DUALITY, FINITENESS, AND COHOMOLOGY JUMP LOCI

Alex Suciu

Northeastern University

Colloquium
University of Notre Dame

April 5, 2019

POINCARÉ DUALITY

- Let M be a compact, connected, orientable, n-dimensional manifold.
- Fix an orientation class $[M] \in H_{n}(M, \mathbb{Z}) \cong \mathbb{Z}$.
- Let $A=H^{\cdot}(M, \mathbb{k})$ be the cohomology ring of M with coefficients in a field \mathbb{k}.
- The Poincaré duality theorem implies that A is a Poincaré duality algebra of dimension n, with orientation $\varepsilon: A^{n} \rightarrow \mathbb{k}$ given by

$$
[M] \otimes \mathbb{k} \in H_{n}(M, \mathbb{k}) \cong \operatorname{Hom}_{\mathbb{k}}\left(H^{n}(M, \mathbb{k}), \mathbb{k}\right)
$$

Poincaré DUALITY ALGEBRAS

- Let A be a graded, graded-commutative algebra over a field \mathbb{k}.
- $A=\oplus_{i \geqslant 0} A^{i}$, where A^{i} are \mathbb{k}-vector spaces.
- $\cdot A^{i} \otimes A^{j} \rightarrow A^{i+j}$.
- $a b=(-1)^{i j}$ ba for all $a \in A^{i}, b \in A^{j}$.
- We will assume that A is connected ($A^{0}=\mathbb{k} \cdot 1$), and locally finite (all the Betti numbers $b_{i}(A):=\operatorname{dim}_{\mathbb{k}} A^{i}$ are finite).
- A is a Poincaré duality \mathbb{k}-algebra of dimension n if there is a \mathbb{k}-linear map $\varepsilon: A^{n} \rightarrow \mathbb{k}$ (called an orientation) such that all the bilinear forms $A^{i} \otimes_{\mathbb{k}} A^{n-i} \rightarrow \mathbb{k}, a \otimes b \mapsto \varepsilon(a b)$ are non-singular.
- Consequently,
- $b_{i}(A)=b_{n-i}(A)$, and $A^{i}=0$ for $i>n$.
- ε is an isomorphism.
- The maps PD: $A^{i} \rightarrow\left(A^{n-i}\right)^{*}, \operatorname{PD}(a)(b)=\varepsilon(a b)$ are isomorphisms.
- Each $a \in A^{i}$ has a Poincaré dual, $a^{\vee} \in A^{n-i}$, such that $\varepsilon\left(a a^{\vee}\right)=1$.
- The orientation class is defined as $\omega_{A}=1^{\vee}$, so that $\varepsilon\left(\omega_{A}\right)=1$.

The Associated alternating form

- Associated to a $\mathbb{k}-\mathrm{PD}_{n}$ algebra there is an alternating n-form,

$$
\mu_{A}: \wedge^{n} A^{1} \rightarrow \mathbb{k}, \quad \mu_{A}\left(a_{1} \wedge \cdots \wedge a_{n}\right)=\varepsilon\left(a_{1} \cdots a_{n}\right)
$$

- Assume now that $n=3$, and set $r=b_{1}(A)$. Fix a basis $\left\{e_{1}, \ldots, e_{r}\right\}$ for A^{1}, and let $\left\{e_{1}^{\vee}, \ldots, e_{r}^{\vee}\right\}$ be the dual basis for A^{2}.
- The multiplication in A, then, is given on basis elements by

$$
e_{i} e_{j}=\sum_{k=1}^{r} \mu_{i j k} e_{k}^{\vee}, \quad e_{i} e_{j}^{\vee}=\delta_{i j} \omega,
$$

where $\mu_{i j k}=\mu\left(e_{i} \wedge e_{j} \wedge e_{k}\right)$.

- Alternatively, let $A_{i}=\left(A^{i}\right)^{*}$, and let $e^{i} \in A_{1}$ be the (Kronecker) dual of e_{i}. We may then view μ dually as a trivector,

$$
\mu=\sum \mu_{i j k} e^{i} \wedge e^{j} \wedge e^{k} \in \bigwedge^{3} A_{1}
$$

which encodes the algebra structure of A.

POINCARÉ DUALITY IN 3-MANIFOLDS

- Sullivan (1975): for every finite-dimensional Q -vector space V and every alternating 3 -form $\mu \in \bigwedge^{3} V^{*}$, there is a closed 3 -manifold M with $H^{1}(M, \mathbb{Q})=V$ and cup-product form $\mu_{M}=\mu$.
- Such a 3-manifold can be constructed via "Borromean surgery."

- For instance, 0 -surgery on the Borromean rings yields the 3 -torus, whose intersection form is $\mu=e^{1} e^{2} e^{3}$.
- If M bounds an oriented 4-manifold W such that the cup-product pairing on $H^{2}(W, M)$ is non-degenerate (e.g., if M is the link of an isolated surface singularity), then $\mu_{M}=0$.

DUALITY SPACES

A more general notion of duality is due to Bieri and Eckmann (1978).
Let X be a connected, finite-type CW-complex, and set $\pi=\pi_{1}\left(X, x_{0}\right)$.

- X is a duality space of dimension n if $H^{i}(X, Z \pi)=0$ for $i \neq n$ and $H^{n}(X, Z \pi) \neq 0$ and torsion-free.
- Let $D=H^{n}(X, \mathbb{Z} \pi)$ be the dualizing $\mathbb{Z} \pi$-module. Given any $\mathbb{Z} \pi$-module A, we have $H^{i}(X, A) \cong H_{n-i}(X, D \otimes A)$.
- If $D=\mathbb{Z}$, with trivial $\mathbb{Z} \pi$-action, then X is a Poincaré duality space.
- If $X=K(\pi, 1)$ is a duality space, then π is a duality group.

Abelian duality spaces

We introduce in [Denham-S.-Yuzvinsky 2016/17] an analogous notion, by replacing $\pi \rightsquigarrow \pi_{\mathrm{ab}}$.

- X is an abelian duality space of dimension n if $H^{i}\left(X, \mathbb{Z} \pi_{\mathrm{ab}}\right)=0$ for $i \neq n$ and $H^{n}\left(X, Z \pi_{\mathrm{ab}}\right) \neq 0$ and torsion-free.
- Let $B=H^{n}\left(X, \mathbb{Z} \tau_{a b}\right)$ be the dualizing $\mathbb{Z} \pi_{a b}$-module. Given any $\mathbb{Z} \pi_{\mathrm{ab}}$-module A, we have $H^{i}(X, A) \cong H_{n-i}(X, B \otimes A)$.
- The two notions of duality are independent:

EXAMPLE

- Surface groups of genus at least 2 are not abelian duality groups, though they are (Poincaré) duality groups.
- Let $\pi=\mathbb{Z}^{2} * G$, where

$$
G=\left\langle x_{1}, \ldots, x_{4} \mid x_{1}^{-2} x_{2} x_{1} x_{2}^{-1}, \ldots, x_{4}^{-2} x_{1} x_{4} x_{1}^{-1}\right\rangle
$$

is Higman's acyclic group. Then π is an abelian duality group (of dimension 2), but not a duality group.

THEOREM (DSY)

Let X be an abelian duality space of dimension n. Then:

- $b_{1}(X) \geqslant n-1$.
- $b_{i}(X) \neq 0$, for $0 \leqslant i \leqslant n$ and $b_{i}(X)=0$ for $i>n$.
- $(-1)^{n} \chi(X) \geqslant 0$.
- Let $\rho: \pi_{1}(X) \rightarrow \mathbb{C}^{*}$ be a character such that $H^{i}\left(X, \mathbb{C}_{\rho}\right) \neq 0$, for some $i>0$. Then $H^{j}\left(X, \mathbb{C}_{\rho}\right) \neq 0$, for all $i \leqslant j \leqslant n$.

THEOREM (DENHAM-S. 2018)

Let U be a connected, smooth, complex quasi-projective variety of dimension n. Suppose U has a smooth compactification Y for which
(1) Components of $Y \backslash \cup$ form an arrangement of hypersurfaces \mathcal{A};
(2) For each submanifold X in the intersection poset $L(\mathcal{A})$, the complement of the restriction of \mathcal{A} to X is a Stein manifold.
Then U is both a duality space and an abelian duality space of dimension n.

LINEAR, ELLIPTIC, AND TORIC ARRANGEMENTS

Theorem (Denham-S. 2018)
Suppose that \mathcal{A} is one of the following:
(1) An affine-linear arrangement in \mathbb{C}^{n}, or a hyperplane arrangement in CP^{n};
(2) A non-empty elliptic arrangement in E^{n};
(3) A toric arrangement in $\left(\mathrm{C}^{*}\right)^{n}$.

Then the complement $M(\mathcal{A})$ is both a duality space and an abelian duality space of dimension $n-r, n+r$, and n, respectively, where r is the corank of the arrangement.

This theorem extends several previous results:
(1) Davis, Januszkiewicz, Leary, and Okun (2011);
(2) Levin and Varchenko (2012);
(3) Davis and Settepanella (2013), Esterov and Takeuchi (2018).

Finiteness properties for spaces and groups

- A recurring theme in topology is to determine the geometric and homological finiteness properties of spaces and groups.
- For instance, to decide whether a path-connected space X is homotopy equivalent to a CW-complex with finite k-skeleton.
- A group G has property F_{k} if it admits a classifying space $K(G, 1)$ with finite k-skeleton.
- $F_{1}: G$ is finitely generated;
- $F_{2}: G$ is finitely presentable.
- G has property $F P_{k}$ if the trivial $\mathbb{Z} G$-module \mathbb{Z} admits a projective $\mathbb{Z} G$-resolution which is finitely generated in all dimensions up to k.
- The following implications (none of which can be reversed) hold:

$$
\begin{aligned}
G \text { is of type } \mathrm{F}_{k} & \Rightarrow G \text { is of type } \mathrm{FP}_{k} \\
& \Rightarrow H_{i}(G, \mathbb{Z}) \text { is finitely generated, for all } i \leqslant k \\
& \Rightarrow b_{i}(G)<\infty, \text { for all } i \leqslant k .
\end{aligned}
$$

- Moreover, $\mathrm{FP}_{k} \& \mathrm{~F}_{2} \Rightarrow \mathrm{~F}_{k}$.

Bieri-Neumann-Strebel-Renz invariants

- (Bieri-Neumann-Strebel 1987) For a f.g. group G, let

$$
\Sigma^{1}(G)=\left\{\chi \in S(G) \mid \mathcal{C}_{\chi}(G) \text { is connected }\right\},
$$

where $S(G)=(\operatorname{Hom}(G, \mathbb{R}) \backslash\{0\}) / \mathbb{R}^{+}$and $\mathcal{C}_{\chi}(G)$ is the induced subgraph of $\operatorname{Cay}(G)$ on vertex set $G_{\chi}=\{g \in G \mid \chi(g) \geqslant 0\}$.

- $\Sigma^{1}(G)$ is an open set, independent of generating set for G.
- (Bieri, Renz 1988)

$$
\Sigma^{k}(G, \mathbb{Z})=\left\{\chi \in S(G) \mid \text { the monoid } G_{\chi} \text { is of type } F P_{k}\right\}
$$

In particular, $\Sigma^{1}(G, \mathbb{Z})=\Sigma^{1}(G)$.

- The Σ-invariants control the finiteness properties of normal subgroups $N \triangleleft G$ for which G / N is free abelian:

$$
N \text { is of type } \mathrm{FP}_{k} \Longleftrightarrow S(G, N) \subseteq \Sigma^{k}(G, \mathbb{Z})
$$

where $S(G, N)=\{\chi \in S(G) \mid \chi(N)=0\}$. In particular:

$$
\operatorname{ker}(\chi: G \rightarrow \mathbb{Z}) \text { is f.g. } \Longleftrightarrow\{ \pm \chi\} \subseteq \Sigma^{1}(G) \text {. }
$$

- Fix a connected CW-complex X with finite k-skeleton, for some $k \geqslant 1$. Let $G=\pi_{1}\left(X, x_{0}\right)$.
- For each $\chi \in S(X):=S(G)$, set

$$
\widehat{\mathbb{Z}}_{\chi}=\left\{\lambda \in \mathbb{Z}^{G} \mid\{g \in \operatorname{supp} \lambda \mid \chi(g)<c\} \text { is finite, } \forall c \in \mathbb{R}\right\} .
$$

This is a ring, contains $\mathbb{Z} G$ as a subring; hence, a $\mathbb{Z} G$-module.

- (Farber, Geoghegan, Schütz 2010)

$$
\Sigma^{q}(X, \mathbb{Z}):=\left\{\chi \in S(X) \mid H_{i}\left(X, \widehat{\mathbb{Z}}_{-\chi}\right)=0, \forall i \leqslant q\right\}
$$

- (Bieri) G is of type $F P_{k} \Longrightarrow \Sigma^{q}(G, \mathbb{Z})=\Sigma^{q}(K(G, 1), \mathbb{Z}), \forall q \leqslant k$.

DWYER-FRIED SETS

- For a fixed $r \in \mathbb{N}$, the connected, regular covers $Y \rightarrow X$ with group of deck-transformations \mathbb{Z}^{r} are parametrized by the Grassmannian of r-planes in $H^{1}(X, Q)$.
- Moving about this variety, and recording when $b_{1}(Y), \ldots, b_{i}(Y)$ are finite defines subsets $\Omega_{r}^{i}(X) \subseteq \operatorname{Gr}_{r}\left(H^{1}(X, \mathrm{Q})\right)$, which we call the Dwyer-Fried invariants of X.
- These sets depend only on the homotopy type of X. Hence, if G is a f.g. group, we may define $\Omega_{r}^{i}(G):=\Omega_{r}^{i}(K(G, 1))$.

THEOREM

Let G be a f.g. group, and $v: G \rightarrow \mathbb{Z}^{r}$ an epimorphism, with kernel Γ. Suppose $\Omega_{r}^{k}(G)=\varnothing$, and Γ is of type F_{k-1}. Then $b_{k}(\Gamma)=\infty$.

Proof: Set $X=K(G, 1)$; then $X^{v}=K(\Gamma, 1)$. Since Γ is of type F_{k-1}, $b_{i}\left(X^{v}\right)<\infty$ for $i \leqslant k-1$. But now $\Omega_{r}^{k}(X)=\varnothing$ implies $b_{k}\left(X^{\nu}\right)=\infty$.

Corollary

Let G be a f.g. group, and suppose $\Omega_{1}^{3}(G)=\varnothing$. Let $v: G \rightarrow \mathbb{Z}$ be an epimorphism. If the group $\Gamma=\operatorname{ker}(v)$ is f.p., then $b_{3}(\Gamma)=\infty$.

Example (The Stallings group)

- Let $Y=S^{1} \vee S^{1}$ and $X=Y \times Y \times Y$. Clearly, X is a classifying space for $G=F_{2} \times F_{2} \times F_{2}$.
- Let $v: G \rightarrow \mathbb{Z}$ be the homomorphism taking each standard generator to 1 . Set $\Gamma=\operatorname{ker}(v)$.
- Stallings (1963) showed that Γ is finitely presented.
- Using a Mayer-Vietoris argument, he also showed that $H_{3}(\Gamma, \mathbb{Z})$ is not finitely generated.
- Alternate explanation: $\Omega_{1}^{3}(X)=\varnothing$. Thus, by the previous Corollary, a stronger statement holds: $b_{3}(\Gamma)$ is not finite.

KOLLÁr'S QUESTION

Question (J. Kollár 1995)
Given a smooth, projective variety M, is the fundamental group $G=\pi_{1}(M)$ commensurable, up to finite kernels, with another group, π, admitting a $K(\pi, 1)$ which is a quasi-projective variety?
(Two groups, G_{1} and G_{2}, are said to be commensurable up to finite kernels if there is a zig-zag of groups and homomorphisms connecting them, with all arrows of finite kernel and cofinite image.)

THEOREM (DIMCA-PAPADIMA-S. 2009)
For each $k \geqslant 3$, there is a smooth, irreducible, complex projective variety M of complex dimension $k-1$, such that $\pi_{1}(M)$ is of type F_{k-1}, but not of type FP_{k}.

Further examples given by Llosa Isenrich and Bridson (2016-2019).

SUPPORT LOCI

- Let \mathbb{k} be an (algebraically closed) field.
- Let S be a commutative, finitely generated \mathbb{k}-algebra.
- Let $\operatorname{Spec}(S)=\operatorname{Hom}_{k-a l g}(S, \mathbb{k})$ be the maximal spectrum of S.
- Let $E: \cdots \rightarrow E_{i} \xrightarrow{d_{i}} E_{i-1} \rightarrow \cdots \rightarrow E_{0} \rightarrow 0$ be an S-chain complex.
- The support varieties of E are the subsets of $\operatorname{Spec}(S)$ given by

$$
\mathcal{W}_{d}^{i}(E)=\operatorname{supp}\left(\bigwedge^{d} H_{i}(E)\right) .
$$

- They depend only on the chain-homotopy equivalence class of E.
- For each $i \geqslant 0, \operatorname{Spec}(S)=\mathcal{W}_{0}^{i}(E) \supseteq \mathcal{W}_{1}^{i}(E) \supseteq \mathcal{W}_{2}^{i}(E) \supseteq \cdots$.
- If all E_{i} are finitely generated S-modules, then the sets $\mathcal{W}_{d}^{i}(E)$ are Zariski closed subsets of $\operatorname{Spec}(S)$.

Homology jump loci

- The homology jump loci of the S-chain complex E are defined as

$$
\mathcal{V}_{d}^{i}(E)=\left\{\mathfrak{m} \in \operatorname{Spec}(S) \mid \operatorname{dim}_{S / \mathfrak{m}} H_{i}\left(E \otimes_{S} S / \mathfrak{m}\right) \geqslant d\right\} .
$$

- They depend only on the chain-homotopy equivalence class of E.
- Get stratifications $\operatorname{Spec}(S)=\mathcal{V}_{0}^{i}(E) \supseteq \mathcal{V}_{1}^{i}(E) \supseteq \mathcal{V}_{2}^{i}(E) \supseteq \cdots$.

THEOREM (PAPADIMA-S. 2014)

Suppose E is a chain complex of free, finitely generated S-modules. Then:

- Each $\mathcal{V}_{d}^{i}(E)$ is a Zariski closed subset of $\operatorname{Spec}(S)$.
- For each q,

$$
\bigcup_{i \leqslant q} \mathcal{V}_{1}^{i}(E)=\bigcup_{i \leqslant q} \mathcal{W}_{1}^{i}(E) .
$$

RESONANCE VARIETIES OF A CDGA

- Let $A=\left(A^{\bullet}, \mathrm{d}\right)$ be a commutative, differential graded algebra over a field \mathbb{k} of characteristic 0 . That is:
- $A=\oplus_{i \geqslant 0} A^{i}$, where A^{i} are \mathbb{k}-vector spaces.
- The multiplication $\cdot: A^{i} \otimes A^{j} \rightarrow A^{i+j}$ is graded-commutative, i.e., $a b=(-1)^{|a||b|}$ ba for all homogeneous a and b.
- The differential d: $A^{i} \rightarrow A^{i+1}$ satisfies the graded Leibnitz rule, i.e., $\mathrm{d}(a b)=\mathrm{d}(a) b+(-1)^{|a|} a \mathrm{~d}(b)$.
- We assume A is connected (i.e., $A^{0}=\mathbb{k} \cdot 1$) and of finite-type (i.e., $\operatorname{dim} A^{i}<\infty$ for all i).
- For each $a \in Z^{1}(A) \cong H^{1}(A)$, we have a cochain complex,

$$
\left(A^{\bullet}, \delta_{a}\right): A^{0} \xrightarrow{\delta_{a}^{0}} A^{1} \xrightarrow{\delta_{a}^{1}} A^{2} \xrightarrow{\delta_{a}^{2}} \cdots,
$$

with differentials $\delta_{a}^{i}(u)=a \cdot u+\mathrm{d}(u)$, for all $u \in A^{i}$.

- The resonance varieties of A are the affine varieties

$$
\mathcal{R}_{s}^{i}(A)=\left\{a \in H^{1}(A) \mid \operatorname{dim}_{\mathbb{k}} H^{i}\left(A^{\bullet}, \delta_{a}\right) \geqslant s\right\} .
$$

- Fix a \mathbb{k}-basis $\left\{e_{1}, \ldots, e_{r}\right\}$ for A^{1}, and let $\left\{x_{1}, \ldots, x_{r}\right\}$ be the dual basis for $A_{1}=\left(A^{1}\right)^{*}$.
- Identify $\operatorname{Sym}\left(A_{1}\right)$ with $S=\mathbb{k}\left[x_{1}, \ldots, x_{r}\right]$, the coordinate ring of the affine space A^{1}.
- Build a cochain complex of free S-modules, $\mathbf{L}(A):=\left(A^{\bullet} \otimes S, \delta\right)$:

$$
\cdots \longrightarrow A^{i} \otimes S \xrightarrow{\delta^{i}} A^{i+1} \otimes S \xrightarrow{\delta^{i+1}} A^{i+2} \otimes S
$$

where $\quad \delta^{i}(u \otimes f)=\sum_{j=1}^{r} e_{j} u \otimes f x_{j}+\mathrm{d} u \otimes f$.

- The specialization of $(A \otimes S, \delta)$ at $a \in Z^{1}(A)$ is $\left(A, \delta_{a}\right)$.
- Hence, $\mathcal{R}_{s}^{i}(A)$ is the zero-set of the ideal generated by all minors of size $b_{i}(A)-s+1$ of the block-matrix $\delta^{i+1} \oplus \delta^{i}$.

CHARACTERISTIC VARIETIES

- Let X be a connected, finite-type CW-complex. Then $\pi=\pi_{1}\left(X, x_{0}\right)$ is a finitely presented group, with $\pi_{\mathrm{ab}} \cong H_{1}(X, \mathbb{Z})$.
- The ring $R=\mathbb{C}\left[\pi_{\mathrm{ab}}\right]$ is the coordinate ring of the character group, $\operatorname{Char}(X)=\operatorname{Hom}\left(\pi, \mathrm{C}^{*}\right) \cong\left(\mathbb{C}^{*}\right)^{r} \times \operatorname{Tors}\left(\pi_{\mathrm{ab}}\right)$, where $r=b_{1}(X)$.
- The characteristic varieties of X are the homology jump loci

$$
\mathcal{V}_{s}^{i}(X)=\left\{\rho \in \operatorname{Char}(X) \mid \operatorname{dim}_{\mathrm{C}} H_{i}\left(X, \mathbb{C}_{\rho}\right) \geqslant s\right\} .
$$

- These varieties are homotopy-type invariants of X, with $\mathcal{V}_{s}^{1}(X)$ depending only on $\pi=\pi_{1}(X)$.
- Set $\mathcal{V}_{1}^{1}(\pi):=\mathcal{V}_{1}^{1}(K(\pi, 1))$; then $\mathcal{V}_{1}^{1}(\pi)=\mathcal{V}_{1}\left(\pi / \pi^{\prime \prime}\right)$.

ExAMPLE

Let $f \in \mathbb{Z}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$ be a Laurent polynomial, $f(1)=0$. There is then a finitely presented group π with $\pi_{\mathrm{ab}}=\mathbb{Z}^{n}$ such that $\mathcal{V}_{1}^{1}(\pi)=V(f)$.

TANGENT CONES

- Let exp: $H^{1}(X, C) \rightarrow H^{1}\left(X, C^{*}\right)$ be the coefficient homomorphism induced by $\mathbb{C} \rightarrow \mathbb{C}^{*}, z \mapsto e^{z}$.
- Let $W=V(I)$, a Zariski closed subset of $\operatorname{Char}(G)=H^{1}\left(X, C^{*}\right)$.
- The tangent cone at 1 to W is $\mathrm{TC}_{1}(W)=V(\operatorname{in}(I))$.
- The exponential tangent cone at 1 to W :

$$
\tau_{1}(W)=\left\{z \in H^{1}(X, \mathbb{C}) \mid \exp (\lambda z) \in W, \forall \lambda \in \mathbb{C}\right\} .
$$

- Both tangent cones are homogeneous subvarieties of $H^{1}(X, \mathrm{C})$; are non-empty iff $1 \in W$; depend only on the analytic germ of W at 1 ; commute with finite unions and arbitrary intersections.
- $\tau_{1}(W) \subseteq \mathrm{TC}_{1}(W)$, with $=$ if all irred components of W are subtori, but $=$ in general.
- (Dimca-Papadima-S. 2009) $\tau_{1}(W)$ is a finite union of rationally defined subspaces.

Algebraic models for spaces

- A CDGA map $\varphi: A \rightarrow B$ is a quasi-isomorphism if $\varphi^{*}: H^{\cdot}(A) \rightarrow H^{\cdot}(B)$ is an isomorphism.
- φ is a q-quasi-isomorphism (for some $q \geqslant 1$) if φ^{*} is an isomorphism in degrees $\leqslant q$ and is injective in degree $q+1$.
- Two cDgAs, A and B, are ($q-$) equivalent if there is a zig-zag of $(q-)$ quasi-isomorphisms connecting A to B.
- A is formal (or just q-formal) if it is (q-) equivalent to ($\left.H^{\bullet}(A), d=0\right)$.
- A CDGA is q-minimal if it is of the form ((\wedge, d), where the differential structure is the inductive limit of a sequence of Hirsch extensions of increasing degrees, and $V^{i}=0$ for $i>q$.
- Every CDGA A with $H^{0}(A)=\mathbb{k}$ admits a q-minimal model, $\mathcal{M}_{q}(A)$ (i.e., a q-equivalence $\mathcal{M}_{q}(A) \rightarrow A$ with $\mathcal{M}_{q}(A)=(\wedge V, d)$ a q-minimal cdga), unique up to iso.
- Given any (path-connected) space X, there is an associated Sullivan Q-cdga, $A_{\text {PL }}(X)$, such that $H^{\bullet}\left(A_{\text {PL }}(X)\right)=H^{\bullet}(X, \mathbb{Q})$.
- An algebraic (q-)model (over \mathbb{k}) for X is a \mathbb{k}-cgda (A, d) which is $(q-)$ equivalent to $A_{\mathrm{PL}}(X) \otimes_{\mathrm{Q}} \mathbb{k}$.
- If M is a smooth manifold, then $\Omega_{\mathrm{dR}}(M)$ is a model for M (over \mathbb{R}).
- Examples of spaces having finite-type models include:
- Formal spaces (such as compact Kähler manifolds, hyperplane arrangement complements, toric spaces, etc).
- Smooth quasi-projective varieties, compact solvmanifolds, Sasakian manifolds, etc.

The TANGENT CONE THEOREM

Let X be a connected CW-complex with finite q-skeleton. Suppose X admits a q-finite q-model A.
THEOREM
For all $i \leqslant q$ and all s:

- (DPS 2009, Dimca-Papadima 2014) $\mathcal{V}_{s}^{i}(X)_{(1)} \cong \mathcal{R}_{s}^{i}(A)_{(0)}$.
- (Budur-Wang 2017) All the irreducible components of $\mathcal{V}_{s}^{i}(X)$ passing through the origin of $\operatorname{Char}(X)$ are algebraic subtori.

Consequently,

$$
\tau_{1}\left(\mathcal{V}_{s}^{i}(X)\right)=\mathrm{TC}_{1}\left(\mathcal{V}_{s}^{i}(X)\right)=\mathcal{R}_{s}^{i}(A) .
$$

THEOREM (PAPADIMA-S. 2017)
A f.g. group G admits a 1-finite 1-model if and only if the Malcev Lie algebra $\mathfrak{m}(G)$ is the LCS completion of a finitely presented Lie algebra.

INFINITESIMAL FINITENESS OBSTRUCTIONS

THEOREM

Let X be a connected CW-complex with finite q-skeleton. Suppose X admits a q-finite q-model A. Then, for all $i \leqslant q$ and all s,

- (Dimca-Papadima 2014) $\mathcal{V}_{s}^{i}(X)_{(1)} \cong \mathcal{R}_{s}^{i}(A)_{(0)}$. In particular, if X is q-formal, then $\mathcal{V}_{s}^{i}(X)_{(1)} \cong \mathcal{R}_{s}^{i}(X)_{(0)}$.
- (Macinic, Papadima, Popescu, S. 2017) $\mathrm{TC}_{0}\left(\mathcal{R}_{s}^{i}(A)\right) \subseteq \mathcal{R}_{s}^{i}(X)$.
- (Budur-Wang 2017) All the irreducible components of $\mathcal{V}_{s}^{i}(X)$ passing through the origin of $H^{1}\left(X, \mathbb{C}^{*}\right)$ are algebraic subtori.

EXAMPLE

Let G be a f.p. group with $G_{a b}=\mathbb{Z}^{n}$ and $\mathcal{V}_{1}^{1}(G)=\left\{t \in\left(\mathbb{C}^{*}\right)^{n} \mid\right.$
$\left.\sum_{i=1}^{n} t_{i}=n\right\}$. Then G admits no 1-finite 1-model.

THEOREM (PAPADIMA-S. 2017)
Suppose X is $(q+1)$ finite, or X admits a q-finite q-model. Then $b_{i}\left(\mathcal{M}_{q}(X)\right)<\infty$, for all $i \leqslant q+1$.

Corollary
Let G be a f.g. group. Assume that either G is finitely presented, or G has a 1-finite 1-model. Then $b_{2}\left(\mathcal{M}_{1}(G)\right)<\infty$.

EXAMPLE

- Consider the free metabelian group $G=F_{n} / F_{n}^{\prime \prime}$ with $n \geqslant 2$.
- We have $\mathcal{V}^{1}(G)=\mathcal{V}^{1}\left(F_{n}\right)=\left(\mathbb{C}^{*}\right)^{n}$, and so G passes the Budur-Wang test.
- But $b_{2}\left(\mathcal{M}_{1}(G)\right)=\infty$, and so G admits no 1-finite 1-model (and is not finitely presented).

Bounding the Σ AND Ω-INVARIANTS

Let $\mathcal{V}^{i}(X)=\bigcup_{j \leqslant i} \mathcal{V}_{1}^{i}(X)$.
THEOREM (PAPADIMA-S. 2010)

$$
\Sigma^{i}(X, \mathbb{Z}) \subseteq S(X) \backslash S\left(\tau_{1}^{\mathbb{R}}\left(\mathcal{V}^{i}(X)\right) .\right.
$$

Example (Koban-McCammond-Meier 2015)

$$
\Sigma^{1}\left(P_{n}\right)=\mathcal{R}^{1}\left(P_{n}, \mathbb{R}\right)^{\complement}
$$

Given a homogeneous variety $V \subset \mathbb{k}^{n}$, the set $\sigma_{r}(V)=\left\{P \in \operatorname{Gr}_{r}\left(\mathbb{k}^{n}\right) \mid P \cap V \neq\{0\}\right\}$ is Zariski closed.

Theorem (S. 2012 / 2014)

$$
\Omega_{r}^{i}(X) \subseteq \operatorname{Gr}_{r}\left(H^{1}(X, \mathbb{Q})\right) \backslash \sigma_{r}\left(\tau_{1}^{\mathrm{Q}}\left(\mathcal{V}^{i}(X)\right)\right)
$$

If the upper bound for the Σ-invariants is attained, then the upper bound for the Ω-invariants is also attained.

Resonance varieties of PD-ALGebras

- Let A be a PD_{n} algebra.
- For all $0 \leqslant i \leqslant n$ and all $a \in A^{1}$, the square

$$
\begin{array}{cc}
\left(A^{n-i}\right)^{*} \xrightarrow{\left(\delta_{a}^{n-i-1}\right)^{*}}\left(A^{n-i-1}\right)^{*} \\
\mathrm{PD} \uparrow \cong & \mathrm{PD} \uparrow \cong \\
A^{i} \xrightarrow{\delta_{a}^{i}} & A^{i+1}
\end{array}
$$

commutes up to a sign of $(-1)^{i}$.

- Consequently,

$$
\left(H^{i}\left(A, \delta_{a}\right)\right)^{*} \cong H^{n-i}\left(A, \delta_{-a}\right)
$$

- Hence, for all i and s,

$$
\mathcal{R}_{s}^{i}(A)=\mathcal{R}_{s}^{n-i}(A)
$$

- In particular, $\mathcal{R}_{1}^{n}(A)=\{0\}$.

3-DIMENSIONAL Poincaré DUALITY ALGEBRAS

- Let A be a PD_{3}-algebra with $b_{1}(A)=n>0$. Then
- $\mathcal{R}_{1}^{3}(A)=\mathcal{R}_{1}^{0}(A)=\{0\}$.
- $\mathcal{R}_{s}^{2}(A)=\mathcal{R}_{s}^{1}(A)$ for $1 \leqslant s \leqslant n$.
- $\mathcal{R}_{s}^{i}(A)=\varnothing$, otherwise.
- Write $\mathcal{R}_{s}(A)=\mathcal{R}_{s}^{1}(A)$. Then
- $\mathcal{R}_{2 k}(A)=\mathcal{R}_{2 k+1}(A)$ if n is even.
- $\mathcal{R}_{2 k-1}(A)=\mathcal{R}_{2 k}(A)$ if n is odd.
- If μ_{A} has rank $n \geqslant 3$, then $\mathcal{R}_{n-2}(A)=\mathcal{R}_{n-1}(A)=\mathcal{R}_{n}(A)=\{0\}$.
- If $n \geqslant 4$, and $\mathbb{k}=\overline{\mathbb{k}}$, then $\operatorname{dim} \mathcal{R}_{1}(A) \geqslant \operatorname{null}\left(\mu_{A}\right) \geqslant 2$.
- If n is even, then $\mathcal{R}_{1}(A)=\mathcal{R}_{0}(A)=A^{1}$.
- If $n=2 g+1>1$, then $\mathcal{R}_{1}(A) \neq A^{1}$ if and only if μ_{A} is "generic", i.e., $\exists c \in A^{1}$ such that the 2-form $\gamma_{c} \in \bigwedge^{2} A_{1}, \gamma_{c}(a \wedge b)=$ $\mu_{A}(a \wedge b \wedge c)$, has maximal rank, i.e., $\gamma_{c}^{g} \neq 0$ in $\bigwedge^{2 g} A_{1}$.

THEOREM (S. 2018)
Suppose rank $\gamma_{c}>2$, for all non-zero $c \in A^{1}$. Then:

- If n is odd, then $\mathcal{R}_{1}^{1}(A)$ is a hypersurface of degree $(n-3) / 2$ which is smooth if $n \leqslant 7$, and singular in codimension 5 if $n \geqslant 9$.
- If n is even, then $\mathcal{R}_{2}^{1}(A)$ is a subvariety of codimension 3 and degree $\frac{1}{4}\binom{n-1}{3}+1$, which is smooth if $n \leqslant 10$, and is singular in codimension 7 if $n \geqslant 12$.

THEOREM (S. 2019)

Let M be a closed, orientable, 3-dimensional manifold.

- If n is odd and μ_{M} is generic, then $\operatorname{TC}_{1}\left(\mathcal{V}_{1}^{1}(M)\right)=\mathcal{R}_{1}^{1}(M)$.
- If n is even, then $\mathrm{TC}_{1}\left(\mathcal{V}_{1}^{1}(M)\right)=\mathcal{R}_{1}^{1}(M)$ if and only if $\Delta_{M}=0$.

Resonance varieties of 3-FORMS of LOW RANK

n	μ	\mathcal{R}_{1}					
3	123	0	\quad	n	μ	$\mathcal{R}_{1}=\mathcal{R}_{2}$	\mathcal{R}_{3}
:---:	:---:	:---:	:---:				
5	$125+345$	$\left\{x_{5}=0\right\}$	0				

n	μ	\mathcal{R}_{1}	$\mathcal{R}_{2}=\mathcal{R}_{3}$	\mathcal{R}_{4}
6	$123+456$	\mathbb{C}^{6}	$\left\{x_{1}=x_{2}=x_{3}=0\right\} \cup\left\{x_{4}=x_{5}=x_{6}=0\right\}$	0
	$123+236+456$	\mathbb{C}^{6}	$\left\{x_{3}=x_{5}=x_{6}=0\right\}$	0

n	μ	$\mathcal{R}_{1}=\mathcal{R}_{2}$	$\mathcal{R}_{3}=\mathcal{R}_{4}$	\mathcal{R}_{5}
7	$147+257+367$	$\left\{x_{7}=0\right\}$	$\left\{x_{7}=0\right\}$	0
	$456+147+257+367$	$\left\{x_{7}=0\right\}$	$\left\{x_{4}=x_{5}=x_{6}=x_{7}=0\right\}$	0
	$123+456+147$	$\left\{x_{1}=0\right\} \cup\left\{x_{4}=0\right\}$	$\left\{x_{1}=x_{2}=x_{3}=x_{4}=0\right\} \cup\left\{x_{1}=x_{4}=x_{5}=x_{6}=0\right\}$	0
	$123+456+147+257$	$\left\{x_{1} x_{4}+x_{2} x_{5}=0\right\}$	$\left\{x_{1}=x_{2}=x_{4}=x_{5}=x_{7}^{2}-x_{3} x_{6}=0\right\}$	0
	$123+456+147+257+367$	$\left\{x_{1} x_{4}+x_{2} x_{5}+x_{3} x_{6}=x_{7}^{2}\right\}$	0	0

n	μ	\mathcal{R}_{1}	$\mathcal{R}_{2}=\mathcal{R}_{3}$	$\mathcal{R}_{4}=\mathcal{R}_{5}$
8	$147+257+367+358$	C^{8}	$\left\{x_{7}=0\right\}$	$\left\{x_{3}=x_{5}=x_{7}=x_{8}=0\right\} \cup\left\{x_{1}=x_{3}=x_{4}=x_{5}=x_{7}=0\right\}$
$456+147+257+367+358$	C^{8}	$\left\{x_{5}=x_{7}=0\right\}$	$\left\{x_{3}=x_{4}=x_{5}=x_{7}=x_{1} x_{8}+x_{6}^{2}=0\right\}$	
$123+456+147+358$	C^{8}	$\left\{x_{1}=x_{5}=0\right\} \cup\left\{x_{3}=x_{4}=0\right\}$	$\left\{x_{1}=x_{3}=x_{4}=x_{5}=x_{2} x_{6}+x_{7} x_{8}=0\right\}$	
$123+456+147+257+358$	C^{8}	$\left\{x_{1}=x_{5}=0\right\} \cup\left\{x_{3}=x_{4}=x_{5}=0\right\}$	$\left\{x_{1}=x_{2}=x_{3}=x_{4}=x_{5}=x_{7}=0\right\}$	
$123+456+147+257+367+358$	C^{8}	$\left\{x_{3}=x_{5}=x_{1} x_{4}-x_{7}^{2}=0\right\}$	$\left\{x_{1}=x_{2}=x_{3}=x_{4}=x_{5}=x_{6}=x_{7}=0\right\}$	
$147+268+358$	C^{8}	$\left\{x_{1}=x_{4}=x_{7}=0\right\} \cup\left\{x_{8}=0\right\}$	$\left\{x_{1}=x_{4}=x_{7}=x_{8}=0\right\} \cup\left\{x_{2}=x_{3}=x_{5}=x_{6}=x_{8}=0\right\}$	
$147+257+268+358$	C^{8}	$L_{1} \cup L_{2} \cup L_{3}$	$L_{1} \cup L_{2}$	
$456+147+257+268+358$	C^{8}	$C_{1} \cup C_{2}$	$L_{1} \cup L_{2}$	
$147+257+367+268+358$	C^{8}	$L_{1} \cup L_{2} \cup L_{3} \cup L_{4}$	$L_{1}^{\prime} \cup L_{2}^{\prime} \cup L_{3}^{\prime}$	
$456+147+257+367+268+358$	C^{8}	$C_{1} \cup C_{2} \cup C_{3}$	$L_{1} \cup L_{2} \cup L_{3}$	
$123+456+147+268+358$	C^{8}	$C_{1} \cup C_{2}$	L	
$123+456+147+257+268+358$	C^{8}	$\left\{f_{1}=\cdots=f_{20}=0\right\}$	0	
$123+456+147+257+367+268+358$	C^{8}	$\left\{g_{1}=\cdots=g_{20}=0\right\}$	0	

Alex Suciu (Northeastern)
DUALITY, FINITENESS, AND JUMP LOCI
Notre Dame Colloquium

REFERENCES

景G. Denham, A.I. Suciu, and S. Yuzvinsky, Abelian duality and propagation of resonance, Selecta Math. 23 (2017), no. 4, 2331-2367.

R Genham and A.I. Suciu, Local systems on arrangements of smooth, complex algebraic hypersurfaces, Forum of Mathematics, Sigma 6 (2018), e6, 20 pages.
S. Papadima and A.I. Suciu, Infinitesimal finiteness obstructions, J. London Math. Soc. 99 (2019), no. 1, 173-193.
A. A.I. Suciu, Poincaré duality and resonance varieties, arXiv:1809.01801.
A.I. Suciu, Cohomology jump loci of 3-manifolds, arXiv:1901.01419.

