DUALITY, FINITENESS, AND COHOMOLOGY JUMP LOCI

Alex Suciu

Northeastern University

Colloquium University of Notre Dame April 5, 2019

POINCARÉ DUALITY

- Let *M* be a compact, connected, orientable, *n*-dimensional manifold.
- Fix an orientation class $[M] \in H_n(M, \mathbb{Z}) \cong \mathbb{Z}$.
- Let A = H[•](M, k) be the cohomology ring of M with coefficients in a field k.
- The Poincaré duality theorem implies that *A* is a Poincaré duality algebra of dimension *n*, with orientation $\varepsilon: A^n \to \Bbbk$ given by

 $[M] \otimes \Bbbk \in H_n(M, \Bbbk) \cong \operatorname{Hom}_{\Bbbk}(H^n(M, \Bbbk), \Bbbk).$

POINCARÉ DUALITY ALGEBRAS

- Let A be a graded, graded-commutative algebra over a field \Bbbk .
 - $A = \bigoplus_{i \ge 0} A^i$, where A^i are k-vector spaces.
 - $: A^i \otimes A^j \to A^{i+j}.$
 - $ab = (-1)^{ij}ba$ for all $a \in A^i$, $b \in A^j$.
- We will assume that A is connected (A⁰ = k ⋅ 1), and locally finite (all the Betti numbers b_i(A) := dim_k Aⁱ are finite).
- *A* is a *Poincaré duality* \Bbbk -*algebra* of dimension *n* if there is a \Bbbk -linear map $\varepsilon \colon A^n \to \Bbbk$ (called an *orientation*) such that all the bilinear forms $A^i \otimes_{\Bbbk} A^{n-i} \to \Bbbk$, $a \otimes b \mapsto \varepsilon(ab)$ are non-singular.
- Consequently,
 - $b_i(A) = b_{n-i}(A)$, and $A^i = 0$ for i > n.
 - ε is an isomorphism.
 - The maps PD: $A^i \to (A^{n-i})^*$, PD $(a)(b) = \varepsilon(ab)$ are isomorphisms.
 - Each $a \in A^i$ has a *Poincaré dual*, $a^{\vee} \in A^{n-i}$, such that $\varepsilon(aa^{\vee}) = 1$.
 - The orientation class is defined as $\omega_A = 1^{\vee}$, so that $\varepsilon(\omega_A) = 1$.

THE ASSOCIATED ALTERNATING FORM

- Associated to a \Bbbk -PD_n algebra there is an alternating *n*-form, $\mu_A: \bigwedge^n A^1 \to \Bbbk, \quad \mu_A(a_1 \land \cdots \land a_n) = \varepsilon(a_1 \cdots a_n).$
- Assume now that n = 3, and set $r = b_1(A)$. Fix a basis $\{e_1, \ldots, e_r\}$ for A^1 , and let $\{e_1^{\vee}, \ldots, e_r^{\vee}\}$ be the dual basis for A^2 .
- The multiplication in A, then, is given on basis elements by

$$oldsymbol{e}_ioldsymbol{e}_j = \sum_{k=1} \mu_{ijk} oldsymbol{e}_k^{ee}, \quad oldsymbol{e}_ioldsymbol{e}_j^{ee} = \delta_{ij}\omega,$$

where $\mu_{ijk} = \mu(\boldsymbol{e}_i \wedge \boldsymbol{e}_j \wedge \boldsymbol{e}_k)$.

Alternatively, let A_i = (Aⁱ)*, and let eⁱ ∈ A₁ be the (Kronecker) dual of e_i. We may then view μ dually as a trivector,

$$\mu = \sum \mu_{ijk} \, e^i \wedge e^j \wedge e^k \in \bigwedge{}^3A_1$$
,

which encodes the algebra structure of A.

POINCARÉ DUALITY IN **3-**MANIFOLDS

- Sullivan (1975): for every finite-dimensional Q-vector space V and every alternating 3-form $\mu \in \bigwedge^3 V^*$, there is a closed 3-manifold M with $H^1(M, \mathbb{Q}) = V$ and cup-product form $\mu_M = \mu$.
- Such a 3-manifold can be constructed via "Borromean surgery."

- For instance, 0-surgery on the Borromean rings yields the 3-torus, whose intersection form is $\mu = e^1 e^2 e^3$.
- If *M* bounds an oriented 4-manifold *W* such that the cup-product pairing on $H^2(W, M)$ is non-degenerate (e.g., if *M* is the link of an isolated surface singularity), then $\mu_M = 0$.

DUALITY SPACES

A more general notion of duality is due to Bieri and Eckmann (1978). Let *X* be a connected, finite-type CW-complex, and set $\pi = \pi_1(X, x_0)$.

- X is a *duality space* of dimension n if $H^i(X, \mathbb{Z}\pi) = 0$ for $i \neq n$ and $H^n(X, \mathbb{Z}\pi) \neq 0$ and torsion-free.
- Let $D = H^n(X, \mathbb{Z}\pi)$ be the dualizing $\mathbb{Z}\pi$ -module. Given any $\mathbb{Z}\pi$ -module A, we have $H^i(X, A) \cong H_{n-i}(X, D \otimes A)$.
- If $D = \mathbb{Z}$, with trivial $\mathbb{Z}\pi$ -action, then X is a Poincaré duality space.
- If $X = K(\pi, 1)$ is a duality space, then π is a *duality group*.

ABELIAN DUALITY SPACES

We introduce in [Denham–S.–Yuzvinsky 2016/17] an analogous notion, by replacing $\pi \rightsquigarrow \pi_{ab}$.

- X is an *abelian duality space* of dimension *n* if $H^i(X, \mathbb{Z}\pi_{ab}) = 0$ for $i \neq n$ and $H^n(X, \mathbb{Z}\pi_{ab}) \neq 0$ and torsion-free.
- Let $B = H^n(X, \mathbb{Z}\pi_{ab})$ be the dualizing $\mathbb{Z}\pi_{ab}$ -module. Given any $\mathbb{Z}\pi_{ab}$ -module A, we have $H^i(X, A) \cong H_{n-i}(X, B \otimes A)$.
- The two notions of duality are independent:

EXAMPLE

- Surface groups of genus at least 2 are not abelian duality groups, though they are (Poincaré) duality groups.
- Let $\pi = \mathbb{Z}^2 * G$, where

 $G = \langle x_1, \dots, x_4 \mid x_1^{-2}x_2x_1x_2^{-1}, \dots, x_4^{-2}x_1x_4x_1^{-1} \rangle$ is Higman's acyclic group. Then π is an abelian duality group (of dimension 2), but not a duality group.

THEOREM (DSY)

Let X be an abelian duality space of dimension n. Then:

- $b_1(X) \ge n-1$.
- $b_i(X) \neq 0$, for $0 \leq i \leq n$ and $b_i(X) = 0$ for i > n.
- $(-1)^n \chi(X) \ge 0.$
- Let ρ: π₁(X) → C* be a character such that Hⁱ(X, C_ρ) ≠ 0, for some i > 0. Then H^j(X, C_ρ) ≠ 0, for all i ≤ j ≤ n.

THEOREM (DENHAM-S. 2018)

Let U be a connected, smooth, complex quasi-projective variety of dimension n. Suppose U has a smooth compactification Y for which

- ① Components of $Y \setminus U$ form an arrangement of hypersurfaces A;
- 2 For each submanifold X in the intersection poset L(A), the complement of the restriction of A to X is a Stein manifold.

Then U is both a duality space and an abelian duality space of dimension n.

LINEAR, ELLIPTIC, AND TORIC ARRANGEMENTS

THEOREM (DENHAM–S. 2018)

Suppose that \mathcal{A} is one of the following:

- **1** An affine-linear arrangement in \mathbb{C}^n , or a hyperplane arrangement in \mathbb{CP}^n ;
- (2) A non-empty elliptic arrangement in E^n ;
- 3 A toric arrangement in $(\mathbb{C}^*)^n$.

Then the complement $M(\mathcal{A})$ is both a duality space and an abelian duality space of dimension n - r, n + r, and n, respectively, where r is the corank of the arrangement.

This theorem extends several previous results:

- Davis, Januszkiewicz, Leary, and Okun (2011);
- 2 Levin and Varchenko (2012);
- ③ Davis and Settepanella (2013), Esterov and Takeuchi (2018).

ALEX SUCIU (NORTHEASTERN)

FINITENESS PROPERTIES FOR SPACES AND GROUPS

- A recurring theme in topology is to determine the geometric and homological finiteness properties of spaces and groups.
- For instance, to decide whether a path-connected space *X* is homotopy equivalent to a CW-complex with finite *k*-skeleton.
- A group *G* has property F_k if it admits a classifying space K(G, 1) with finite *k*-skeleton.
 - F₁: G is finitely generated;
 - F₂: *G* is finitely presentable.
- *G* has property FP_k if the trivial $\mathbb{Z}G$ -module \mathbb{Z} admits a projective $\mathbb{Z}G$ -resolution which is finitely generated in all dimensions up to *k*.
- The following implications (none of which can be reversed) hold:

 $\begin{array}{l} G \text{ is of type } \mathsf{F}_k \Rightarrow G \text{ is of type } \mathsf{FP}_k \\ \Rightarrow H_i(G,\mathbb{Z}) \text{ is finitely generated, for all } i \leqslant k \\ \Rightarrow b_i(G) < \infty, \text{ for all } i \leqslant k. \end{array}$

• Moreover, $FP_k \& F_2 \Rightarrow F_k$.

ALEX SUCIU (NORTHEASTERN)

BIERI-NEUMANN-STREBEL-RENZ INVARIANTS

• (Bieri-Neumann-Strebel 1987) For a f.g. group G, let

 $\Sigma^{1}(G) = \{\chi \in S(G) \mid C_{\chi}(G) \text{ is connected}\},\$

where $S(G) = (\text{Hom}(G, \mathbb{R}) \setminus \{0\}) / \mathbb{R}^+$ and $C_{\chi}(G)$ is the induced subgraph of Cay(*G*) on vertex set $G_{\chi} = \{g \in G \mid \chi(g) \ge 0\}$.

- $\Sigma^{1}(G)$ is an open set, independent of generating set for *G*.
- (Bieri, Renz 1988)

 $\Sigma^k(G, \mathbb{Z}) = \{\chi \in S(G) \mid \text{the monoid } G_{\chi} \text{ is of type } FP_k\}.$ In particular, $\Sigma^1(G, \mathbb{Z}) = \Sigma^1(G).$

 The Σ-invariants control the finiteness properties of normal subgroups N ⊲ G for which G/N is free abelian:

N is of type $FP_k \iff S(G, N) \subseteq \Sigma^k(G, \mathbb{Z})$

where $S(G, N) = \{\chi \in S(G) \mid \chi(N) = 0\}$. In particular:

 $\ker(\chi\colon \boldsymbol{G}\twoheadrightarrow\mathbb{Z}) \text{ is f.g.} \Longleftrightarrow \{\pm\chi\} \subseteq \Sigma^1(\boldsymbol{G}).$

ALEX SUCIU (NORTHEASTERN)

- Fix a connected CW-complex X with finite k-skeleton, for some $k \ge 1$. Let $G = \pi_1(X, x_0)$.
- For each $\chi \in S(X) := S(G)$, set

 $\widehat{\mathbb{Z}G}_{\chi} = \Big\{ \lambda \in \mathbb{Z}^{G} \mid \{ g \in \operatorname{supp} \lambda \mid \chi(g) < c \} \text{ is finite, } \forall c \in \mathbb{R} \Big\}.$

This is a ring, contains $\mathbb{Z}G$ as a subring; hence, a $\mathbb{Z}G$ -module.

• (Farber, Geoghegan, Schütz 2010)

 $\Sigma^{\boldsymbol{q}}(\boldsymbol{X},\mathbb{Z}):=\{\boldsymbol{\chi}\in\boldsymbol{S}(\boldsymbol{X})\mid H_{i}(\boldsymbol{X},\widehat{\mathbb{Z}G}_{-\boldsymbol{\chi}})=\boldsymbol{0},\;\forall\,i\leqslant\boldsymbol{q}\}.$

• (Bieri) *G* is of type $FP_k \implies \Sigma^q(G, \mathbb{Z}) = \Sigma^q(K(G, 1), \mathbb{Z}), \forall q \leq k$.

DWYER-FRIED SETS

- For a fixed $r \in \mathbb{N}$, the connected, regular covers $Y \to X$ with group of deck-transformations \mathbb{Z}^r are parametrized by the Grassmannian of *r*-planes in $H^1(X, \mathbb{Q})$.
- Moving about this variety, and recording when $b_1(Y), \ldots, b_i(Y)$ are finite defines subsets $\Omega_r^i(X) \subseteq \operatorname{Gr}_r(H^1(X, \mathbb{Q}))$, which we call the *Dwyer–Fried invariants* of *X*.
- These sets depend only on the homotopy type of X. Hence, if G is a f.g. group, we may define Ωⁱ_r(G) := Ωⁱ_r(K(G, 1)).

Theorem

Let *G* be a f.g. group, and $\nu: G \to \mathbb{Z}^r$ an epimorphism, with kernel Γ . Suppose $\Omega_r^k(G) = \emptyset$, and Γ is of type F_{k-1} . Then $b_k(\Gamma) = \infty$.

Proof: Set X = K(G, 1); then $X^{\nu} = K(\Gamma, 1)$. Since Γ is of type F_{k-1} , $b_i(X^{\nu}) < \infty$ for $i \leq k-1$. But now $\Omega_{\Gamma}^k(X) = \emptyset$ implies $b_k(X^{\nu}) = \infty$.

COROLLARY

Let *G* be a f.g. group, and suppose $\Omega_1^3(G) = \emptyset$. Let $\nu : G \twoheadrightarrow \mathbb{Z}$ be an epimorphism. If the group $\Gamma = \ker(\nu)$ is f.p., then $b_3(\Gamma) = \infty$.

EXAMPLE (THE STALLINGS GROUP)

- Let $Y = S^1 \vee S^1$ and $X = Y \times Y \times Y$. Clearly, X is a classifying space for $G = F_2 \times F_2 \times F_2$.
- Let ν: G → Z be the homomorphism taking each standard generator to 1. Set Γ = ker(ν).
- Stallings (1963) showed that Γ is finitely presented.
- Using a Mayer-Vietoris argument, he also showed that H₃(Γ, Z) is not finitely generated.
- Alternate explanation: Ω³₁(X) = Ø. Thus, by the previous Corollary, a stronger statement holds: b₃(Γ) is not finite.

KOLLÁR'S QUESTION

QUESTION (J. KOLLÁR 1995)

Given a smooth, projective variety M, is the fundamental group $G = \pi_1(M)$ commensurable, up to finite kernels, with another group, π , admitting a $K(\pi, 1)$ which is a quasi-projective variety?

(Two groups, G_1 and G_2 , are said to be *commensurable up to finite kernels* if there is a zig-zag of groups and homomorphisms connecting them, with all arrows of finite kernel and cofinite image.)

THEOREM (DIMCA–PAPADIMA–S. 2009)

For each $k \ge 3$, there is a smooth, irreducible, complex projective variety M of complex dimension k - 1, such that $\pi_1(M)$ is of type F_{k-1} , but not of type F_k .

Further examples given by Llosa Isenrich and Bridson (2016–2019).

SUPPORT LOCI

- Let k be an (algebraically closed) field.
- Let S be a commutative, finitely generated k-algebra.
- Let $Spec(S) = Hom_{k-alg}(S, k)$ be the maximal spectrum of S.
- Let $E: \dots \rightarrow E_i \stackrel{d_i}{\rightarrow} E_{i-1} \rightarrow \dots \rightarrow E_0 \rightarrow 0$ be an *S*-chain complex.
- The support varieties of *E* are the subsets of Spec(*S*) given by

$$\mathcal{W}_d^i(E) = \operatorname{supp}\left(\bigwedge^d H_i(E)\right).$$

- They depend only on the chain-homotopy equivalence class of *E*.
- For each $i \ge 0$, $\operatorname{Spec}(S) = \mathcal{W}_0^i(E) \supseteq \mathcal{W}_1^i(E) \supseteq \mathcal{W}_2^i(E) \supseteq \cdots$.
- If all E_i are finitely generated *S*-modules, then the sets $W_d^i(E)$ are Zariski closed subsets of Spec(*S*).

HOMOLOGY JUMP LOCI

- The homology jump loci of the *S*-chain complex *E* are defined as $\mathcal{V}_{d}^{i}(E) = \{\mathfrak{m} \in \operatorname{Spec}(S) \mid \dim_{S/\mathfrak{m}} H_{i}(E \otimes_{S} S/\mathfrak{m}) \ge d\}.$
- They depend only on the chain-homotopy equivalence class of *E*.
- Get stratifications $\operatorname{Spec}(S) = \mathcal{V}_0^i(E) \supseteq \mathcal{V}_1^i(E) \supseteq \mathcal{V}_2^i(E) \supseteq \cdots$.

THEOREM (PAPADIMA-S. 2014)

Suppose E is a chain complex of free, finitely generated S-modules. Then:

- Each $\mathcal{V}_d^i(E)$ is a Zariski closed subset of $\operatorname{Spec}(S)$.
- For each q,

$$\bigcup_{i \leq q} \mathcal{V}_1^i(E) = \bigcup_{i \leq q} \mathcal{W}_1^i(E).$$

RESONANCE VARIETIES OF A CDGA

- Let A = (A[•], d) be a commutative, differential graded algebra over a field k of characteristic 0. That is:
 - $A = \bigoplus_{i \ge 0} A^i$, where A^i are k-vector spaces.
 - The multiplication $: A^i \otimes A^j \to A^{i+j}$ is graded-commutative, i.e., $ab = (-1)^{|a||b|} ba$ for all homogeneous *a* and *b*.
 - The differential d: $A^i \rightarrow A^{i+1}$ satisfies the graded Leibnitz rule, i.e., d(*ab*) = d(*a*)*b* + (-1)^{|*a*|}*a*d(*b*).
- We assume A is connected (i.e., A⁰ = k ⋅ 1) and of finite-type (i.e., dim Aⁱ < ∞ for all i).
- For each $a \in Z^1(A) \cong H^1(A)$, we have a cochain complex, $(A^{\bullet}, \delta_a): A^0 \xrightarrow{\delta_a^0} A^1 \xrightarrow{\delta_a^1} A^2 \xrightarrow{\delta_a^2} \cdots$,

with differentials $\delta_a^i(u) = a \cdot u + d(u)$, for all $u \in A^i$.

• The resonance varieties of A are the affine varieties

 $\mathcal{R}^{i}_{s}(A) = \{ a \in H^{1}(A) \mid \dim_{\Bbbk} H^{i}(A^{\bullet}, \delta_{a}) \geq s \}.$

ALEX SUCIU (NORTHEASTERN)

DUALITY, FINITENESS, AND JUMP LOCI NOTRE DAME COLLOQUIUM

- Fix a k-basis $\{e_1, \ldots, e_r\}$ for A^1 , and let $\{x_1, \ldots, x_r\}$ be the dual basis for $A_1 = (A^1)^*$.
- Identify $Sym(A_1)$ with $S = k[x_1, ..., x_r]$, the coordinate ring of the affine space A^1 .
- Build a cochain complex of free *S*-modules, $L(A) := (A^{\bullet} \otimes S, \delta)$:

$$\cdots \longrightarrow A^{i} \otimes S \xrightarrow{\delta^{i}} A^{i+1} \otimes S \xrightarrow{\delta^{i+1}} A^{i+2} \otimes S \longrightarrow \cdots,$$

where $\delta^i(u \otimes f) = \sum_{j=1}^r e_j u \otimes f x_j + d u \otimes f$.

- The specialization of $(A \otimes S, \delta)$ at $a \in Z^1(A)$ is (A, δ_a) .
- Hence, Rⁱ_s(A) is the zero-set of the ideal generated by all minors of size b_i(A) − s + 1 of the block-matrix δⁱ⁺¹ ⊕ δⁱ.

CHARACTERISTIC VARIETIES

- Let X be a connected, finite-type CW-complex. Then $\pi = \pi_1(X, x_0)$ is a finitely presented group, with $\pi_{ab} \cong H_1(X, \mathbb{Z})$.
- The ring $R = \mathbb{C}[\pi_{ab}]$ is the coordinate ring of the character group, $\operatorname{Char}(X) = \operatorname{Hom}(\pi, \mathbb{C}^*) \cong (\mathbb{C}^*)^r \times \operatorname{Tors}(\pi_{ab})$, where $r = b_1(X)$.
- The characteristic varieties of X are the homology jump loci

 *V*ⁱ_s(X) = {ρ ∈ Char(X) | dim_C H_i(X, C_ρ) ≥ s}.
- These varieties are homotopy-type invariants of X, with $\mathcal{V}_s^1(X)$ depending only on $\pi = \pi_1(X)$.
- Set $\mathcal{V}_1^1(\pi) := \mathcal{V}_1^1(K(\pi, 1))$; then $\mathcal{V}_1^1(\pi) = \mathcal{V}_1(\pi/\pi'')$.

EXAMPLE

Let $f \in \mathbb{Z}[t_1^{\pm 1}, \ldots, t_n^{\pm 1}]$ be a Laurent polynomial, f(1) = 0. There is then a finitely presented group π with $\pi_{ab} = \mathbb{Z}^n$ such that $\mathcal{V}_1^1(\pi) = \mathcal{V}(f)$.

TANGENT CONES

- Let exp: H¹(X, C) → H¹(X, C*) be the coefficient homomorphism induced by C → C*, z ↦ e^z.
- Let W = V(I), a Zariski closed subset of $Char(G) = H^1(X, \mathbb{C}^*)$.
- The tangent cone at 1 to W is $TC_1(W) = V(in(I))$.
- The exponential tangent cone at 1 to W:

 $\tau_1(W) = \{ z \in H^1(X, \mathbb{C}) \mid \exp(\lambda z) \in W, \ \forall \lambda \in \mathbb{C} \}.$

- Both tangent cones are homogeneous subvarieties of $H^1(X, \mathbb{C})$; are non-empty iff $1 \in W$; depend only on the analytic germ of W at 1; commute with finite unions and arbitrary intersections.
- τ₁(W) ⊆ TC₁(W), with = if all irred components of W are subtori, but ≠ in general.
- (Dimca–Papadima–S. 2009) τ₁(W) is a finite union of rationally defined subspaces.

ALGEBRAIC MODELS FOR SPACES

- A CDGA map $\varphi: A \to B$ is a *quasi-isomorphism* if $\varphi^*: H^{\bullet}(A) \to H^{\bullet}(B)$ is an isomorphism.
- φ is a q-quasi-isomorphism (for some q ≥ 1) if φ* is an isomorphism in degrees ≤ q and is injective in degree q + 1.
- Two CDGAS, *A* and *B*, are (*q*-) equivalent if there is a zig-zag of (*q*-) quasi-isomorphisms connecting *A* to *B*.
- A is formal (or just q-formal) if it is (q-) equivalent to $(H^{\bullet}(A), d = 0)$.
- A CDGA is *q*-minimal if it is of the form (∧ V, d), where the differential structure is the inductive limit of a sequence of Hirsch extensions of increasing degrees, and Vⁱ = 0 for i > q.
- Every CDGA A with $H^0(A) = \Bbbk$ admits a *q*-minimal model, $\mathcal{M}_q(A)$ (i.e., a *q*-equivalence $\mathcal{M}_q(A) \to A$ with $\mathcal{M}_q(A) = (\bigwedge V, d)$ a *q*-minimal cdga), unique up to iso.

- Given any (path-connected) space X, there is an associated Sullivan Q-cdga, A_{PL}(X), such that H[•](A_{PL}(X)) = H[•](X, Q).
- An algebraic (q-)model (over k) for X is a k-cgda (A, d) which is
 (q-) equivalent to A_{PL}(X) ⊗_Q k.
- If *M* is a smooth manifold, then $\Omega_{dR}(M)$ is a model for *M* (over \mathbb{R}).
- Examples of spaces having finite-type models include:
 - Formal spaces (such as compact Kähler manifolds, hyperplane arrangement complements, toric spaces, etc).
 - Smooth quasi-projective varieties, compact solvmanifolds, Sasakian manifolds, etc.

THE TANGENT CONE THEOREM

Let X be a connected CW-complex with finite q-skeleton. Suppose X admits a q-finite q-model A.

THEOREM

For all $i \leq q$ and all s:

- (DPS 2009, Dimca–Papadima 2014) $\mathcal{V}_{s}^{i}(X)_{(1)} \cong \mathcal{R}_{s}^{i}(A)_{(0)}$.
- (Budur–Wang 2017) All the irreducible components of $\mathcal{V}_{s}^{i}(X)$ passing through the origin of $\operatorname{Char}(X)$ are algebraic subtori.

Consequently,

$$\tau_1(\mathcal{V}_{\boldsymbol{s}}^i(\boldsymbol{X})) = \mathsf{TC}_1(\mathcal{V}_{\boldsymbol{s}}^i(\boldsymbol{X})) = \mathcal{R}_{\boldsymbol{s}}^i(\boldsymbol{A}).$$

THEOREM (PAPADIMA–S. 2017)

A f.g. group G admits a 1-finite 1-model if and only if the Malcev Lie algebra $\mathfrak{m}(G)$ is the LCS completion of a finitely presented Lie algebra.

INFINITESIMAL FINITENESS OBSTRUCTIONS

THEOREM

Let X be a connected CW-complex with finite q-skeleton. Suppose X admits a q-finite q-model A. Then, for all $i \leq q$ and all s,

- (Dimca–Papadima 2014) $\mathcal{V}_{s}^{i}(X)_{(1)} \cong \mathcal{R}_{s}^{i}(A)_{(0)}$. In particular, if X is q-formal, then $\mathcal{V}_{s}^{i}(X)_{(1)} \cong \mathcal{R}_{s}^{i}(X)_{(0)}$.
- (Macinic, Papadima, Popescu, S. 2017) $TC_0(\mathcal{R}_s^i(A)) \subseteq \mathcal{R}_s^i(X)$.
- (Budur–Wang 2017) All the irreducible components of $\mathcal{V}_s^i(X)$ passing through the origin of $H^1(X, \mathbb{C}^*)$ are algebraic subtori.

EXAMPLE

Let *G* be a f.p. group with $G_{ab} = \mathbb{Z}^n$ and $\mathcal{V}_1^1(G) = \{t \in (\mathbb{C}^*)^n \mid \sum_{i=1}^n t_i = n\}$. Then *G* admits no 1-finite 1-model.

THEOREM (PAPADIMA–S. 2017)

Suppose X is (q + 1) finite, or X admits a q-finite q-model. Then $b_i(\mathcal{M}_q(X)) < \infty$, for all $i \leq q + 1$.

COROLLARY

Let G be a f.g. group. Assume that either G is finitely presented, or G has a 1-finite 1-model. Then $b_2(\mathcal{M}_1(G)) < \infty$.

EXAMPLE

- Consider the free metabelian group $G = F_n / F''_n$ with $n \ge 2$.
- We have $\mathcal{V}^1(G) = \mathcal{V}^1(F_n) = (\mathbb{C}^*)^n$, and so *G* passes the Budur–Wang test.
- But b₂(M₁(G)) = ∞, and so G admits no 1-finite 1-model (and is not finitely presented).

Bounding the Σ and Ω -invariants

Let $\mathcal{V}^i(\mathbf{X}) = \bigcup_{j \leq i} \mathcal{V}^i_1(\mathbf{X}).$

THEOREM (PAPADIMA-S. 2010)

 $\Sigma^{i}(X,\mathbb{Z}) \subseteq \mathcal{S}(X) \setminus \mathcal{S}(\tau_{1}^{\mathbb{R}}(\mathcal{V}^{i}(X)).$

EXAMPLE (KOBAN-MCCAMMOND-MEIER 2015)

 $\Sigma^{1}(\boldsymbol{P}_{n}) = \mathcal{R}^{1}(\boldsymbol{P}_{n}, \mathbb{R})^{\complement}.$

Given a homogeneous variety $V \subset \mathbb{k}^n$, the set $\sigma_r(V) = \{P \in Gr_r(\mathbb{k}^n) \mid P \cap V \neq \{0\}\}$ is Zariski closed.

THEOREM (S. 2012/2014)

 $\Omega^{i}_{r}(X) \subseteq \operatorname{Gr}_{r}(H^{1}(X, \mathbb{Q})) \setminus \sigma_{r}(\tau_{1}^{\mathbb{Q}}(\mathcal{V}^{i}(X))).$

If the upper bound for the Σ -invariants is attained, then the upper bound for the Ω -invariants is also attained.

RESONANCE VARIETIES OF PD-ALGEBRAS

- Let A be a PD_n algebra.
- For all $0 \le i \le n$ and all $a \in A^1$, the square

$$(\mathbf{A}^{n-i})^* \xrightarrow{(\delta_a^{n-i-1})^*} (\mathbf{A}^{n-i-1})^*$$

$$\mathsf{PD} \stackrel{\cong}{\cong} \mathsf{PD} \stackrel{\cong}{\cong} \mathsf{PD} \stackrel{\cong}{\cong} \mathsf{A}^i \xrightarrow{\delta_a^i} \mathsf{A}^{i+1}$$

commutes up to a sign of $(-1)^i$.

Consequently,

$$\left(H^{i}(\boldsymbol{A},\delta_{\boldsymbol{a}})\right)^{*}\cong H^{n-i}(\boldsymbol{A},\delta_{-\boldsymbol{a}}).$$

Hence, for all *i* and *s*,

$$\mathcal{R}^i_{s}(A) = \mathcal{R}^{n-i}_{s}(A).$$

• In particular, $\mathcal{R}_1^n(A) = \{0\}$.

3-DIMENSIONAL POINCARÉ DUALITY ALGEBRAS

- Let *A* be a PD₃-algebra with $b_1(A) = n > 0$. Then
 - $\mathcal{R}^3_1(A) = \mathcal{R}^0_1(A) = \{0\}.$
 - $\mathcal{R}^2_s(A) = \mathcal{R}^1_s(A)$ for $1 \leq s \leq n$.
 - $\mathcal{R}_{s}^{i}(A) = \emptyset$, otherwise.
- Write $\mathcal{R}_{s}(A) = \mathcal{R}_{s}^{1}(A)$. Then
 - $\mathcal{R}_{2k}(A) = \mathcal{R}_{2k+1}(A)$ if *n* is even. • $\mathcal{R}_{2k-1}(A) = \mathcal{R}_{2k}(A)$ if *n* is odd.
- If μ_A has rank $n \ge 3$, then $\mathcal{R}_{n-2}(A) = \mathcal{R}_{n-1}(A) = \mathcal{R}_n(A) = \{0\}$.
- If $n \ge 4$, and $\Bbbk = \overline{\Bbbk}$, then dim $\mathcal{R}_1(A) \ge \operatorname{null}(\mu_A) \ge 2$.
- If *n* is even, then $\mathcal{R}_1(A) = \mathcal{R}_0(A) = A^1$.
- If n = 2g + 1 > 1, then $\mathcal{R}_1(A) \neq A^1$ if and only if μ_A is "generic", i.e., $\exists c \in A^1$ such that the 2-form $\gamma_c \in \bigwedge^2 A_1$, $\gamma_c(a \land b) = \mu_A(a \land b \land c)$, has maximal rank, i.e., $\gamma_c^g \neq 0$ in $\bigwedge^{2g} A_1$.

THEOREM (S. 2018)

Suppose rank $\gamma_c > 2$, for all non-zero $c \in A^1$. Then:

- If n is odd, then R¹₁(A) is a hypersurface of degree (n − 3)/2 which is smooth if n ≤ 7, and singular in codimension 5 if n ≥ 9.
- If *n* is even, then $\mathcal{R}_2^1(A)$ is a subvariety of codimension 3 and degree $\frac{1}{4}\binom{n-1}{3} + 1$, which is smooth if $n \leq 10$, and is singular in codimension 7 if $n \geq 12$.

THEOREM (S. 2019)

Let M be a closed, orientable, 3-dimensional manifold.

• If *n* is odd and μ_M is generic, then $TC_1(\mathcal{V}_1^1(M)) = \mathcal{R}_1^1(M)$.

• If *n* is even, then $TC_1(\mathcal{V}_1^1(M)) = \mathcal{R}_1^1(M)$ if and only if $\Delta_M = 0$.

RESONANCE VARIETIES OF 3-FORMS OF LOW RANK

				<i>n</i> 3	μ 12	R1 3 0	n 5	μ 125+345	$\mathcal{R}_1 = \mathcal{R}_2$ $\{x_5 = 0\}$	R3 0			
$ \begin{array}{c cccc} n & \mu \\ 6 & 123+4 \\ & 123+236 \end{array} $				u +456 36+45	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				<i>x</i> ₆ = 0}	R4 0 0			
Γ	n µ					$\mathcal{R}_1 = 1$	\mathcal{R}_2		$\mathcal{R}_3 = \mathcal{R}_4$				
	7	147+257+367				$\{x_7 =$	0}		$\{x_7 = 0\}$				
	456+147+257+367				{ <i>x</i> ₇ =	0}		$\{x_4 = x_5 = x_6 = x_7 = 0\}$					
		123+456+147			{-	$x_1 = 0\} \cup $	$\{x_4 = 0\}$	$\{x_1 = x\}$	$\{x_1 = x_2 = x_3 = x_4 = 0\} \cup \{x_1 = x_4 = x_5 = x_6 = 0\}$				
		123+456+147+257				$\{x_1x_4 + x_2\}$	$x_5 = 0$		$\{x_1 = x_2 = x_4 = x_5 = x_7^2 - x_3 x_6 = 0\}$				0
	123+456+147+257+367			$\{x_1x$	$x_4 + x_2 x_5 + $	$x_3 x_6 = x_7^2$		0				0	
n		μ				$\mathcal{R}_2 = \mathcal{R}_3$				$\mathcal{R}_4 = \mathcal{R}_5$			
8		147+257+367+358				$\{x_7 = 0\}$			$\{x_3 = x_5\}$	$\{x_3 = x_5 = x_7 = x_8 = 0\} \cup \{x_1 = x_3 = x_4 = x_5 = x_7 = 0\}$			
		456+147+257+367+358				$\{x_5 = x_7 = 0\}$			{ <i>x</i> }	$\{x_3 = x_4 = x_5 = x_7 = x_1 x_8 + x_6^2 = 0\}$			
		123+456+147+358				$\{x_1 = x_5 = 0\} \cup \{x_3 = x_4 = 0\}$			{ <i>x</i> ₁	$\{x_1 = x_3 = x_4 = x_5 = x_2x_6 + x_7x_8 = 0\}$			
		123+456+147+257+358				$\{x_1 = x_5 = 0\} \cup \{x_3 = x_4 = x_5 = 0\}$			0} {	$\{x_1 = x_2 = x_3 = x_4 = x_5 = x_7 = 0\}$			
		123+456+147+257+367+358				$\{x_3 = x_5 = x_1x_4 - x_7^2 = 0\}$			{ <i>x</i> ₁	$\{x_1 = x_2 = x_3 = x_4 = x_5 = x_6 = x_7 = 0\}$			
		147+268+358				$\{x_1 = x_4 = x_7 = 0\} \cup \{x_8 = 0\}$			$\{x_1 = x_4\}$	$= x_7 = x_8$	$=0\}\cup\{x_2$	$=x_3=x_5=x_5=x_5=x_5=x_5=x_5=x_5=x_5=x_5=x_5$	$_{6} = x_{8} = 0$
		147+257+268+358			C°	$L_1 \cup L_2 \cup L_3$				$L_1 \cup L_2$			
		456+147+257+268+358			Co	$C_1 \cup C_2$				$L_1 \cup L_2$			
		147+257+367+268+358				$L_1 \cup L_2 \cup L_3 \cup L_4$				$L_1' \cup L_2' \cup L_3'$			
	-	456+147+257+367+268+358				$C_1 \cup C_2 \cup C_3$				$L_1 \cup L_2 \cup L_3$			
		123+456+147+268+358				$C_1 \cup C_2$				L			
	1.0	123+430+147+257+268+358				$\{r_1 = \dots = r_{20} = 0\}$				0			
L	12	123+430+147+257+367+268+358				$\{g_1 = \cdots = g_{20} = 0\}$					0		

ALEX SUCIU (NORTHEASTERN)

DUALITY, FINITENESS, AND JUMP LOCI

CI NOTRE DAME COLLOQUIUM 31 / 32

REFERENCES

- G. Denham, A.I. Suciu, and S. Yuzvinsky, *Abelian duality and propagation of resonance*, Selecta Math. 23 (2017), no. 4, 2331–2367.
- G. Denham and A.I. Suciu, Local systems on arrangements of smooth, complex algebraic hypersurfaces, Forum of Mathematics, Sigma 6 (2018), e6, 20 pages.
- S. Papadima and A.I. Suciu, *Infinitesimal finiteness obstructions*, J. London Math. Soc. **99** (2019), no. 1, 173–193.
- A.I. Suciu, Poincaré duality and resonance varieties, arXiv:1809.01801.

