFRp group (for some p or all primes p)?

THEOREM (KS 2016)

Let C be an algebraic curve in C?, with boundary manifold M. Suppose
that each irreducible component of C is smooth and transverse to the
line at infinity, and all singularities of C are of type A. Then rt1(M) is
RFRp, for all primes p.

COROLLARY

If M is the boundary manifold of a line arrangement in C2, then 7t1(M)
is RFRp, for all primes p.

CONJECTURE
Arrangement groups are RFRp, for all primes p.

ALEX SUCIU (NORTHEASTERN) GEOMETRIC AND HOMOLOGICAL FINITENESS MFO MINI-WORKSHOP 2017 22 /27



LIE ALGEBRAS AND FINITE MODELS ASSOCIATED GRADED LIE ALGEBRAS

ASSOCIATED GRADED LIE ALGEBRAS

o The lower central series of a group G is defined inductively by
711G = Gand 7x1G = [1«G, Gl.

o This forms a filtration of G by characteristic subgroups. The LCS
quotients, v« G/ vk.1G, are abelian groups.

o The group commutator induces a graded Lie algebra structure on
gr(G k) = Dy, (1kG/7k+1G) ®z k.

o Assume G is finitely generated. Then gr(G) is also finitely
generated (in degree 1) by gr{(G) = H; (G k).

o For instance, gr(Fp) is the free graded Lie algebra IL,, := Lie(k").
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LIE ALGEBRAS AND FINITE MODELS HOLONOMY LIE ALGEBRAS

HOLONOMY LIE ALGEBRAS

Let A be a 1-finite cdga. Set A; = (A')*.

©

o Let u*: Ao — A1 A Aq be the dual to the multiplication map
u: At A AT - A2

o Let d*: A> — A; be the dual of the differential d: A" — A2.

©

The holonomy Lie algebra of A is the quotient

h(A) = Lie(Aq)/{im(p* + d%)).

©

For a f.g. group G, set hH(G) := h(H*(G,k)). There is then a
canonical surjection h(G) — gr(G), which is an isomorphism
precisely when gr(G) is quadratic.
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LIE ALGEBRAS AND FINITE MODELS MALCEV LIE ALGEBRAS

MALCEV LIE ALGEBRAS

o Let G be af.g. group. The successive quotients of G by the terms
of the LCS form a tower of finitely generated, nilpotent groups,

HG/’Y“_GH G/r)’(SG*> G/’)sz: Gab -

o (Malcev 1951) It is possible to replace each nilpotent quotient Ny
by Nk ® k, the (rationally defined) nilpotent Lie group associated to
the discrete, torsion-free nilpotent group Nj /tors(Nk).

o The inverse limit, M(G) = lim, (G/7«G) ®k, is a prounipotent,
filtered Lie group, called the prounipotent completion of G over k.

o The pronilpotent Lie algebra
m(G) := lim Lie((G/ 714 G) ®k),

<«

k

endowed with the inverse limit filtration, is called the Malcev Lie
algebra of G (over k).
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LIE ALGEBRAS AND FINITE MODELS MALCEV LIE ALGEBRAS

o By dualizing the canonical filtration of M (G), we obtain a tower
of central extensions of finite-dimensional nilpotent Lie algebras,

Ce—s Mg mp m.l:{O};

m(G) is isomorphic to the inverse limit of this tower.

o The group-algebra kG has a natural Hopf algebra structure, with
comultiplication A(g) = g ® g and counit the augmentation map.

o (Quillen 1968) The /-adic completion of the group-algebra,

o~

kG =lim kG/ I%, is a filtered, complete Hopf algebra.

o An element x € kG is called primitive if Ax = x®1 + 1&x. The set
of all such elements, with bracket [x, y] = xy — yx, and endowed
with the induced filtration, is a complete, filtered Lie algebra.

o We then have m(G) = Prim(kG) and gr(m(G)) = gr(G).
o (Sullivan 1977) G is 1-formal < m(G) is quadratic.
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LIE ALGEBRAS AND FINITE MODELS FINITENESS OBSTRUCTIONS FOR GROUPS

FINITENESS OBSTRUCTIONS FOR GROUPS

LEMMA
For n > 2, the graded vector space 1L}/ [IL, IL}] is infinite-dimensional.

THEOREM (PS 2017)

Let G be a f.g. group which has a free, non-cyclic quotient. Then:
o G/ @G" is not finitely presentable.
o G/@G" does not admit a 1-finite 1-model.

THEOREM (PS 2017)

A f.g. group G admits a 1-finite 1-model A if and only if m(G) is the Ics
completion of a finitely presented Lie algebra, namely,
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