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Introduction by the Organisers

Overview. This Mini-Workshop was organized by G. Denham (London, Canada)
and A. Suciu (Boston, USA). The participants were drawn together by overlapping
interests in combinatorial constructions in algebraic geometry, topology, and group
theory. Several participants were recent Ph.D.s, some of them on their first visit
to MFO. In all, there were 17 people attending the mini-workshop (including the
organizers), coming from the United States, Canada, Germany, Great Britain,
Italy, and Russia.

The meeting allowed us to compare some closely related constructions and find
some common ground within the scope of rather varied disciplinary perspectives.
The relatively spontaneous format of the meeting made it possible to mix some
informal and semi-expository talks and small group discussions with more formal
announcements of recent developments, indicated in the abstracts that follow.
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Research themes. Some of the mathematical objects of interest included moment-
angle complexes and their generalizations, as well as real and complex toric vari-
eties; complex hyperplane and subspace arrangements; fundamental groups such
as right-angled Artin groups and arrangement groups; tropical and wonderful com-
pactifications.

One of the themes explored at the meeting was a wider accessibility of ideas
from tropical geometry, as applied to the constructions above. The abstract by
Maŕıa Angélica Cueto makes this more precise and provides a quick introduction to
the subject. In particular, the construction of De Concini and Procesi’s wonderful
compactification of the complement of a union of hyperplanes via toric geometry
(an example of Tevelev’s tropical compactifications) was reviewed: the abstract
of Eva-Maria Feichtner mentions a solution to a problem posed by Corrado De
Concini which was obtained at the workshop. Through informal discussions, the
relationship between the Chow rings of the wonderful models with those of the
compactifying toric varieties was brought into sharper focus. Furthermore, Diane
Maclagan described how methods of tropical geometry could apply to describe the
effective cone of the wonderful compactification.

The theory of toric varieties and torus-equivariant topology were implicit in-
gredients in much of what took place at the meeting. They were, in fact, the
focus of the talks on equivariant (co)homology given by Matthias Franz and Hal
Schenck. The wonderful models are also closely related to the toric varieties de-
fined by classical root systems, such as the Hessenberg varieties of symmetric,
isospectral tridiagonal matrices. These spaces and their cohomology rings admit
Coxeter group actions; one approach to understanding their homology uses the
representation theory of the reflection groups, together with a subtle comparison
with the relevant wonderful compactifications. One of the abstracts by Alex Suciu
describes another, totally different approach, based on the topological interpreta-
tion of smooth toric varieties pioneered by Davis and Januszkiewicz, and on some
recent developments in toric topology.

One of the most fruitful ideas to arise from the theory of hyperplanes arrange-
ments is that of turning the cohomology ring of a space into a family of cochain
complexes, parametrized by the cohomology group in degree one, and extracting
certain “resonance” varieties from these data, as the loci where the cohomology of
those cochain complexes jumps. The abstract of Dan Cohen mentions a solution
to a 12-year old conjecture, expressing the ranks of the Chen groups of an arrange-
ment in terms of the dimensions of the components of the resonance varieties. In a
more combinatorial vein, the abstract by Mike Falk describes various connections
between resonance varieties of arrangements, multinets, Bergman fans, and tropi-
cal varieties. Finally, another abstract by Alex Suciu describes a stratification of
the Grassmannian of m-planes in the second exterior power of a vector space, that
keeps track of the corresponding resonance schemes.

Some of the themes from this mini-workshop turned out to overlap with those
of the mini-workshop Topology of Real Singularities and Motivic Aspects, which
led to some interesting discussions between members of the respective groups. In
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particular, Ian Leary had reported on the ℓ2-cohomology of hyperplane comple-
ments, and Laurentiu Maxim was able to join this group for an afternoon and
present some complementary results for affine hypersurface complements.

Concluding remarks. Spending a concentrated and highly intense week in a
relatively small group allowed for in-depth and continuing conversations, in par-
ticular with new acquaintances. These opportunities (difficult to find at larger
meetings) were enhanced by the diversity of backgrounds of the participants. This
speaks to the fact that the usual, more rigid conference climate was superseded
by an open and creative workshop atmosphere.

There was general agreement that the mini-workshop created an effective and
stimulating research atmosphere. During the week of the workshop, and soon
thereafter, some progress was made in solving old and new problems. The work
initiated at Oberwolfach is continuing now in several research groups. The intense
interactions at the meeting gave rise to new projects, which should start bearing
fruit in the not too distant future.
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Abstracts

Chen ranks and resonance

Daniel C. Cohen

(joint work with Henry K. Schenck)

Chen Ranks. Let G be a finitely presented group, with commutator subgroup
G′ = [G,G], and second commutator subgroup G′′ = [G′, G′]. The Chen groups of
G are the lower central series quotients grk(G/G′′) of G/G′′. These groups were
introduced by K.T. Chen in [1], so as to provide accessible approximations of the
lower central series quotients of a link group. For example, if G = Fn is the free
group of rank n (the fundamental group of the n-component unlink), the Chen
groups are free abelian, and their ranks, θk(G) = rank grk(G/G′′), are given by

θk(Fn) = (k − 1)
(
k+n−2

k

)
for k ≥ 2. In particular, θk(F2) = k − 1 for k ≥ 2.

Let Pn be the Artin pure braid group on n strands, the fundamental group of
the configuration space of n ordered points in C. The Chen groups of Pn are free
abelian, and their ranks are given by θk(Pn) =

(
n+1
4

)
(k − 1) for k ≥ 3, see [3].

Resonance. Let A = H∗(G;C). For a ∈ A1, since a ∪ a = 0, multiplication by a

provides A with the structure of a (cochain) complex: A0 a
−−→ A1 a

−−→ A2 a
−−→ . . .

The (first) resonance variety of G is R1(G) = {a ∈ A1 | H1(A, a) 6= 0}, a homo-
geneous algebraic subvariety in A1 = H1(G;C).

The group G is said to be 1-formal if the Malcev Lie algebra of G is quadratic
(see [9] for details). For any finitely generated 1-formal group, Dimca-Papadima-
Suciu [5] show that all irreducible components of the resonance variety R1(G) are
linear subspaces of A1. In particular, this holds for an arrangement group, the
fundamental group G(A) = π1(M(A)) of the complement of a complex hyperplane
arrangement, as previously shown by a number of authors, including Libgober-
Yuzvinsky [8], who additionally show that the irreducible components ofR1(G(A))
are “projectively disjoint” – they meet only at the origin in A1.

For example, if G = Pn is the pure braid group, the fundamental group of the
complement of the braid arrangement, R1(Pn) is a union of

(
n+1
4

)
2-dimensional

linear subspaces of A1 = H1(Pn;C), see for instance [4]. Note that, for k ≥ 3,
θk(Pn) =

(
n+1
4

)
θk(F2). This, and many other examples, led to the following.

Conjecture 1 (Suciu [12]). If G = G(A) is an arrangement group, then, for
k ≫ 0, θk(G) =

∑
r≥2 hrθk(Fr), where hr is the number of irreducible components

of dimension r in R1(G).

In this talk, we announce a positive resolution of this conjecture. Some addi-
tional terminology is required to state the general result.

Recall that A = H∗(G;C), and let µ : A1 ∧ A1 → A2 be the cup product map,
µ(a∧b) = a∪b. A non-zero subspace U ⊆ A1 is said to be p-isotropic with respect
to the cup product map if the restriction of µ to U ∧ U has rank p.
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A group G is said to be a commutator-relators group if it admits a presentation
G = F/R, where F is a finitely generated free group and R is the normal closure
of a finite subset of [F, F ]. For such a group, the resonance variety R1(G) may
be realized as the variety defined by the annihilator of the linearized Alexander
invariant B of G, a module over the polynomial ring S = Sym(H1(G;C)) =
C[x1, . . . , xn], R1(G) = V (ann(B)). We can thus view R1(G) as a scheme.

Theorem 1. Let G be a finitely presented, 1-formal, commutator-relators group.
Assume that the components of R1(G) are (i) 0-isotropic, (ii) projectively disjoint,
and (iii) reduced (viewing R1(G) as a scheme). Then, for k ≫ 0,

θk(G) =
∑

r≥2

hr(k − 1)

(
r + k − 2

k

)
=

∑

r≥2

hrθk(Fr),

where hr is the number of irreducible components of dimension r in R1(G).

Examples illustrating the necessity of the hypotheses in the theorem include:

(1) The Heisenberg group G = 〈a, b | [a, [a, b]], [b, [a, b]]〉 is not 1-formal. Here,
R1(G) = H1(G;C) is 0-isotropic since the cup product is trivial. But θk(G) 6=
θk(F2). Since G is nilpotent, θk(G) = 0. See [5].

(2) The fundamental group G of a closed, orientable surface of genus g ≥ 2 is
1-formal. But R1(G) = H1(G;C) is not 0-isotropic, and θk(G) 6= θk(F2g). See [9].

(3) Let Γ be the graph with vertex set V = {1, 2, 3, 4, 5} and edge set E =
{12, 13, 24, 34, 45}, and let G = GΓ be the corresponding right angled Artin group.
The resonance variety is the union of two 3-dimensional subspaces in H1(G;C)
which are not projectively disjoint, and θk(G) 6= 2θk(F3). See [10].

(4) Let G = 〈a, b, c, d | [b, c], [a, d], [c, d], [a, c][d, b]〉. As a variety, R1(G) is a 2-
dimensional subspace ofH1(G;C). ButR1(G) is not reduced, and θk(G) 6= θk(F2).
We do not know if this group is 1-formal.

Arrangement groups satisfy the hypotheses of the theorem, as does the “group
of loops,” see below. Examples illustrating the utility of the theorem include:

(1) Let PBn denote the type B pure Artin group, the fundamental group of the
complement of the type B Coxeter arrangement in Cn. Analysis ofR1(PBn) yields
θk(PBn) =

[
16

(
n
3

)
+ 9

(
n
2

)]
(k − 1) +

(
n
2

)
(k2 − 1) for k ≫ 0.

(2) Let PΣn be the McCool group of basis conjugating automorphisms of the free
group of rank n, also known as the group of loops. Analysis of R1(PΣn) (see [2])
yields θk(PΣn) =

(
n
2

)
(k − 1) +

(
n
3

)
(k2 − 1) for k ≫ 0.

Discussion. We discuss some elements of the proof of the theorem.
As noted previously, since G is 1-formal, work of Dimca-Papadima-Suciu [5]

implies that R1(G) is a union of linear subspaces in A1 = H1(G;C). Since G is
additionally a commutator-relators group, work of Papadima-Suciu [9] implies that
the Chen ranks of G are given by the Hilbert series of the linearized Alexander in-
variant B of G,

∑
k≥2 θk(G)tk = Hilb(B, t) (with appropriate degree conventions).
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Assume that G is minimally generated by n elements, so that A1 = H1(G;C) ∼=
Cn, generated by e1, . . . , en. Let E =

∧
A1 be the exterior algebra on A1, and

let I be the ideal in E generated by ker(µ : A1 ∧ A1 → A2), the kernel of the cup
product map in degree 2. The linearized Alexander invariant B of G admits a

presentation S ⊗ I3
∂

−−→ S ⊗ I2 → B → 0, where the map ∂ is dual to the map
S ⊗ I2 → S ⊗ I3 given by multiplication by x =

∑n
i=1 xi ⊗ ei ∈ S ⊗ E1.

If L is an irreducible component of R1(G), let IL be the ideal in E generated

by
∧2 L, a subideal of I. Associated to IL, we have a “local” linearized Alexander

invariantBL and a surjection B → BL. This yields an exact sequence of S-modules

0 −→ K −→ B −→ ⊕BL −→ C −→ 0,

the direct sum over all irreducible components L of R1(G). One can check that
Hilb(BL, t) =

∑
k≥2 θk(Fr) if dim(L) = r. To prove the theorem, it suffices to

show that the kernel K and cokernel C above have finite length.
If G = G(A) is an arrangement group, Schenck-Suciu [11] show that C has

finite length. This argument extends. Showing that K has finite length is more
involved. One part of this is the following. Given L ⊂ R1(G) as above, let JL be
the ideal in E generated by {q ∈ I | ℓ ∧ q ∈ IL∀ℓ ∈ L}.

Lemma 1. IL = JL if and only if L is reduced.

Arrangement groups and the basis-conjugating automorphism group are known
to satisfy all the hypotheses of the theorem, except possibly the condition that
all components of the resonance variety are reduced. For this, by the lemma, it
suffices to show that IL = JL for each (irreducible) L ⊂ R1(G). This can be
done directly in the case where G = PΣn. For G = G(A) an arrangement group,
this can be done using the structure of resonance varieties of arrangement groups
uncovered by work of Falk [6], Libgober-Yuzvinsky [8], and Falk-Yuzvinsky [7].

Acknowledgements. Cohen supported by NSF 1105439, NSA H98230-11-1-0142.

Schenck supported by NSF 1068754, NSA H98230-11-1-0170.
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(Boston, MA, 1993), 45–64, Contemp. Math., 181, Amer. Math. Soc., Providence, RI,
1995.

[4] D. Cohen, A. Suciu, Characteristic varieties of arrangements, Math. Proc. Cambridge Phil.
Soc. 127 (1999), 33–53.

[5] A. Dimca, S. Papadima, A. Suciu, Topology and geometry of cohomology jump loci, Duke
Math. J. 148 (2009), 405–457.

[6] M. Falk, Arrangements and cohomology, Ann. Combin. 1 (1997), 135–157.
[7] M. Falk, S. Yuzvinsky, Multinets, resonance varieties, and pencils of plane curves, Compo-

sitio Math. 143 (2007), 1069–1088.
[8] A. Libgober, S. Yuzvinsky, Cohomology of the Orlik-Solomon algebras and local systems,

Compositio Math. 121 (2000), 337–361.
[9] S. Papadima, A. Suciu, Chen Lie algebras, Int. Math. Res. Not. 2004:21 (2004), 1057–1086.



10 Oberwolfach Report 49/2012

[10] S. Papadima, A. Suciu, Algebraic invariants for right-angled Artin groups, Math. Ann. 334
(2006), 533–555.

[11] H. Schenck, A. Suciu, Resonance, linear syzygies, Chen groups, and the Bernstein-Gelfand-
Gelfand correspondence, Trans. Amer. Math. Soc. 358 (2006), 2269–2289.

[12] A. Suciu, Fundamental groups of line arrangements: Enumerative aspects, in: Advances in
algebraic geometry motivated by physics, 43–79, Contemp. Math. 276, Amer. Math. Soc.,
Providence, RI, 2001.

An introduction to Tropical Geometry and Tropical Compactifications

Maŕıa Angélica Cueto

The field of tropical geometry began as a framework to link amoebas, loga-
rithmic limit sets [1], and (real) algebraic geometry. It synthesized and boosted
the pioneering work of Bieri–Groves [2] and Viro’s “patchworking” techniques to
construct real algebraic varieties by “cutting and pasting” [3, 7]. In its ten years
of existence, it has brought on truly explosive development, establishing deep con-
nections with enumerative algebraic geometry, symplectic and analytic geometry,
number theory, dynamical systems, mathematical biology, statistical physics, ran-
dom matrix theory, and mathematical physics.

Tropical geometry can be considered as algebraic geometry over the semifield
(R,min,+). It is a polyhedral version of classical algebraic geometry: algebraic
varieties are replaced by weighted, balanced polyhedral complexes, in order to
answer open questions or to derive simpler proofs of classical results. These objects
preserve just enough data about the original varieties to remain meaningful, while
discarding much of their complexity. There are many approaches to this subject:
valuation theory, logarithmic limits sets in the sense of Bergman, and Gröbner
theory. Here, we choose the first perspective.

Throughout this talk, we consider an algebraically closed field K with a non-
trivial valuation val : K∗ = K r {0} → R. Here, by valuation we mean a function
that satisfies the following properties:

(1) val(f g) = val(f) + val(g), for any pair f, g ∈ K∗,
(2) val(f + g) ≥ min{val(f), val(g)}.

It is not hard to show that if val(f) 6= val(g), then the second condition above is
an equality, i.e. val(f + g) = min{val(f), val(g)}. By declaring val(0) = ∞, we can
extend the valuation to all K.

Our favorite example of a valued field (K, val) as above is given by the Puiseux
series K = C{{t}}, whose elements are Laurent polynomials in t1/n, where we let
n ∈ N. The valuation of a series is given by its lowest exponent.

Definition 1. Given an algebraically closed valued field (K, val) as above, and a
subvariety Y ⊂ (K∗)n, we define:

T Y = closure{(val(y1), . . . , val(yn)) : y = (y1, . . . , yn) ∈ Y } ⊂ Rn,

where the closure is taken with respect to the Euclidean Topology in Rn.
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Example 1. We consider the line Y = {x+ y+1 = 0} ⊂ (C{{t}}∗)2. Notice that
this variety is defined over C, i.e. its defining equation has complex coefficients.
We can rewrite it as

Y = {(a,−1− a) : a ∈ C{{t}}r {0,−1}}.

By definition, we get

(1) (val(a), val(−1− a)) =





(val(a), 0) if val(a) > 0,

(val(a), val(a)) if val(a) < 0,

(0, val(a+ 1)) if val(a+ 1) > 0,

(0, 0) otherwise.

After taking closure, we obtain the picture on the left-hand side of Figure 1.
It has the structure of a one dimension pure polyhedral fan, glued out of a point
and three half rays. Each one of the pieces on the right correspond to the four
different cases in (1). ⋄

=
⋃ ⋃ ⋃

Figure 1. Tropicalization of the line Y = {x+ y+1 = 0} in the
2-dimensional algebraic torus over C{{t}}.

If we pick an irreducible subvariety Y ⊂ (C{{t}}∗)n defined over C, then T Y
is a pure rational weighted balanced polyhedral fan. These weights encode the
intersection theory on the toric variety XΣ associated to the fan Σ = T Y [5]. This
fan reflects many property of the variety Y , including its dimension and degree
(in the projective case). In 2007 Tevelev showed that, surprisingly, the support of
this fan gives a method for constructing nice compactifications of Y inside toric
varieties [6]. In particular, it allows us to answer the following question:

Question 1. Given a subvariety Y of the algebraic torus T = (C∗)n and a toric
variety XΣ with dense torus T , consider the closure Y of Y inside XΣ. Which
T -orbits of XΣ does Y intersect?

Tevelev’s result says that Y intersects the T -orbit of a cone σ ∈ Σ if an only
if T (Y ∩ T ) intersects the relative interior of σ [6, Lemma 2.2]. Therefore, if we
choose a non-complete fan Σ supported on T (Y ∩ T ) ⊂ Rn, then the a priori
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partial compactification Y ⊂ XΣ is indeed compact. Moreover, the T -orbit of an
s-dimensional cone in Σ intersects Y in codimension s [6, Propositions 2.3 ad 2.5].

We conclude by interpreting the weights in T Y in terms of Y . If the fan Σ
is smooth and refines the Gröbner fan structure on T Y , then the weights on the
maximal cones of T (Y ∩ T ) reflect the intersection theory on XΣ. More precisely,
the weight on a maximal cone σ is the intersection number of the class of Y and
the class of the closure of the T -orbit associated to σ [4, Lemma 9.2]. We illustrate
these facts with the example of a line in 2-space.

Example 2. Consider the line Y = {x+ y+1 = 0} as in Example 1 and its näıve
compactification Y = {x + y + z = 0} inside the toric variety CP2. We analyze
the intersection of Y with each of the seven torus orbits in CP2.

(1) Y intersects the T -orbit of the cone {(0, 0)} in Y and T Y contains this
cone. The intersection has codimension 0 in Y .

(2) The T -orbit associated to the cone R〈e1〉 intersects Y at the point {(1 :
0 : −1)} with multiplicity one, and T Y contains this 1-dimensional cone.
This cone has weight one. This set has codimension 1 in Y . A similar
situation occurs with the cones R〈e2〉 and R〈−e1 − 22〉.

(3) Finally, notice that T Y does not contain any of the two dimensional cones
R〈e1, e2〉, R〈e1,−e1 − e2〉 nor R〈e2,−e1 − e2〉, and none of the three torus
fixed points (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1) belong to Y . Thus, the
intersection is empty and its codimension in Y is 2. ⋄

Acknowledgements. M.A. Cueto acknowledges support from the Alexander von
Humboldt Foundation.
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Resonance varieties and tropical geometry

Michael J. Falk

In this informal talk we sketch a connection between resonance varieties and trop-
ical geometry, and in the process introduce some of the main notions to be studied
in the mini-workshop, namely cohomology jumping loci, multinets and the associ-
ated pencils of hypersurfaces, and Bergman fans. The material comes from joint
work with Dan Cohen, Graham Denham, and Alexander Varchenko [CDFV12],
and work in progress with Eva-Maria Feichtner.

Let A = {H0, . . . , Hn} be an arrangement of hyperplanes in Pℓ, with Hi defined
by the linear homogeneous form αi : C

ℓ+1 → C for 0 ≤ i ≤ n. Let ωj = d log(αj) =
dαj

αj
. The cohomology of the complement M = Pℓ −

⋃n
i=0 Hi is isomorphic to the

algebra A· of differential forms generated by {
∑n

j=0 λjωj |
∑n

j=0 λj = 0}. Given

a ∈ A1, one has a cochain complex

(A·, a) : 0 → A0 a∧−
−→ · · ·

a∧−
−→ Aℓ → 0.

The pth resonance variety Rp(A) is {a ∈ A1 | Hp(A·, a ∧ −) 6= 0}. These are
subtle invariants of the graded ringA·. For example, degree-one resonance varieties
distinguish the pure braid group from a product of free groups, where the betti
numbers and lower central series quotients coincide.

We are interested in completely decomposable cocycles in the complex (A·, a),
or, more precisely, collections of linearly independent one-forms ai =

∑n
j=0 λijωj ,

0 ≤ i ≤ p < ℓ, satisfying the relation

(1) a0 ∧ · · · ∧ ap = 0.

For each i, a0∧· · ·∧ âi∧· · ·∧ap is a decomposable cocycle in (A·, ai). The (p+1)-
dimensional subspaceD ⊆ A1 spanned by {a0, . . . , ap} is singular, in the sense that

the map
∧p+1

(D) → Ap+1 is trivial. If A is p-generic, i.e., A has only normal-
crossing singularities through codimension p, then this implies a0∧· · ·∧ âi∧· · ·∧ap
is not a coboundary in (A·, ai), hence represents a nonzero element of Hp(A·, ai).
Thus in this case the subspace D is contained in Rp(A).

Clearly every element of R1(A) comes from relation (1) with p = 1, and R1(A)
is the union of the corresponding singular subspaces. Moreover, according to
[FY07], every such relation a0 ∧ a1 = 0 with support equal to A arises from a
multinet structure on A. A (d, k)-multinet is a partition A = A1

∐
· · ·

∐
Ak,

k ≥ 3, and a multiplicity function m : A → Z>0, satisfying

(1)
∑

H∈Ai
m(H) = d for 1 ≤ i ≤ k;

(2) for each X ∈ X ,
∑

H∈Ai,H⊇X m(H) is independent of i; and

(3) for each i,
⋃

H∈Ai
H −

⋃
X∈X X is connected.

Here X is the set of codimension-two intersections X = H∩H ′ where H and H ′ lie
in different blocks of the partition. Existence of a multinet on A is equivalent to
the existence of a pencil of projective hypersurfaces having no fixed components,
connected generic fiber, and k ≥ 3 singular fibers which are completely decom-
posable, i.e., are unions of hyperplanes with multiplicities, and whose components
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comprise A. The blocks of the partition are the sets of components of the com-
pletely reducible fibers, and m(H) is the multiplicity of H in the corresponding
fiber. If m(H) = 1 for all H and the sum in (ii) is equal to one for all X ∈ X ,
then A = A1

∐
· · ·

∐
Ak is called a (k, d)-net. Geometric constraints imply that

there are no (k, d)-multinets for k ≥ 5 - see [Yuz09] and the references therein.
The only known example with k = 4 comes from the Hesse pencil of nonsingular
cubics, whose singular fibers make up the Hessian arrangement [OT92].

One of the few known examples with multiplicities different from one is provided
by the Coxeter arrangement of type B3, with defining polynomial

xyz(x2 − y2)(y2 − z2)(z2 − x2).

One considers the three polynomials Φ0 = x2(y2 − z2), Φ1 = y2(z2 − x2), and
Φ2 = z2(x2 − y2). These quartics lie in a pencil because Φ0 + Φ1 + Φ2 = 0. The
rational map

Φ = [Φ0 : Φ1 : Φ2] : P
2 → P2

has image the line Σ given by w0 +w1 +w2 = 0. Φ is regular on M , and Φ(M) is
the complement Σ0 in Σ of the three coordinate lines. The logarithmic forms
τ0 = d log(y0/y2) and τ1 = d log(y1/y2) are regular on Σ0 and τ0 ∧ τ1 = 0
because dim(Σ0) = 1. Then the pullbacks a0 = Φ∗(τ0) = d log(Φ0/Φ2) and
a1 = Φ∗(τ1) = d log(Φ1/Φ2) satisfy a0 ∧ a1 = 0, and they span a component of
R1(A). The corresponding multinet has k = 3 classes of d = 4 lines each, counting
multiplicities, corresponding to the factors of Φi, i = 0, 1, 2, with the coordinate
lines each given multiplicity two. In this case these are the only singular fibers of
Φ, hence Φ: M → Σ0 is a fiber bundle.

In case the weight vectors (λi0, . . . , λin) lie in Zn+1 the relation (1) can be
formulated in terms of tropical geometry. As in the preceding example, we work
projectively, writing λij = ηij − ηp+1,j with ηi = (ηi0, . . . , ηin) ∈ Nn+1 for 0 ≤
i ≤ p + 1. Let Φi =

∏n
j=0 α

ηij

j , a polynomial, for 0 ≤ i ≤ p + 1. Then ai =

d log(Φi/Φp+1) for 0 ≤ i ≤ p. Consider the rational map

Φ =
[
Φ0 : · · · : Φp+1

]
: Pℓ → Pp+1.

Φ is regular on M , and relation (1) holds if and only if the image Σ0 = Φ(M) is
at most p-dimensional. Equivalently, (1) holds if and only if there is a nonzero ho-
mogeneous polynomial P (w0, . . . , wp+1) such that P (Φ0, . . . ,Φp+1) vanishes iden-
tically.

The mapping Φ can be factored, Φ = µ◦α, where α =
[
α0 : · · · : αn

]
: Pℓ → Pn

is the canonical linear map associated with A and µ : Pn → Pp+1 is the monomial
mapping that sends

[
y0 : · · · : yn

]
to

[
yη0 : · · · : yηp+1

]
, using the usual vector no-

tation for monomials. According to [DFS07], the factorization Φ = µ ◦ α tropi-
calizes faithfully, in the following sense. The tropicalization of the linear variety
α(M) ⊆ (C∗)n is the Bergman fan BA of A; the tropicalization of the monomial
map µ is the linear map Pn → Pp+1 with matrix Λ =

[
ηij

]
. By [DFS07], the

tropicalization τ(Σ0) of the image Σ0 of µ ◦ α is equal to the image of BA under
the linear map Λ.
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The tropical variety τ(Σ0), determined by BA, which depends only on the
underlying matroid of A, and the exponent matrix Λ, carries a lot of geometric
information about Σ0. In particular dim(Σ0) = dim(τ(Σ0)). Thus relation (1)
holds if and only if Λ(BA) has dimension at most p. BA is a pure ℓ-dimensional
fan in Rn. By [AK06, FS05], the linear hulls of the maximal cones of BA are
spanned by the characteristic vectors of flats appearing in maximal nested sets in
the lattice of flats L(A), relative to the building set of all irreducible flats. These
subspaces are flats of the braid arrangement in Rn; the corresponding partitions
can be extracted from L(A). To establish the relation (1) one must find pairs
(A,Λ) such that the kernel of Λ meets each of these flats nontrivially, so that the
image τ(Σ0) of BA has codimension at least one.

The rigid combinatorics and geometry of the p = 1 case lends special interest
to the case where the syzygy P (w0, . . . , wp+1) is linear. Then the image tropical
variety τ(Σ0) is the Bergman fan of an arrangement B of rank at most p + 1.
This raises an interesting matroid-theoretic question, to characterize the triples
(A,B,Λ) where A and B are arrangements with rk(B) < rk(A), and Λ is a linear
projection carrying BA to BB.
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An introduction to Tropical Geometry II

Eva-Maria Feichtner

Exemplifying the concepts presented in the first part of this informal introduction
to Tropical Geometry, we give a detailed discussion of the tropicalization of linear
spaces. In fact, we define the Bergman fan as a matroid invariant regardless of
the realizability of the matroid. Then we show how the Bergman fan of a matroid
coming from a complex hyperplane arrangement ties in with the nested set fans of
the arrangement. This is the combinatorial shadow of a hierarchy of compactifica-
tions of the arrangement complement including the wonderful compactifications of
De Concini–Procesi and tropical compactifications devised by Tevelev. We discuss
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an example of 5 lines in CP2 whose smallest wonderful compactification yet allows
for a morphism onto the tropical compactification prescribed by the Bergman fan,
where the morphism is not an isomorphism. This answers a question asked by
Corrado De Concini earlier during the mini-workshop.

Equivariant cohomology, syzygies and orbit structure

Matthias Franz

(joint work with Christopher Allday and Volker Puppe)

Consider an action of the torus T = (S1)r on a space X satisfying some mild
conditions. Let Xi be the T -equivariant i-skeleton of X , i.e., the union of all
orbits of dimension at most i. By work of Atiyah [2] and Bredon [3], the following
“Atiyah–Bredon sequence” is exact if the equivariant cohomology H∗

T (X) with
rational coefficients is free over the polynomial ring R = H∗(BT ):

(1) 0 → H∗
T (X) → H∗

T (X0) → H∗+1
T (X1, X0) → · · · → H∗+r

T (Xr, Xr−1) → 0.

The part

(2) 0 → H∗
T (X) → H∗

T (X0) → H∗+1
T (X1, X0)

is also called the “Chang–Skjelbred sequence” because Chang and Skjelbred [4]
proved, roughly at the same time as Atiyah and Bredon, that (2) is exact if
H∗

T (X) is free over R. This assumption is known to hold for large classes of
spaces, including compact Hamiltonian T -manifolds and rationally smooth, com-
plete complex algebraic varieties with an algebraic action of the complexification
of T . In all these cases the sequence (2) provides a powerful way to compute
H∗

T (X), including the cup product, out of data related only to the fixed points
and the one-dimensional orbits. In the important special case where X1 is a finite
union of 2-spheres, glued together at their poles, this is often referred to as the
“GKM method”, following work of Goresky–Kottwitz–MacPherson [8]. It should
be noted that one only needs exactness of a very small part of the Atiyah–Bredon
sequence in order to apply this method. This suggests that the sequence (2) might
be exact under much weaker assumptions than the freeness of H∗

T (X).

One can define an equivariant homology HT
∗ (X) ofX (which is not the homology

of the Borel construction XT ) that is related to equivariant cohomology via uni-
versal coefficient spectral sequences. Moreover, equivariant Poincaré duality holds
in the sense that for a rational Poincaré duality space X capping with the equi-
variant fundamental class gives an isomorphism of R-modules H∗

T (X) → HT
∗ (X).

Equivariant homology also behaves very well with respect to the orbit filtration:

Proposition 1. For any i ≥ 0 there is a short exact sequence

0 → HT
∗ (Xi) → HT

∗ (X) → HT
∗ (X,Xi) → 0.

If X is a manifold, one can translate this into a result of Duflot [5] about equi-
variant cohomology by using equivariant Poincaré–Alexander–Lefschetz duality.
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Drop the first term H∗
T (X) from the Atiyah–Bredon sequence (1) and write

AB∗(X) for the resulting complex of R-modules. Our main result implies partic-
ular that the cohomology of this complex is completely determined by HT

∗ (X).

Theorem 1. For any i ≥ 0,

Hi(AB∗(X)) = ExtiR(H
T
∗ (X), R).

Recall that a finitely generated R-module M is called a j-th syzygy if there is
an exact sequence

(3) 0 → M → F 1 → · · · → F j

with finitely generated free R-modules F 1, . . . , F j. First syzygies are exactly the
torsion-free modules, and r-th syzygies the free modules.

Theorem 2. Let 1 ≤ j ≤ r. The Atiyah–Bredon sequence (1) is exact at
H∗

T (Xi, Xi−1) for all −1 ≤ i ≤ j − 2 if and only if H∗
T (X) is a j-th syzygy.

For i = −1, exactness at H∗
T (Xi, Xi−1) has to be interpreted as exactness

at H∗
T (X).

Recall that an R-module M is called reflexive if the canonical map

(4) M → HomR(HomR(M,R), R)

is an isomorphism. This is equivalent to M being a second syzygy. Moreover, a
(graded symmetric) R-bilinear pairing M ×M → R is called perfect if it induces
an isomorphism M → HomR(M,R).

Let X be a rational Poincaré duality space. Since the equivariant coefficient
ring R is not a field (unless r = 0), the duality isomorphism between H∗

T (X) and
HT

∗ (X) does not imply that the corresponding equivariant Poincaré pairing

(5) H∗
T (X)×H∗

T (X) → R

is non-degenerate, let alone perfect. For instance, one has H∗
T (X) = Q for X = T ,

so that the map (5) is trivial in this case.
The following result is an immediate consequence of Theorems 1 and 2. It

essentially answers an open point raised by Guillemin–Ginzburg–Karshon [9].

Corollary 1. Let X be a rational Poincaré duality space. Then the following are
equivalent:

(1) The Chang–Skjelbred sequence (2) is exact.
(2) The R-module H∗

T (X) is reflexive.
(3) The equivariant Poincaré pairing (5) is perfect.

For any j ≥ −1 there are T -spaces (in fact, smooth toric varieties) such that
the sequence (1) is exact at all positions i < j, but not at position j. The situation
changes if one restricts to rational Poincaré duality spaces. The following result
says roughly that if the first half of the Atiyah–Bredon sequence is exact, then so
is the rest in this case:

Corollary 2. Let X be a rational Poincaré duality space and set j = ⌊n+1
2 ⌋. If

H∗
T (X) is a j-th syzygy, then it is free over R.
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In other words, we have the following situation for a rational Poincaré duality
space X : if H∗

T (X) not free over R, then it is at most a syzygy of order ⌊n−1
2 ⌋. For

r ≤ 4 this bound is known to be sharp; for r ≥ 5 this remains an open question. An
example of an orientable compact (S1)3-manifold whose equivariant cohomology
is torsion-free, but not free can be found in [7].

The following is a consequence of the “geometric criterion” for syzygies in equi-
variant cohomology established in [6].

Theorem 3. Let X be a smooth manifold. Whether or not H∗
T (X) is a certain

syzygy depends only on the orbit space X/T with its stratification by infinitesimal
orbit type. In particular, whether or not H∗

T (X) is free depends only on X/T as a
stratified space.
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Families of building sets and wonderful models

Giovanni Gaiffi

In [2] and [3], De Concini and Procesi constructed wonderful models for the com-
plement of a subspace arrangement in a vector space. These are smooth varieties,
proper over the given space, in which the union of the subspaces is replaced by a
divisor with normal crossings.

The interest in these varieties was at first motivated by an approach to Drinfeld
construction of special solutions for Khniznik-Zamolodchikov equation (see [7]).
Moreover, in [3] it was shown, using the cohomology description of these models
to give an explicit presentation of a Morgan algebra, that the mixed Hodge struc-
ture and the rational homotopy type of the complement of a complex subspace
arrangement depend only on the intersection lattice (viewed as a ranked poset).

Real and complex De Concini–Procesi models turned out to play a relevant role
in several fields of mathematical research: subspace and toric arrangements, toric
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varieties and tropical geometry, moduli spaces of curves, configuration spaces, box
splines, index theory, discrete geometry (see for instance [4], [5], [8], [9], [10], [11],
[15], [16] and [19]).

In general, given a subspace arrangement, there are several De Concini–Procesi
models associated to it, depending on distinct sets of initial combinatorial data
(building sets). Among these building sets there are always a minimal one and
a maximal one with respect to inclusion: as a consequence there are always a
minimal and a maximal De Concini–Procesi model.

The importance of the minimal construction was immediately pointed out, but
real and complex non minimal models (in particular maximal models) appeared
in various contexts (see [6], [14], [17], [1]). For instance it is well known that the
toric variety of type An−1 is isomorphic to the maximal building set associated to
the boolean arrangement (see [13] for further references).

In this talk we will deal with the De Concini–Procesi models constructed start-
ing from the root arrangement An−1. Our first goal is to describe the poset of all
the associated building sets (ordered by inclusion) which are invariant with respect
to the symmetric group group action: we will therefore classify all the wonderful
models which are obtained by adding to the complement of the arrangement an
equivariant divisor.

Let us describe our results more in detail: we will introduce a partial order on
the set Λn of all the partitions of n, and we will define a family of Sn-equivariant
building sets Gλ, where λ ∈ Λn is a building partition, i.e. it is (n) or a partition
with at least two parts greater than or equal to 2.

Then, given any subset {λ1, λ2, ..., λk} of pairwise not comparable building par-
titions, the union {Gλ1 ∪Gλ2 ∪ · · · ∪ Gλk} is an Sn-equivariant building set, and all
the Sn-equivariant building sets can be obtained in this way.

Some particularly regular objects come out of this picture, i.e. the building
sets Gs(An−1) obtained as the union of the building partitions Gλ such that λ has
exactly s parts. Therefore, for every n ≥ 2 we have a family of n − 2 regular
building sets:

G1(An−1) ⊂ G2(An−1) ⊂ · · · ⊂ Gn−2(An−1)

where G1(An−1) coincides with the minimal building set and Gn−2(An−1) with the
maximal one. We will give formulas for the Poincaré series of all the regular models
YGs(An−1). For s = 1 this series is the well known series for the moduli spaces of
stable (n + 1)-pointed curves of genus zero, while in the case of maximal models
the formulas we obtain are explicit sums and products of polynomials whose co-
efficients involve the Stirling numbers of the second kind (different formulas for
these Poincaré polynomials were described in [12]). The formulas for the interme-
diate models are “interpolations” between the formulas for the maximal and the
minimal cases.

Furthermore we will provide an inductive formula for the character series asso-
ciated to the Sn action on the cohomology of some of the regular models YGs(An−1),
and explicit computations in the small dimensional cases.
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We will also point out the connection of our formulas with the rich combina-
torics of the corresponding real De Concini–Procesi models. The real models can
be constructed, as it is well known, by gluing nestohedra, and from this one ob-
tains formulas for their Euler characteristics. Different formulas for these Euler
characteristics can also be obtained by evaluating in q = −1 the Poincaré poly-
nomials of the corresponding complex models. From the comparison of these two
different computations of the Euler characteristics one obtains nice combinatorial
equivalences.

A paper containing all the details is available and will be posted on the arXiv.
The above described results can be generalized to the root arrangements of types
Bn and Dn (this generalization is joint work with Matteo Serventi).
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The free and ℓ
2 cohomology of hyperplane complements

Ian Leary

(joint work with Mike Davis, Tadeusz Januszkiewicz, Boris Okun)

Let A denote an affine hyperplane arrangement in Cn, and let L(A) denote the
poset whose elements are Cn and the intersections of elements of A. The rank
of A is defined to be the codimension of a minimal element of L(A), and will be
denoted by l. As usual, the union of the hyperplanes in A is denoted Σ(A), and
the complement of Σ(A) is denoted by M(A). These are the singular set and
the hyperplane complement for the arrangement A. Let π = π1(M(A)) be the
fundamental group of M(A). Recall that Σ(A) is homotopy equivalent to a wedge
of a number of copies of the (l − 1)-sphere; call this number β(A).

We describe the reduced ℓ2-cohomology of M(A), and the cohomology of M(A)
with coefficients in the free module Zπ. Firstly we recall the definition of these.
Let S denote a finite CW-complex homotopy equivalent to M(A), and let C∗ be
the cellular chain complex on the universal cover of S. Note that C∗ is a chain
complex of finitely-generated free Zπ-modules. By definition, H∗(M(A);Zπ) is the
cohomology of the cochain complex Homπ(C∗,Zπ). Equivalently, this is the coho-
mology with compact supports of the universal cover of S. Now let ℓ2(π) denote the
Hilbert space of square-summable complex-valued functions on π. The unreduced
ℓ2-cohomology is the cohomology of the cochain complex Homπ(C∗, ℓ

2(π)). The
definition of the reduced ℓ2-cohomology H∗

(2)(M(A)) takes in to account the fact

that Homπ(C∗, ℓ
2(π)) is a cochain complex of Hilbert spaces; instead of taking ker-

nels modulo images one takes kernels modulo the closure of images. Equivalently,
the reduced ℓ2-cohomology group can be defined as the orthogonal complement
of the image inside the kernel, which shows that each ℓ2-cohomology group is
isomorphic to a direct summand of the corresponding chain group.

Theorem 1. The ℓ2-cohomology groups of M(A) are trivial, except Hl
(2)(M(A)),

which is isomorphic to a direct sum of β(A) copies of ℓ2(π).

Theorem 2. Each Hi(M(A);Zπ) is trivial, except that H l(M(A);Zπ) is free
abelian of infinite rank.

Corollary 3. As a Zπ-module, H l(M(A);Zπ) is of type FL.

Recall that an R-module is said to be of type FL if it admits a finite-length
resolution by finitely-generated free modules. The Corollary stated above follows
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easily from the previous Theorem, since the cochain complex Homπ(C∗,Zπ) is a
resolution of the required type for H l(M(A);Zπ).

The proofs of the theorems are similar [1, 2], with the ℓ2-cohomology theo-
rem slightly easier. As a Zπ-module, H l(M(A);Zπ) is not usually free, although
it contains a free summand of rank β(A). This summand maps injectively to
Hl

(2)(M(A)) under the map induced by Zπ → ℓ2(π). There is a filtration of

H l(M(A);Zπ) indexed by the subspaces of L(A). The subspaces other than Cn

give rise to non-free modules in this filtration. The free term appears ‘at the top’
of the filtration and so it splits off.

We use the following tools in the proofs of the theorems:

• Lück’s algebraic reformulation of ℓ2-cohomology [3], which reduces the
computation of reduced ℓ2-cohomology to the computation of ordinary
cohomology with coefficients in the ring N (π) of bounded π-equivariant
self-maps of the Hilbert space ℓ2(π);

• The Mayer-Vietoris spectral sequence for computing the cohomology of a
space broken up into more than two pieces [1];

• An induction on the rank l of the arrangement;
• A careful choice of covering of the universal cover of M(A), coming from
a covering of Cn.

Concerning the choice of covering that we use: A convex open set U in Cn

is small for A if firstly the set of planes G ∈ L(A) that meet U has a minimal
element Min(U), and secondly a hyperplane H ∈ A meets U if and only if it
contains Min(U). A finite covering of Cn by sets that are small for A lifts to
a finite π-equivariant covering of the universal cover of M(A). The free and ℓ2

cohomology of the pieces making up this covering can be computed, either by
induction on l in the free case or using the fact that the ℓ2-cohomology of a central
arrangement vanishes in the other case.

We use the Mayer-Vietoris spectral sequence for such a cover to make the com-
putations. For ℓ2-coefficients, the terms making up the E2-page of the Mayer-
Vietoris spectral sequence all have dimension zero, except for one term that con-
tributes all of Hl

(2)(M(A)). For free coefficients, the non-zero terms in the E2-page

of the Mayer-Vietoris spectral sequence all lie on the diagonal line that contributes
to H l(M(A);Zπ).
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Towards the effective cone of a wonderful compactification

Diane Maclagan

Let A be an arrangement of n + 1 hyperplanes {H0, . . . , Hn} in Pd. Write
Hi = {x ∈ Pd : ai · x = 0} for ai ∈ Kd+1. We regard the complement Y = Pd \ A
as a closed subvariety of (K∗)n ∼= (K∗)n+1/K∗ via the embedding y 7→ (a0 · y :
· · · : an · y). The closure of Y in Pn is a copy of Pd.

The tropical variety of Y is the support of a rational d-dimensional polyhedral
fan in Rn (see the abstract of Cueto, p. 10). As described in Feichtner’s talk
(p. 15), each choice of a wonderful compactification of Y (ie a choice of a building
set G) gives a choice of fan structure Σ on trop(Y ). The underlying set of trop(Y )
depends only on the underlying matroid of the arrangement (ie on the lattice of
flats). Given such a choice of fan structure Σ, let XΣ be the n-dimensional toric
variety corresponding to Σ. We have Y ⊂ (K∗)n ⊂ XΣ. The insight of Tevelev
[5] was that (for any Y ⊂ (K∗)n) the closure Y of Y in XΣ is a good choice of
compactification of Y . The connection to wonderful models is the following, which
was first observed by Tevelev, and further clarified by Feichtner and Sturmfels.

Theorem 1 ([3], [5]). The closure Y is the wonderful model of Y = Pd \ A
corresponding to the building set G.

In the talk I discussed work-in-progress, joint with Florian Block (UC Berkeley),
to determine the effective cone of a wonderful compactification of Y . The effective
cone is a convex cone in the Néron-Severi space N1(Y )R of divisors modulo nu-
merical equivalence. It is the closure of the classes of effective divisors. In the case
of wonderful compactifications defined over C, it can be regarded as the closure
in H2(Y ,R) of the cones spanned by classes of codimension-one subvarieties of Y .
The effective cone of a variety is an important invariant in birational geometry; for
example, its interior describes divisors that give rise to birational maps from the
variety. Following the breakthroughs in the minimal model program in the last
decade [1], there is increased interest in explicitly understanding these and related
cones. In joint work with Block we focus on using tropical methods to understand
the effective cones of wonderful models computationally.

Theorem 2. There is an iterative procedure to determine Eff(Y ) for a wonder-
ful compactification of a hyperplane arrangement complement. This uses tropical
geometry.

The key idea is that an irreducible effective divisor that is not an exceptional
divisor of one of the blow-ups or a strict transform of one of the hyperplanes must
intersect the arrangement complement Y in a codimension one subvariety. Since
Y is defined by linear equations, this codimension-one subvariety is defined by a
single (Laurent) polynomial. The class of the divisor in N1(Y )R is determined by
the tropicalization of this polynomial.

We note that this iterative procedure gives a sequence of polyhedral subcones
of the effective cone representing divisors up to a certain “degree”. These cones
limit to the true effective cone, and may equal it if the effective cone is polyhedral.
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Note all effective cones are polyhedral, even for wonderful compactifications; the
blow-up of P2 at at least nine points in sufficiently general position has a nonpoly-
hedral effective cone, and these blow-ups are wonderful compactifications. For
these surfaces the tropical approach seems to recover one approach to the SGHH
conjecture describing the effective cones; see [4] for an overview of this. This it-
erative procedure also gives an approach to understand the effective cone of the
moduli space M0,n, and to study the conjecture of Castravet and Tevelev [2].

A consequence of the iterative procedure is the following.

Corollary 4. If the realization space of the matroid of A is irreducible, then for
a very general realization the effective cone of the wonderful compactification Y is
constant.

The effective cone is not, however, constant on the entire realization space. One
example is given by the case of a line arrangement of all lines through six points in
the plane in linearly general position, where the effective cone depends on whether
the six points lie on a conic. This contrasts with the case of the cohomology ring of
the arrangement complement, which famously depends only on the matroid of the
arrangement, and with the fundamental group of the arrangement complement,
which depends only on the connected component of the realization space of the
matroid. This prompts the following question.

Question 2. Which invariants of hyperplane arrangement complements hold on
an open set or a countable intersection of open sets of the realization space of the
associated matroid?
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L
2–Betti numbers of hypersurface complements

Laurentiu G. Maxim

Let Γ be a countable group, M a CW-complex, and α : π1(M) → Γ epimorphism.
Let MΓ be the regular cover ofM defined by α. Denote by N (G) the von Neumann
algebra of Γ. To the pair (M,α) one can associate L2-Betti numbers (e.g., see [4]):

b
(2)
i (M,α) := dimN (Γ)Hi

(
C∗(MΓ)⊗Z[G] N (Γ)

)
∈ [0,∞],
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where C∗(MΓ) is the cellular (or singular) chain complex of MΓ, with right Γ-
action by deck transformations. These L2-Betti numbers are homotopy invariants
of the pair (M,α), and for a finite CW complex M the following holds:

∑

i

(−1)ib
(2)
i (M,α) = χ(M),

where χ(M) is the topological Euler characteristic of M .
In [1] it was shown that if A is an affine hyperplane arrangement in Cn, then at

most one of the L2–Betti numbers b
(2)
i (Cn \A, id) is non–zero. Here we present an

analogous statement for complements of complex affine hypersurfaces in general
position at infinity.

Let X ⊂ Cn (n ≥ 2) be a reduced affine hypersurface defined by a polynomial
equation f = 0. Let M := Cn \ X be the hypersurface complement. Then M
has the homotopy type of a finite CW complex of real dimension n. Denote by
φ : π1(M) → Z the total linking number homomorphism: γ 7→ lk#(γ,X), and let

M̃ be the infinite cyclic cover of M defined by ker(φ). We call an epimorphism
α : π1(MX) → Γ admissible if the total linking number homomorphism φ factors
through α, i.e.,

φ = φ̃ ◦ α : π1(M)
α
→ Γ

φ̃
→ Z.

Set Γ̃ := ker(φ̃). We get an induced epimorphism α̃ : π1(M̃) → Γ̃.

We are interested to study the L2-Betti numbers b
(2)
i (M,α) and b

(2)
i (M̃, α̃),

respectively. Note that since M = Cn \X has the homotopy type of a finite CW
complex of dimension n, it follows by definition that

b
(2)
i (M,α) = 0 , i > n.

However, the infinite cyclic cover M̃ is an infinite CW complex, so its L2-Betti
numbers could as well be infinite.

In [5], we proved the following “nonresonance-type” theorem.

Theorem 1. Assume that the affine hypersurface X ⊂ Cn is in general position
at infinity, i.e., the hyperplane at infinity is transversal in the stratified sense to
the projective completion of X. Then:

(a) The L2–Betti numbers b
(2)
i (M̃, α̃) of the infinite cyclic cover are finite for

all 0 ≤ i ≤ n− 1.
(b) The L2–Betti numbers of the complement M are computed by

b
(2)
i (M,α) =

{
0, for i 6= n,

(−1)nχ(M), for i = n.

In particular,
(−1)n · χ(M) ≥ 0.

The proof uses the Lefschetz hyperplane theorem to reduce the problem to the
study of L2-Betti numbers of the link of X at infinity. The latter vanish by the
assumption on the general position of X at infinity. For plane curves (i.e., n = 2),
the result was proved in [2].
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Our result in Theorem 1(b) is reminiscent of a similar calculation by Jost-Zuo
[3] of L2–Betti numbers of a compact Kähler manifold of non-positive sectional
curvature. This was considered in relation to an old question of Hopf whether
the Euler characteristic of a compact manifold M of even real dimension 2n has
sign equal to (−1)n, provided M admits a metric of negative sectional curvature.
However, the statement of our Theorem 1 is metric independent. Finally, one
should not be misled by these calculations into thinking that the L2–Betti numbers
of finite CW-complexes are always integers, or that most of them usually vanish.
In fact, the Atiyah conjecture asserts that these L2–Betti numbers are always
rational; see [4] for more details on this conjecture and related matters.
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Artin groups of euclidean type

Jon McCammond

(joint work with Robert Sulway)

Coxeter groups were introduced by Jacques Tits in the 1960s as a natural gen-
eralization of the groups generated by reflections which act geometrically (which
means properly discontinuously cocompactly by isometries) on spheres and eu-
clidean spaces. And ever since their introduction their basic structure has been
reasonably well understood [BB05, Bou02, Dav08]. More precisely, every Coxeter
group has a faithful linear representation which preserves a symmetric bilinear
form and has an algorithmic solution to its word problem. Moreover, the signa-
ture of the quadratic form can be used to coarsely classify Coxeter groups by the
type of Riemannian symmetric space on which they naturally act: spherical, eu-
clidean, hyperbolic and higher-rank. For the motivating examples, the spherical
Coxeter groups are enumerated by the Dynkin diagrams and the euclidean Coxeter
groups are enumerated by the extended Dynkin diagrams.

Artin groups were introduced in the 1970s as a natural class of groups associated
to Coxeter groups and are related to them as the braid groups are related to the
symmetric groups. More precisely, Artin groups try to capture information about
the fundamental group of the quotient of the complexified hyperplane complement
by the action of the Coxeter group. To illustrate, the symmetric group acts on Rn
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by permuting coordinates, the complexified hyperplane complement is the braid
arrangement, its fundamental group is the pure braid group and the fundamental
group of the quotient of the complement by the free action by the symmetric group
is the full braid group.

The spherical Artin groups (i.e., the ones corresponding to the spherical Cox-
eter groups) have been well understood since they were introduced [BS72, Del72].
Somewhat surprisingly, the euclidean Artin groups have remained relatively mys-
terious outside of a few simple cases investigated by Craig Squier and Fran Digne
[Dig, Dig06, Squ87]: it was not known whether they have a solvable word prob-
lem, whether they are torsion-free, whether they have trivial center, and whether
they have a finite classifying space. These were recently highlighted as four main
questions that are open about Artin groups in general and the euclidean Artin
groups in particular [GP].

In my talk I discussed progress on these questions with my recent graduate
student Robert Sulway. In particular, we prove the following result.

Theorem 1. Every irreducible euclidean Artin group is a torsion-free centerless
group with a solvable word problem and a finite dimensional classifying space.

Two notes about the statement of the theorem itself. The classifying space we
construct is merely finite dimensional but not finite. It is, in fact, locally infinite.
And second, we do not know whether or not the classifying space we construct
is homotopy equivalent to the usual space associated to these groups constructed
from the complexified hyperplane complement. In particular, we do not resolve
the classical K(π, 1) conjecture for these groups.

The proof proceeds by showing that every irreducible euclidean Artin group has
a dual presentation (with infinitely many generators and infinitely many relations)
which canonically embeds as a subgroup of a Garside group. The theory of Garside
groups is well-developed and our main results are deduced by working within this
larger group.
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273–302.
[Dig] F. Digne, A Garside presentation for Artin-Tits groups of type C̃n, arXiv:1002.4320v2,

2010.
[Dig06] F. Digne, Présentations duales des groupes de tresses de type affine Ã, Comment.
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Fundamental group and E∞-coalgebra structure on homology for

complements of complex hyperplane arrangements

Grigory Rybnikov

About 20 years ago there was a problem whether the complements of any two com-
binatorially equivalent complex hyperplane arrangements have isomorphic funda-
mental groups. The answer is ‘no’ (see [1]). The crucial role in the proof is played
by an obstruction to the existence of an isomorphism π1(M) → π1(M

′) extending
the canonical isomorphism H1(M,Z) → H1(M

′,Z), where M and M ′ are com-
plements of two combinatorially equivalent arrangements. This obstruction is an
element of a certain abelian group T , which can be constructed via the standard
coalgebra structure on homology in the following way.

Let H1 and H2 be the first and second integer homology groups of M (they are
canonically determined by the combinatorial structure of the arrangement). As a
part of the standard coalgebra structure on homology, we have the comultiplication
map µ : H2 → H1 ⊗H1. Let L be the free Lie algebra over Z generated by H1.
It is graded by degree: L =

⊕
Lk. Thus L1 = H1, and we identify L2 with the

subgroup of H1 ⊗H1 consisting of skew-symmetric tensors. Clearly, µ(H2) ⊆ L2.
Denote by P =

⊕
Pk the quotient Lie algebra L/I, where I is the ideal in L

generated by µ(H2). The Lie algebra P is called the holonomy Lie algebra (the
complex holonomy Lie algebra of an arrangement and its relation to fundamental
group were studied in [2]). Let ν : H1 ⊗L2 → L3 be the commutator map, and let
δ : Hom(H1, L2) → Hom(H2, L3) be the homomorphism of abelian groups defined
as follows: (δf)(c) = ν ◦ (id⊗f)(µ(c)) for c ∈ H2. Clearly, the projection of δf
to Hom(H2, P3) depends only on projection of f to Hom(H1, P2). Thus we have
a map δ̄ : Hom(H1, P2) → Hom(H2, P3). Now we can write the definition of our
abelian group: T = Hom(H2, P3)/δ̄Hom(H1, P2).

To any arrangement A of the given combinatorial type, we associate an element
κ(A) ∈ T (more precisely, it is an element of a certain principal homogeneous space
over T , which can be identified with T ). Then κ(A) − κ(A′) is an obstruction
to the existence of an isomorphism π1(M) → π1(M

′) extending the canonical
isomorphism H1(M,Z) → H1(M

′,Z). The aim of this talk is to explain how to
compute κ(A) using the natural E∞-coalgebra structure on homology.

To define the natural E∞-coalgebra structure on homology, we need the lan-
guage of operads (see [3]). The notion of operad is in the same relation to mul-
tilinear operations on a vector space (or Z-module) as the notion of associative
algebra to linear automorphisms. Since we work over Z, we define an operad A in
the category of Z-modules as a family of Z-modules A(n) endowed with composi-
tion maps

A(m)⊗ (A(n1)⊗A(n2)⊗ · · · ⊗A(nm)) → A(n1 + · · ·+ nm).
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These composition maps must satisfy an obvious associativity condition.
The notion of operad splits into symmetric and nonsymmetric ones. In the sym-

metric case each A(n) is acted on by the symmetric group Sn, and the composition
maps are consistent with these actions. For any Z-module V , we define families
EV and EV by setting (EV )(n) = Hom(V ⊗n, V ) and (EV )(n) = Hom(V, V ⊗n). The
composition maps are obvious. If we are given a morphism of operads A → EV ,
then we say that V is an algebra over A, and if we are given a morphism of operads
A → EV , then we say that V is a coalgebra over A. For example, an associative
algebra is an algebra over nonsymmetric operad As, where As(n) = Z for each
n, and a commutative algebra is an algebra over symmetric operad Com, where
Com(n) = Z with the trivial action of Sn for each n.

We say that a family B of Z-modules (acted on by the symmetric groups, if we
are interested in the symmetric case) is a left module over an operad A if we are
given composition maps

A(m) ⊗ (B(n1)⊗B(n2)⊗ · · · ⊗B(nm)) → B(n1 + · · ·+ nm)

which, taken together with composition maps of A, satisfy the associativity con-
dition. In the same way we define right modules over A. For example, if we set
FV,W (n) = Hom(V ⊗n,W ) and FV,W (n) = Hom(V,W⊗n), then FV,W is a left
EV -module and a right EW -module, while FV,W is a right EV -module and a left
EW -module.

In the same way we define operads, algebras, and modules over them in the
category of graded Z-modules and in the category of differential graded Z-modules
(the grading is denoted by subscript, and the differential is of degree −1). We say
that an operad in the category A of graded Z-modules is free with the set of
generators G =

⋃
G(n) if there is a family of maps G(n) → A(n) and for any

operad B and any family of maps G(n) → B(n) there is a morphism of operads
A → B making the diagrams commutative. A differential graded operad is said
to be quasi-free if it is free as a graded operad. Any quasi-free operad has a basis
consisting of trees whose vertices are labeled by elements of G. Quasi-free modules
are defined in a similar way.

We say that a nonsymmetric operad A in the category of dg-Z-modules is an
A∞-operad if it is quasi-free and there is a quasi-isomorphism A → As, and a
symmetric operad E in the category of dg-Z-modules is an E∞-operad if it is
quasi-free and there is a quasi-isomorphism A → Com.

Let us choose an E∞-operad E. We shall now state several theorems. Most of
the statements are well known to the specialists (at least in the simply-connected
case or over a field of characteristic 0).

Theorem 1. The chain complex of any simplicial set (and, in particular, the
singular chain complex of any topological space) has a natural structure of E-
coalgebra.

Let F be a quasi-free E-bimodule such that there is a quasi-isomorphism of
E-bimodules F → Com.
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Theorem 2. Let X and Y be arbitrary E-coalgebras. We define morphisms
X → Y as classes of homomorphisms of E-bimodules F → FX,Y modulo chain
homotopy. Then there is a natural composition law for such morphisms, which
makes the class of E-coalgebras a category. Different choices of E∞-operads and
bimodules over them give equivalent categories of E-coalgebras. Assigning the sin-
gular chain complex to a topological space defines a functor from the homotopy
category of topological spaces to the category of E-coalgebras.

Theorem 3. Let X be an E-coalgebra, and let HX be its homology. If HX is
free as a Z-module, then there is a natural structure of E-coalgebra on HX such
that X and HX are isomorphic in the category of E-coalgebras.

Theorem 4. The cobar-construction can be regarded as a functor from the cate-
gory of E-coalgebras to itself (cf. [4]).

Theorem 5. For the singular chain complex of an arcwise connected topological
space T , the E-coalgebra structure on the cobar construction induces a Hopf algebra
structure on its 0-homology. This Hopf algebra is the completion of the group
algebra of π1(T ) with respect to the powers of the augmentation ideal. Thus the
E-coalgebra structure on the chain complex determines the dimension completion
of the fundamental group (over Z, see [5]).

Since in the case of the complement to a complex hyperplane arrangement the
integer homology is free as a Z-module, we see that the dimension completion of the
fundamental group is determined by the E-coalgebra structure on the homology.
Moreover, obstructions to the existence of an isomorphism π1(M) → π1(M

′) ex-
tending the canonical isomorphism H1(M,Z) → H1(M

′,Z), where M and M ′ are
complements of two combinatorially equivalent arrangements, can be computed
as obstructions to extending the canonical map H∗(M,Z) → H∗(M

′,Z) to an iso-
morphism in the category of E-coalgebras. The first obstruction of this type is just
the one described in the beginning of this talk. It is closely related to the triple
Massey product on cohomology. Hopefully, it will be possible to compute next
invariants of this type (related to the Massey products of higher order) and apply
them to find other examples of combinatorially equivalent arrangements whose
complements have non-isomorphic fundamental groups. The work is in progress.
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Equivariant Chow cohomology of nonsimplicial toric varieties

Hal Schenck

For a toric variety XΣ determined by a polyhedral fan Σ ⊆ N ≃ Zn, Payne shows
that the equivariant Chow cohomology is the Sym(N)-algebra C0(Σ) of integral
piecewise polynomial functions on Σ. We use the Cartan-Eilenberg spectral se-
quence to analyze the associated reflexive sheaf C0(Σ) on ProjQ(N), showing that
the Chern classes depend on subtle geometry of Σ and giving a criterion for the
splitting of C0(Σ) as a sum of line bundles. For certain fans associated to the re-
flection arrangement An, we describe a connection between C0(Σ) and logarithmic
vector fields tangent to An.

In [1], Bifet–De Concini–Procesi prove that the integral equivariant cohomology
ring H∗

T (XΣ) of a smooth toric variety XΣ is isomorphic to the integral Stanley–
Reisner ring AΣ of the unimodular fan Σ, and in [5], Brion proves that for Σ
simplicial, the rational equivariant Chow ring A∗

T (XΣ)Q is isomorphic to the ring
of rational piecewise polynomial functions C0(Σ)Q. A result of Billera [2] shows
that for a simplicial fan, C0(Σ)Q is isomorphic to the rational Stanley–Reisner ring
of the fan, so Brion’s result is similar in spirit to [1]. Brion and Vergne completed
the picture for the simplicial case by showing in [6] that

A∗
T (XΣ)Q ≃ H∗

T (XΣ)Q.

Our main results are the following. First, C0(Σ) is the top homology module
Hn of a certain chain complex C, similar to a chain complex introduced by Billera
in [2], but with subtle differences. We prove that for all i ≥ 1, the modules
Hn−i(C) are supported in codimension at least i + 1, and that the associated
primes of codimension exactly i+1 are linear. Using the Cartan-Eilenberg spectral
sequence, we show that C0(Σ) is a free Sym(N)Q module if Hn−i(C) = 0 or is
Cohen-Macaulay of codimension i+1 for all i ≥ 1. Several natural questions arise.
First, does the converse implication hold, that is, does freeness of C0(Σ) imply the
conditions on the lower homology modules. This is the case when Σ is simplicial,
see [11]. Second, does there exist a simple combinatorial condition for freeness?
In the simplicial case for r = 0, shellability is sufficient, but this is not so in the
polyhedral case, due to a recent result of DiPasquale [8].
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Resonance varieties

Alexander I. Suciu

Introduction. One of the most fruitful ideas to arise from the theory of hyper-
planes arrangements is that of turning the cohomology ring of a space into a family
of cochain complexes, parametrized by the cohomology group in degree one, and
extracting certain varieties from these data, as the loci where the cohomology of
those cochain complexes jumps.

What makes these “resonance” varieties especially useful is their close connec-
tion with a different kind of jumping loci: the “characteristic” varieties, which
record the jumps in homology with coefficients in rank 1 local systems. The geom-
etry of these varieties is intimately related to the formality, (quasi-) projectivity,
and homological finiteness properties of the fundamental group, and controls to a
large extent the Betti numbers of finite abelian covers. For more on this, we refer
to [8, 9, 10], and references therein.

I will present here an abstraction of the first resonance variety of a group, based
on recent work with Stefan Papadima [6, 7]. This point of view leads to a new
stratification of the Grassmannian, and a host of new questions.

Resonance schemes and Koszul modules. Let V be a finite-dimensional com-
plex vector space, and let K ⊂ V ∧ V be a subspace. The resonance variety as-
sociated to these data, R = R(V,K), is the set of elements a in the dual vector
space V ∗ for which there is an element b ∈ V ∗, not proportional to a, such that
a ∧ b belongs to the orthogonal complement K⊥ ⊆ V ∗ ∧ V ∗; we also declare that
0 ∈ R. It is readily seen that R is a conical, Zariski-closed subset of the affine
space V ∗. For instance, if K = 0 and if dimV > 1, then R = V ∗; at the other
extreme, if K = V ∧ V , then R = 0.

The resonance variety comes endowed with a natural scheme structure: its
defining ideal is the annihilator of the Koszul module, B = B(V,K). This is a
graded module over the symmetric algebra S = Sym(V ), with presentation matrix

δ3⊕ (idS ⊗ι), where δ3 : S⊗
∧3

V → S⊗
∧2

V is the third Koszul differential, and
ι : K → V ∧ V is the inclusion map.
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Here is an alternate point of view. Let A = A(V,K) be the quadratic algebra
defined as the quotient of the exterior algebra E =

∧
V ∗ by the ideal generated

by K⊥. Then R is the set of points a ∈ A1 where the first Betti number of the

cochain complex A0 a
−→ A1 a

−→ A2 jumps. Using results from [2, 4, 5], we may
reinterpret the graded pieces of the Koszul module in terms of the linear strand
in an appropriate Tor module: B∗

q
∼= TorEq+1(A,C)q+2.

Groups and resonance. The main example I have in mind is as follows. Let
G be a finitely generated group. The resonance variety of G is then defined as
R(G) = R(V,K), where V ∗ = H1(G,C) and K⊥ is the kernel of the cup-product
map ∪G : V ∗ ∧ V ∗ → H2(G,C).

Rationally, every resonance variety arises in this fashion. More precisely, let V
be an n-dimensional C-vector space, and suppose K ⊆ V ∧V is a linear subspace,
defined over Q. Then, as shown in [7], there is a finitely presented, commutator-
relators group G with V ∗ = H1(G,C) and K⊥ = ker(∪G).

For instance, suppose GΓ is a right-angled Artin group associated to a finite
simple graph Γ on vertex set V. As shown in [5], the resonance varietyR(GΓ) ⊂ CV

is the union of all coordinate subspaces CW corresponding to subsets W ⊂ V

for which the induced graph ΓW is disconnected. Moreover, the Hilbert series∑
q≥0 dimBqt

q+2 equals QΓ(t/(1− t)), where QΓ(t) is the “cut polynomial” of Γ,

with coefficient of tk equal to
∑

W⊂V : |W|=k b̃0(ΓW), where b̃0(ΓW) is one less than

the number of components of the induced subgraph on W.

A stratification of the Grassmannian. Now fix n = dimV and m = dimK.
Then K can be viewed as a point in the Grassmannian of m-planes in V ∧ V .
Moving about this Grassmannian and recording the way the resonance scheme
R(V,K) varies defines a stratification of G = Grm(V ∧ V ).

For instance, consider the “generic” stratum U = U(n,m), consisting of those
planes K ∈ G for which R(V,K) = 0. Clearly, K belongs to U if and only if
the plane P(K⊥) ⊂ P(V ∗ ∧ V ∗) misses the image of Gr2(V

∗) under the Plücker
embedding. Thus, U is a Zariski open subset of G. Moreover, as noted in [7],
this set is non-empty if and only if m ≥ 2n− 3, in which case there is an integer
q = q(n,m) such that Bq(V,K) = 0, for every K ∈ U .

The geometry of the non-generic strata is being studied in joint work with Eric
Babson [1]. A key ingredient in this study is the Fulton–MacPherson compactifi-
cation [3] of the configuration space of

(
n
2

)
−m distinct points in Gr2(

(
n
2

)
).
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The rational homology of real toric manifolds

Alexander I. Suciu

Toric manifolds. In a seminal paper [7] that appeared some twenty years ago,
Michael Davis and Tadeusz Januszkiewicz introduced a topological version of
smooth toric varieties, and showed that many properties previously discovered
by means of algebro-geometric techniques are, in fact, topological in nature.

Let P be an n-dimensional simple polytope with facets F1, . . . , Fm, and let χ be
an integral n×m matrix such that, for each vertex v = Fi1 ∩ · · · ∩ Fin , the minor
of columns i1, . . . , in has determinant ±1. To such data, there is associated a
2n-dimensional toric manifold, MP (χ) = T n×P/ ∼, where (t, p) ∼ (u, q) if p = q,
and tu−1 belongs to the image under χ : Tm → T n of the coordinate subtorus
corresponding to the smallest face of P containing q in its interior.

Here is an alternate description, using the moment-angle complex construction
(see for instance [10] and references therein). Given a simplicial complex K on
vertex set [n] = {1, . . . , n}, and a pair of spaces (X,A), let ZK(X,A) be the
subspace of the cartesian product X×n, defined as the union

⋃
σ∈K(X,A)σ , where

(X,A)σ is the set of points for which the i-th coordinate belongs to A, whenever
i /∈ σ. It turns out that the quasi-toric manifold MP (χ) is obtained from the
moment angle manifold ZK(D2, S1), where K is the dual to ∂P , by taking the
quotient by the relevant free action of the torus Tm−n = ker(χ).

Real toric manifolds. An analogous theory works for real quasi-toric manifolds,
also known as small covers. Given a homomorphism χ : Zm

2 → Zn
2 satisfying a

minors condition as above, the resulting n-dimensional manifold, NP (χ), is the
quotient of the real moment angle manifold ZK(D1, S0) by a free action of the
group Zm−n

2 = ker(χ). The manifold NP (χ) comes equipped with an action of Zn
2 ;

the associated Borel construction is homotopy equivalent to ZK(RP∞, ∗).
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If X is a smooth, projective toric variety, then X(C) = MP (χ), for some simple
polytope P and characteristic matrix χ, and X(R) = NP (χ mod 2Z). Not all toric
manifolds arise in this manner. For instance, M = CP2♯CP2 is a toric manifold
over the square, but it does not admit any (almost) complex structure; thus,
M 6∼= X(C).

The same goes for real toric manifolds. For instance, take P to be the dodec-
ahedron, and use one of the characteristic matrices χ listed in [12]. Then, by a
theorem of Andreev [1], the small cover NP (χ) is a hyperbolic 3-manifold; thus,
by a theorem of Delaunay [8], NP (χ) 6∼= X(R).

The Betti numbers of real toric manifolds. In [7], Davis and Januszkiewicz
showed that the sequence of mod 2 Betti numbers of NP (χ) coincides with the
h-vector of P . In joint work with Alvise Trevisan [18], we compute the rational
cohomology groups (together with their cup-product structure) for real, quasi-
toric manifolds. It turns out that the rational Betti numbers are much more
subtle, depending also on the characteristic matrix χ.

More precisely, for each subset S ⊆ [n], let χS =
∑

i∈S χi, where χi is the i-th
row of χ, and let Kχ,S be the induced subcomplex of K on the set of vertices
j ∈ [m] for which the j-th entry of χS is non-zero. Then

(*) dimHq(NP (χ),Q) =
∑

S⊆[n]

dim H̃q−1(Kχ,S ,Q).

The proof of formula (*), given in [18], relies on two fibrations relating the real
toric manifold NP (χ) to some of the aforementioned moment-angle complexes,

Zm−n
2

��

ZK(D1, S0)

��

Zn
2

// NP (χ) // ZK(RP∞, ∗) .

The proof entails a detailed analysis of homology in rank 1 local systems on the
space ZK(RP∞, ∗), exploiting at some point the stable splitting of moment-angle
complexes due to Bahri, Bendersky, Cohen, and Gitler [2]. Some of the details of
the proof appear in Trevisan’s Ph.D. thesis [19].

As an easy application of formula (*), one can readily recover a result of
Nakayama and Nishimura [14]: A real, n-dimensional toric manifold NP (χ) is
orientable if and only if there is a subset S ⊆ [n] such that Kχ,S = K.

The Hessenberg varieties. A classical construction associates to each Weyl
group W a smooth, complex projective toric variety TW , whose fan corresponds
to the reflecting hyperplanes of W and its weight lattice.

In the case when W is the symmetric group Sn, the manifold Tn = TSn
is

the well-known Hessenberg variety, see [9]. Moreover, Tn is isomorphic to the
De Concini–Procesi wonderful model YG , where G is the Boolean building set in
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(Cn)∗. Thus, Tn can be obtained by iterated blow-ups: first blow up CP
n−1 at

the n coordinate points, then blow up along the proper transforms of the
(
n
2

)

coordinate lines, etc.
The real locus, Tn(R), is a smooth, real toric variety of dimension n − 1; its

rational cohomology was recently computed by Henderson [13], who showed that

dimHi(Tn(R),Q) = A2i

(
n

2i

)
,

where A2i is the Euler secant number, defined as the coefficient of x2i/(2i)! in
the Maclaurin expansion of sec(x). As announced in [17], we can recover this
computation, using formula (*).

To start with, note that the (n−1)-dimensional polytope associated to Tn(R) is
the permutahedron Pn. Its vertices are obtained by permuting the coordinates of
the vector (1, . . . , n) ∈ Rn, while its facets are indexed by the non-empty, proper
subsets Q ⊂ [n]. The characteristic matrix χ = (χQ) for Tn(R) can be described
as follows: χi is the i-th standard basis vector of Rn−1 for 1 ≤ i < n, while
χn =

∑
i<n χi and χQ =

∑
i∈Q χi.

The simplicial complex Kn dual to ∂Pn is the barycentric subdivision of the
boundary of the (n − 1)-simplex. Given a subset S ⊂ [n − 1], the induced sub-
complex (Kn)χ,S depends only on the cardinality r = |S|; denote any one of these(
n−1
r

)
subcomplexes by Kn,r. It turns out that Kn,r is the order complex associ-

ated to a rank-selected poset of a certain subposet of the Boolean lattice Bn. A
result of Björner and Wachs [5] insures that such simplicial complexes are Cohen–
Macaulay, and thus have the homotopy type of a wedge of spheres (of a fixed

dimension); in fact, Kn,2r−1 ≃ Kn,2r ≃
∨A2r Sr−1. Hence,

dimHi(Tn(R),Q) =
∑

S⊆[n−1]

dim H̃i−1((Kn)χ,S ,Q)

=

n−1∑

r=1

(
n− 1

r

)
dim H̃i−1(Kn,r,Q)

=

((
n− 1

2i− 1

)
+

(
n− 1

2i

))
A2i =

(
n

2i

)
A2i.

Recently, Choi and Park [6] have extended this computation to a much wider
class of real toric manifolds. Given a finite simple graph Γ, let B(Γ) be the building
set obtained from the connected induced subgraphs of Γ, and let PB(Γ) be the
corresponding graph associahedron. Using formula (*), these authors compute the
Betti numbers of the smooth, real toric variety XΓ(R) defined by PB(Γ). When
Γ = Kn is a complete graph, XKn

= Tn, and one recovers the above calculation.

The formality question. A finite-type CW-complex X is said to be formal if
its Sullivan minimal model is quasi-isomorphic to the rational cohomology ring of
X , endowed with the 0 differential. Under a nilpotency assumption, this means
that H∗(X,Q) determines the rational homotopy type of X .
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As shown by Notbohm and Ray [15], if X is formal, then ZK(X, ∗) is formal;
in particular, ZK(S1, ∗) and ZK(CP∞, ∗) are always formal. More generally, as
shown by Félix and Tanré [11], if both X and A are formal, and the inclusion
A →֒ X induces a surjection in rational cohomology, then ZK(X,A) is formal.

On the other hand, as sketched in [4], and proved with full details in [10],
the spaces ZK(D2, S1) can have non-trivial triple Massey products, and thus are
not always formal. In fact, as shown in [10], there exist polytopes P and dual
triangulations K = K∂P for which the moment-angle manifold ZK(D2, S1) is not
formal. Using these results, as well as a construction from [3], we can exhibit real
moment-angle manifolds ZL(D

1, S0) that are not formal.
In view of this discussion, the following natural question arises: are toric mani-

folds formal? Of course, smooth (complex) toric varieties are formal, by a classical
result of Deligne, Griffith, Morgan, and Sullivan. More generally, Panov and Ray
showed in [16] that all toric manifolds are formal. So we are left with the question
whether real toric manifolds are always formal.

Acknowledgement. Research partially supported by NSA grant H98230-09-1-
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DGAs for subspace arrangement complements

Sergey Yuzvinsky

First in this talk we recall certain rational differential graded algebras for the
complement M of an arrangementA of linear subspaces in a complex space Cn. In
particular we denote by D1 the Morgan algebra that is constructively defined for
an arbitrary quasi-projective complex variety represented as the complement to
normal crossing divisor in a projective space (see, for instance, [1]). For such a rep-
resentation of M , we use the De Concini–Procesi wonderful model corresponding
to the minimal building set, [1].

The model D1 has been simplified by the speaker. Here we recall a simple
model of M from [5, 6]. Denote by L the lattice of all intersections of subspaces
from A. Without any loss of generality we can assume that A is free of inclusions
whence it can be identified with the set of atoms of L. We can also assume that A
is essential (i.e., the intersection of all of its elements is 0) and mark the elements
of L by their codimensions cdX for X ∈ L.

Now let us define the cochain complex D spent by the basis consisting of all
subsets σ ⊂ A. We define the dimension dim(σ) = 2 cd

∨
(σ) − |σ|. For instance,

dim({H}) = 2 cdH − 1 for every H ∈ A. Notice that dim(σ) may be negative.
On σ = {H1, . . . , Hk} ∈ A the differential d is defined by

dσ =
∑

j:
∨
(σj=

∨
(σ)

(−1)jσj

where σj = σ \ {Hj} for j = 1, . . . , k, and the indexing of elements in σ follows
some linear order imposed on A. It is a straightforward check that (D, d) is a
cochain complex.

We define a multiplication on this complex as follows. For subsets σ and τ of
A, we put

στ =
∑

(−1)sgn ǫ(σ,τ)σ ∪ τ

if cd
∨
(σ) + cd

∨
(τ) = cd(σ ∪ τ) and it is 0 otherwise. Here ǫ(σ, τ) is the shuffle

of the two sets and sgn is the parity of a permutation.

Theorem 1 (cf. [5], Prop. 3.1). For any subspace arrangement A, the following
hold.
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(i) The complex D with chain complex the multiplication defined above is a
differential graded algebra.

(ii) This DGA is quasi-isomorphic to the Morgan DGA D1.
(iii) For every X ∈ L denote by D(X) the sub complex of D generated by

σ with
∨
(σ) = X. Then D =

⊕
X∈L D(X) where the sum is in the

category of rational algebras. Each subalgebra D(X) has 0 multiplication
and D(X)D(Y ) ⊂ D(X ∨ Y ).

Remark 1. A differential graded algebra similar to the one discussed here can
be defined for arbitrary lattices with a labeling of elements that satisfies certain
rank-like conditions.

Remark 2. Recall that there is a cochain complex associated with any finite
lattice L: the atomic complex C(L), whose cohomology is that of L. The complex
is generated by all subsets σ of A (the set of atoms) with

∨
(σ) < 1. It is clear that

the complex D(X) is the factor complex of the cochain complex of the simplex on
A over the atomic complex (up-to slight shift of dimension). More precisely, we
may reconstruct a rational version of a formula by Goresky and MacPherson, as
follows:

Hp(M,Q) = Hp(D(X)) = H2 cd(X)−p−2(L≤X).

In the rest of the talk, we reduce our consideration to the special case where
L is a geometric lattice (equivalently, the lattice of a simple matroid). Then
independent sets σ of atoms can be characterized by the property that σ is a
cocycle in D. Moreover these cocycles have the following two properties:

(1) Their cohomology classes generate the cohomology groups;
(2) For arbitrary σ = {H1, . . . , Hk} ∈ A either all the sets σj are cocycles or

all of them are not.

Using these two properties, one can prove the following result from [3].

Theorem 2. If the intersection lattice L of a subspace arrangement is geometric
then the DGA D is formal. More precisely the assignment σ 7→ [σ] if σ is indepen-
dent and σ 7→ 0 otherwise generates a DGA homomorphism D → H∗(D) which
produces the identical map on cohomology.

Using Theorem 2 we obtain the corollary.

Corollary 5. If the lattice L of a subspace arrangement A is geometric then the
complement M is formal over Q.

There are simple examples in [3] showing that the condition in the Corollary is
not necessary. There are more recent examples in [2] even of coordinate subspaces
with a non-formal complement.

This leads to our first problem posed in the problem session, described below.
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Problem Session

All Participants

Problem 1 (S. Yuzvinsky). Given a subspace arrangement, find a necessary and
sufficient condition for the formality of its complement.

Problem 2 (S. Yuzvinsky). Find more examples of multinets in P2. Prove or
disprove the conjecture that every multinet is a limit of nets. See for instance [4]
in Yuzvinsky’s references.

Problem 3 (G. Rybnikov). Let A, B, C, D, E be the vertices of a regular
pentagon. Consider the real affine arrangement consisting of lines AB, CE, AC,
DE, AD, BC, AE, BD (four pairs of parallel lines). The combinatorial structure
of this arrangement admits an isomorphism induced by the permutation of vertices
B → C → E → D → B. Thus we get an automorphism of the homology of the
complement of the complexified arrangement. This automorphism preserves the
ordinary coalgebra structure. Can it be extended to an automorphism of E∞-
coalgebra? Can it be extended to an automorphism of the fundamental group?

Problem 4 (G. Rybnikov). Every realization space—the set of arrangements with
a given combinatorial structure—is an algebraic variety defined over Z. In the
previous example, the defining equation of this variety is essentially x2 − x− 1 =
0, and for the MacLane arrangement, the equation is x2 + x + 1 = 0. Relate
the invariants of E∞-coalgebra structure on homology to some properties of this
algebraic variety. For example, in the case of the MacLane arrangement, the
invariant takes values in 3-torsion, and the variety has fewer points over a field of
characteristic 3.

Problem 5 (A. Suciu). Given a simple polytope P and a characteristic matrix
χ, determine whether the corresponding real toric manifold, NP (χ), is formal.

Problem 6 (A. Suciu). Let V be a complex vector space of dimension n, let K ⊆
V ∧ V be a linear subspace of dimension m, and let B(V,K) be the corresponding
“Koszul” module over the polynomial ring S = Sym(V ).

Let U = U(n,m) be the set of planes K for which the support of B(V,K)
vanishes. As shown in reference [7] from Suciu’s first abstract, the set U is a
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Zariski open subset of the Grassmannian Grm(V ∧ V ). Moreover, this set is non-
empty if and only if m ≥ 2n − 3, in which case there is a (smallest) integer
q = q(n,m) such that Bq(V,K) = 0, for every K ∈ U .

For instance, if
(
n
2

)
−m ≤ 1, then q(n,m) =

(
n
2

)
−m. In general, though, the

determination of the integer q(n,m) is a challenging, yet interesting problem.
In the special case when V is an irreducible representation of sl2(C) and B =

B(V,K) is the corresponding Weyman module, a solution to this problem would
offer new insights on an old conjecture of Mark Green, regarding the syzygies of
canonically embedded curves.

Problem 7 (Questions about tropicalization and arrangements by M. Falk).
Given an arrangement A = {H0, . . . , Hn} of hyperplanes in complex projective
space Pℓ, let S = S(A) be the arrangement of subspaces of Tn := Rn+1/R(1, . . . , 1)
spanned by maximal cones in the Bergman fan BA of A. For given p satisfying
1 ≤ p < ℓ, describe the family of rational linear subspaces K of codimension p+1
in Tn satisfying codimS(K ∩ S) ≤ p for all S ∈ S.

The subspace arrangement S consists of certain flats of dimension ℓ in the braid
arrangement An in V . Indeed, the maximal cones of BA are subdivided by cones
in the nested set fan corresponding to the maximal building set; these cones are
generated by characteristic vectors of elements of chains in the intersection lattice.
The linear hull of the cone corresponding to a maximal chain X0 < · · · < Xℓ is
the flat of An corresponding to the partition {X1 −X0, . . . , Xℓ −Xℓ−1} of A.

If K is a linear subspace satisfying the stated condition, then the projection
Tn → Tn/K ∼= Tp+1 maps BA to a tropical variety of dimension at most p,
giving rise to a a family of syzygies of A-master functions, along with all the
concomitant implications for linear systems and fibrations, decomposable cocycles,
and resonance varieties. See my abstract in this volume for details and references.

The description of degree-one resonance varieties in terms of multinets can be
viewed as a solution to this problem in case ℓ = 2, p = 1. Of special interest is the
case where the image of BA in Tn/K is itself a Bergman fan; in this case K gives
rise to a linear syzygy of master functions.

Problem 8 (M. Falk). Let A be an arrangement of hyperplanes in Pℓ. Let
π : X → Pℓ be the De Concini–Procesi wonderful model of A corresponding to the
minimal building set G. For Y ∈ G let DY ⊆ X be the corresponding boundary
divisor. Let G1 ⊂ G with A ⊆ G1, and let U = X \

⋃
Y ∈G1

DY . Use toric methods

to compute H∗(U,C), and determine the pairs (A,G1) for which Hp(U,C) = 0 for
p > ℓ.

The space U arises in Varchenko’s theory of integrable models of arrangements.
Write H = ker(αH : Cℓ+1 → C), and let M = Pℓ \

⋃
H∈A H . Given a system

of nonzero complex weights λ = (λH | H ∈ A) satisfying
∑

H∈A λH = 0, the

corresponding master function is Φλ =
∏

H∈A αλH

H , a multi-valued function on M .
One sets

G1 = {X ∈ G |
∑

H⊇X

λH 6= 0}.
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Then Φλ extends to U . Its critical points on U are in many situations related to
the cohomology of the associated rank-one local system on U and to the complex
of flag forms and related Lie algebra homology. The requirement Hp(U,C) = 0
for p > ℓ is necessary for these relationships to hold.

In joint work with A. Varchenko and H. Terao, we have derived a spectral
sequence converging to H∗(U,C) or, more generally, to H∗(U,L) for any rank-one
local system L. In case A is the projectivized rank-three braid arrangement and
G1 = A, one has H3(U,C) 6= 0. There is a relation here with resonant weights on
A.

In general U is an incomplete toric variety; the computation of H∗(U,C) may
be susceptible to known methods of toric geometry.

Problem 9 (Questions on the Orlik-Terao algebra, by H. Schenck). For a hyper-
plane arrangement

A =

d⋃

i=1

V (αi) ⊆ Pn,

the Orlik-Terao algebra is defined as follows:

Definition 1. Let R = K[y1, . . . , yd], and for a relation Λ =
∑k

j=1 cijαij = 0, let

fΛ =

k∑

j=1

cij (yi1 · · · ŷij · · · yik).

The Orlik-Terao ideal IA is generated by the fΛ’s, and the quotient R/IA is the
Orlik-Terao algebra.

Strictly speaking, the Orlik-Terao ideal originally introduced in [1] also includes
the squares of the variables. In [1], Orlik and Terao prove that the Poincaré
series of that algebra is π(A, t). In [5], Terao shows the Hilbert series of R/IA is
π
(
A, t

1−t

)
. In [2], Proudfoot and Speyer prove that R/IA is Cohen-Macaulay, and

in [3] Schenck and Tohaneanu show that 2-formality of this algebra is determined
by the quadratic component of IA.

It was recently shown in [4] that for A ⊆ P2, the algebra R/IA is the homo-
geneous coordinate ring of the blowup of P2 at the singular points of A, mapped
to Pd−1 by a nef but not ample divisor, and that elements of R1(A) give rise to
determinantal equations in IA, with the result that V (IA) lies on a scroll.

Among other open questions on these algebras, we can mention:

(1) What can be said in higher dimensions?
(2) What can be said about special classes, such as reflection arrangements?
(3) What can be said about the minimal free resolution, even for A ⊆ P2?
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