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DUALITY NOTIONS

POINCARÉ DUALITY

Let M be a compact, connected, orientable, n-dimensional
manifold.

Fix an orientation class [M ] P Hn(M,Z) – Z.

Let A = H.(M,k) be the cohomology ring of M with coefficients in
a field k.

The Poincaré duality theorem implies that A is a Poincaré duality
algebra of dimension n, with orientation ε : An Ñ k given by

[M ]b k P Hn(M, k) – Homk(Hn(M, k), k).
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DUALITY NOTIONS POINCARÉ DUALITY ALGEBRAS

POINCARÉ DUALITY ALGEBRAS

Let A be a graded, graded-commutative algebra over a field k.
A =

À

iě0 Ai , where Ai are k-vector spaces.
¨ : Ai bAj Ñ Ai+j .
ab = (´1)ijba for all a P Ai , b P Aj .

We will assume that A is connected (A0 = k ¨ 1), and locally finite
(all the Betti numbers bi(A) := dimk Ai are finite).

A is a Poincaré duality k-algebra of dimension n if there is a
k-linear map ε : An Ñ k (called an orientation) such that all the
bilinear forms Ai bk An´i Ñ k, ab b ÞÑ ε(ab) are non-singular.
Consequently,

bi (A) = bn´i (A), and Ai = 0 for i ą n.
ε is an isomorphism.
The maps PD : Ai Ñ (An´i )˚, PD(a)(b) = ε(ab) are isomorphisms.
Each a P Ai has a Poincaré dual, a_ P An´i , such that ε(aa_) = 1.
The orientation class is defined as ωA = 1_, so that ε(ωA) = 1.
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DUALITY NOTIONS POINCARÉ DUALITY ALGEBRAS

THE ASSOCIATED ALTERNATING FORM

Associated to a k-PDn algebra there is an alternating n-form,

µA :
ŹnA1 Ñ k, µA(a1 ^ ¨ ¨ ¨ ^ an) = ε(a1 ¨ ¨ ¨ an).

Assume now that n = 3, and set r = b1(A). Fix a basis
te1, . . . ,eru for A1, and let te_1 , . . . ,e_r u be the dual basis for A2.

The multiplication in A, then, is given on basis elements by

eiej =
r
ÿ

k=1

µijk e_k , eie_j = δij ω,

where µijk = µ(ei ^ ej ^ ek ).

Alternatively, let Ai = (Ai)˚, and let ei P A1 be the (Kronecker)
dual of ei . We may then view µ dually as a trivector,

µ =
ÿ

µijk ei ^ ej ^ ek P
Ź3A1,

which encodes the algebra structure of A.
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DUALITY NOTIONS POINCARÉ DUALITY ALGEBRAS

POINCARÉ DUALITY IN 3-MANIFOLDS

Sullivan (1975): for every finite-dimensional Q-vector space V and
every alternating 3-form µ P

Ź3V ˚, there is a closed 3-manifold M
with H1(M,Q) = V and cup-product form µM = µ.

Such a 3-manifold can be constructed via “Borromean surgery."

For instance, 0-surgery on the Borromean rings yields the 3-torus,
whose intersection form is µ = e1e2e3.

If M bounds an oriented 4-manifold W such that the cup-product
pairing on H2(W ,M) is non-degenerate (e.g., if M is the link of an
isolated surface singularity), then µM = 0.
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DUALITY NOTIONS DUALITY SPACES

DUALITY SPACES

A more general notion of duality is due to Bieri and Eckmann (1978).

Let X be a connected, finite-type CW-complex, and set π = π1(X , x0).

X is a duality space of dimension n if H i(X ,Zπ) = 0 for i ‰ n and
Hn(X ,Zπ) ‰ 0 and torsion-free.

Let D = Hn(X ,Zπ) be the dualizing Zπ-module. Given any
Zπ-module A, we have H i(X ,A) – Hn´i(X ,D bA).

If D = Z, with trivial Zπ-action, then X is a Poincaré duality
space.

If X = K (π,1) is a duality space, then π is a duality group.
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DUALITY NOTIONS ABELIAN DUALITY SPACES

ABELIAN DUALITY SPACES

We introduce in [Denham–S.–Yuzvinsky 2016/17] an analogous
notion, by replacing π  πab.

X is an abelian duality space of dimension n if H i(X ,Zπab) = 0
for i ‰ n and Hn(X ,Zπab) ‰ 0 and torsion-free.

Let B = Hn(X ,Zπab) be the dualizing Zπab-module. Given any
Zπab-module A, we have H i(X ,A) – Hn´i(X ,B bA).

The two notions of duality are independent:

EXAMPLE

Surface groups of genus at least 2 are not abelian duality groups,
though they are (Poincaré) duality groups.

Let π = Z2 ˚G, where
G = xx1, . . . , x4 | x´2

1 x2x1x´1
2 , . . . , x´2

4 x1x4x´1
1 y

is Higman’s acyclic group. Then π is an abelian duality group (of
dimension 2), but not a duality group.
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DUALITY NOTIONS ARRANGEMENTS OF SMOOTH HYPERSURFACES

THEOREM (DSY)

Let X be an abelian duality space of dimension n. Then:
b1(X ) ě n´ 1.
bi(X ) ‰ 0, for 0 ď i ď n and bi(X ) = 0 for i ą n.
(´1)nχ(X ) ě 0.
Let ρ : π1(X )Ñ C˚ be a character such that H i(X ,Cρ) ‰ 0, for
some i ą 0. Then H j(X ,Cρ) ‰ 0, for all i ď j ď n.

THEOREM (DENHAM–S. 2018)

Let U be a connected, smooth, complex quasi-projective variety of
dimension n. Suppose U has a smooth compactification Y for which

1 Components of Y zU form an arrangement of hypersurfaces A;
2 For each submanifold X in the intersection poset L(A), the

complement of the restriction of A to X is a Stein manifold.
Then U is both a duality space and an abelian duality space of
dimension n.
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DUALITY NOTIONS ARRANGEMENTS OF SMOOTH HYPERSURFACES

LINEAR, ELLIPTIC, AND TORIC ARRANGEMENTS

THEOREM (DENHAM–S. 2018)

Suppose that A is one of the following:

1 An affine-linear arrangement in Cn, or a hyperplane arrangement
in CPn;

2 A non-empty elliptic arrangement in En;

3 A toric arrangement in (C˚)n.
Then the complement M(A) is both a duality space and an abelian
duality space of dimension n´ r , n + r , and n, respectively, where r is
the corank of the arrangement.

This theorem extends several previous results:
1 Davis, Januszkiewicz, Leary, and Okun (2011);
2 Levin and Varchenko (2012);
3 Davis and Settepanella (2013), Esterov and Takeuchi (2018).
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FINITENESS PROPERTIES FINITENESS PROPERTIES FOR SPACES AND GROUPS

FINITENESS PROPERTIES FOR SPACES AND GROUPS

A recurring theme in topology is to determine the geometric and
homological finiteness properties of spaces and groups.

For instance, to decide whether a path-connected space X is
homotopy equivalent to a CW-complex with finite k -skeleton.
A group G has property Fk if it admits a classifying space K (G,1)
with finite k -skeleton.

F1: G is finitely generated;
F2: G is finitely presentable.

G has property FPk if the trivial ZG-module Z admits a projective
ZG-resolution which is finitely generated in all dimensions up to k .

The following implications (none of which can be reversed) hold:

G is of type Fk ñ G is of type FPk

ñ Hi(G,Z) is finitely generated, for all i ď k
ñ bi(G) ă 8, for all i ď k .

Moreover, FPk &F2 ñ Fk .
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FINITENESS PROPERTIES BIERI–NEUMANN–STREBEL–RENZ INVARIANTS

BIERI–NEUMANN–STREBEL–RENZ INVARIANTS

(Bieri–Neumann–Strebel 1987) For a f.g. group G, let

Σ1(G) = tχ P S(G) | Cχ(G) is connectedu,

where S(G) = (Hom(G,R)zt0u)/R+ and Cχ(G) is the induced
subgraph of Cay(G) on vertex set Gχ = tg P G | χ(g) ě 0u.

Σ1(G) is an open set, independent of generating set for G.

(Bieri, Renz 1988)

Σk (G,Z) =
 

χ P S(G) | the monoid Gχ is of type FPk
(

.

In particular, Σ1(G,Z) = Σ1(G).

The Σ-invariants control the finiteness properties of normal
subgroups N ŸG for which G/N is free abelian:

N is of type FPk ðñ S(G,N) Ď Σk (G,Z)

where S(G,N) = tχ P S(G) | χ(N) = 0u. In particular:
ker(χ : G� Z) is f.g. ðñ t˘χu Ď Σ1(G).
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FINITENESS PROPERTIES BIERI–NEUMANN–STREBEL–RENZ INVARIANTS

Fix a connected CW-complex X with finite k -skeleton, for some
k ě 1. Let G = π1(X , x0).

For each χ P S(X ) := S(G), set

yZGχ =
!

λ P ZG | tg P suppλ | χ(g) ă cu is finite, @c P R
)

.

This is a ring, contains ZG as a subring; hence, a ZG-module.

(Farber, Geoghegan, Schütz 2010)

Σq(X ,Z) := tχ P S(X ) | Hi(X , yZG´χ) = 0, @ i ď qu.

(Bieri) G is of type FPk ùñ Σq(G,Z) = Σq(K (G,1),Z), @q ď k .
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FINITENESS PROPERTIES DWYER–FRIED SETS

DWYER–FRIED SETS

For a fixed r P N, the connected, regular covers Y Ñ X with
group of deck-transformations Zr are parametrized by the
Grassmannian of r -planes in H1(X ,Q).

Moving about this variety, and recording when b1(Y ), . . . ,bi(Y )
are finite defines subsets Ωi

r (X ) Ď Grr (H1(X ,Q)), which we call
the Dwyer–Fried invariants of X .

These sets depend only on the homotopy type of X . Hence, if G is
a f.g. group, we may define Ωi

r (G) := Ωi
r (K (G,1)).

THEOREM

Let G be a f.g. group, and ν : G� Zr an epimorphism, with kernel Γ.
Suppose Ωk

r (G) = H, and Γ is of type Fk´1. Then bk (Γ) = 8.

Proof: Set X = K (G,1); then X ν = K (Γ,1). Since Γ is of type Fk´1,
bi(X ν) ă 8 for i ď k ´ 1. But now Ωk

r (X ) = H implies bk (X ν) = 8.
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FINITENESS PROPERTIES DWYER–FRIED SETS

COROLLARY

Let G be a f.g. group, and suppose Ω3
1(G) = H. Let ν : G� Z be an

epimorphism. If the group Γ = ker(ν) is f.p., then b3(Γ) = 8.

EXAMPLE (THE STALLINGS GROUP)

Let Y = S1 _S1 and X = Y ˆY ˆY . Clearly, X is a classifying
space for G = F2 ˆ F2 ˆ F2.

Let ν : G Ñ Z be the homomorphism taking each standard
generator to 1. Set Γ = ker(ν).

Stallings (1963) showed that Γ is finitely presented.

Using a Mayer-Vietoris argument, he also showed that H3(Γ,Z) is
not finitely generated.

Alternate explanation: Ω3
1(X ) = H. Thus, by the previous

Corollary, a stronger statement holds: b3(Γ) is not finite.
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FINITENESS PROPERTIES KOLLÁR’S QUESTION

KOLLÁR’S QUESTION

QUESTION (J. KOLLÁR 1995)

Given a smooth, projective variety M, is the fundamental group
G = π1(M) commensurable, up to finite kernels, with another group,
π, admitting a K (π,1) which is a quasi-projective variety?

(Two groups, G1 and G2, are said to be commensurable up to finite
kernels if there is a zig-zag of groups and homomorphisms connecting
them, with all arrows of finite kernel and cofinite image.)

THEOREM (DIMCA–PAPADIMA–S. 2009)
For each k ě 3, there is a smooth, irreducible, complex projective
variety M of complex dimension k ´ 1, such that π1(M) is of type Fk´1,
but not of type FPk .

Further examples given by Llosa Isenrich and Bridson (2016–2019).
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JUMP LOCI SUPPORT LOCI

SUPPORT LOCI

Let k be an (algebraically closed) field.

Let S be a commutative, finitely generated k-algebra.

Let Spec(S) = Homk-alg(S, k) be the maximal spectrum of S.

Let E : ¨ ¨ ¨ // Ei
di // Ei´1 // ¨ ¨ ¨ // E0 // 0 be an S-chain complex.

The support varieties of E are the subsets of Spec(S) given by

W i
d (E) = supp

( d
ľ

Hi(E)
)
.

They depend only on the chain-homotopy equivalence class of E .

For each i ě 0, Spec(S) = W i
0(E) ĚW i

1(E) ĚW i
2(E) Ě ¨ ¨ ¨ .

If all Ei are finitely generated S-modules, then the sets W i
d (E) are

Zariski closed subsets of Spec(S).
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JUMP LOCI HOMOLOGY JUMP LOCI

HOMOLOGY JUMP LOCI

The homology jump loci of the S-chain complex E are defined as

V i
d (E) = tm P Spec(S) | dimS/m Hi(E bS S/m) ě du.

They depend only on the chain-homotopy equivalence class of E .

Get stratifications Spec(S) = V i
0(E) Ě V i

1(E) Ě V i
2(E) Ě ¨ ¨ ¨ .

THEOREM (PAPADIMA–S. 2014)

Suppose E is a chain complex of free, finitely generated S-modules.
Then:

Each V i
d (E) is a Zariski closed subset of Spec(S).

For each q,
ď

iďq

V i
1(E) =

ď

iďq

W i
1(E).
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JUMP LOCI RESONANCE VARIETIES OF A CDGA

RESONANCE VARIETIES OF A CDGA

Let A = (A‚, d) be a commutative, differential graded algebra over
a field k of characteristic 0. That is:

A =
À

iě0 Ai , where Ai are k-vector spaces.
The multiplication ¨ : Ai bAj Ñ Ai+j is graded-commutative, i.e.,
ab = (´1)|a||b|ba for all homogeneous a and b.
The differential d : Ai Ñ Ai+1 satisfies the graded Leibnitz rule, i.e.,
d(ab) = d(a)b + (´1)|a|a d(b).

We assume A is connected (i.e., A0 = k ¨ 1) and of finite-type (i.e.,
dimAi ă 8 for all i).

For each a P Z 1(A) – H1(A), we have a cochain complex,

(A‚, δa) : A0 δ0
a // A1 δ1

a // A2 δ2
a // ¨ ¨ ¨ ,

with differentials δi
a(u) = a ¨ u + d(u), for all u P Ai .

The resonance varieties of A are the affine varieties
Ri

s(A) = ta P H1(A) | dimk H i(A‚, δa) ě su.
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JUMP LOCI RESONANCE VARIETIES OF A CDGA

Fix a k-basis te1, . . . ,eru for A1, and let tx1, . . . , xru be the dual
basis for A1 = (A1)˚.

Identify Sym(A1) with S = k[x1, . . . , xr ], the coordinate ring of the
affine space A1.

Build a cochain complex of free S-modules, L(A) := (A‚ bS, δ):

¨ ¨ ¨ // Ai bS δi
// Ai+1 bS δi+1

// Ai+2 bS // ¨ ¨ ¨ ,

where δi(u b f ) =
řr

j=1 eju b f xj + du b f .

The specialization of (AbS, δ) at a P Z 1(A) is (A, δa).

Hence, Ri
s(A) is the zero-set of the ideal generated by all minors

of size bi(A)´ s + 1 of the block-matrix δi+1 ‘ δi .
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JUMP LOCI CHARACTERISTIC VARIETIES

CHARACTERISTIC VARIETIES

Let X be a connected, finite-type CW-complex. Then
π = π1(X , x0) is a finitely presented group, with πab – H1(X ,Z).

The ring R = C[πab] is the coordinate ring of the character group,
Char(X ) = Hom(π,C˚) – (C˚)r ˆTors(πab), where r = b1(X ).

The characteristic varieties of X are the homology jump loci

V i
s(X ) = tρ P Char(X ) | dimC Hi(X ,Cρ) ě su.

These varieties are homotopy-type invariants of X , with V1
s (X )

depending only on π = π1(X ).

Set V1
1 (π) := V1

1 (K (π,1)); then V1
1 (π) = V1(π/π2).

EXAMPLE

Let f P Z[t˘1
1 , . . . , t˘1

n ] be a Laurent polynomial, f (1) = 0. There is then
a finitely presented group π with πab = Zn such that V1

1 (π) = V (f ).
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JUMP LOCI THE TANGENT CONE THEOREM

TANGENT CONES

Let exp : H1(X ,C)Ñ H1(X ,C˚) be the coefficient homomorphism
induced by C Ñ C˚, z ÞÑ ez .

Let W = V (I), a Zariski closed subset of Char(G) = H1(X ,C˚).

The tangent cone at 1 to W is TC1(W ) = V (in(I)).

The exponential tangent cone at 1 to W :

τ1(W ) = tz P H1(X ,C) | exp(λz) P W , @λ P Cu.

Both tangent cones are homogeneous subvarieties of H1(X ,C);
are non-empty iff 1 P W ; depend only on the analytic germ of W
at 1; commute with finite unions and arbitrary intersections.
τ1(W ) Ď TC1(W ), with = if all irred components of W are subtori,
but ‰ in general.
(Dimca–Papadima–S. 2009) τ1(W ) is a finite union of rationally
defined subspaces.
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JUMP LOCI ALGEBRAIC MODELS FOR SPACES

ALGEBRAIC MODELS FOR SPACES

A CDGA map ϕ : A Ñ B is a quasi-isomorphism if
ϕ˚ : H.(A)Ñ H.(B) is an isomorphism.

ϕ is a q-quasi-isomorphism (for some q ě 1) if ϕ˚ is an
isomorphism in degrees ď q and is injective in degree q + 1.

Two CDGAs, A and B, are (q-) equivalent if there is a zig-zag of
(q-) quasi-isomorphisms connecting A to B.

A is formal (or just q-formal) if it is (q-) equivalent to
(H‚(A),d = 0).

A CDGA is q-minimal if it is of the form (
Ź

V ,d), where the
differential structure is the inductive limit of a sequence of Hirsch
extensions of increasing degrees, and V i = 0 for i ą q.

Every CDGA A with H0(A) = k admits a q-minimal model, Mq(A)
(i.e., a q-equivalence Mq(A)Ñ A with Mq(A) = (

Ź

V ,d) a
q-minimal cdga), unique up to iso.
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JUMP LOCI ALGEBRAIC MODELS FOR SPACES

Given any (path-connected) space X , there is an associated
Sullivan Q-cdga, APL(X ), such that H‚(APL(X )) = H‚(X ,Q).

An algebraic (q-)model (over k) for X is a k-cgda (A,d) which is
(q-) equivalent to APL(X )bQ k.

If M is a smooth manifold, then ΩdR(M) is a model for M (over R).

Examples of spaces having finite-type models include:

Formal spaces (such as compact Kähler manifolds, hyperplane
arrangement complements, toric spaces, etc).
Smooth quasi-projective varieties, compact solvmanifolds,
Sasakian manifolds, etc.
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JUMP LOCI ALGEBRAIC MODELS FOR SPACES

THE TANGENT CONE THEOREM

Let X be a connected CW-complex with finite q-skeleton. Suppose X
admits a q-finite q-model A.

THEOREM

For all i ď q and all s:
(DPS 2009, Dimca–Papadima 2014) V i

s(X )(1) – Ri
s(A)(0).

(Budur–Wang 2017) All the irreducible components of V i
s(X )

passing through the origin of Char(X ) are algebraic subtori.

Consequently,

τ1(V i
s(X )) = TC1(V i

s(X )) = Ri
s(A).

THEOREM (PAPADIMA–S. 2017)

A f.g. group G admits a 1-finite 1-model if and only if the Malcev Lie
algebra m(G) is the LCS completion of a finitely presented Lie algebra.

ALEX SUCIU (NORTHEASTERN) DUALITY, FINITENESS, AND JUMP LOCI NOTRE DAME COLLOQUIUM 24 / 32



JUMP LOCI INFINITESIMAL FINITENESS OBSTRUCTIONS

INFINITESIMAL FINITENESS OBSTRUCTIONS

THEOREM

Let X be a connected CW-complex with finite q-skeleton. Suppose X
admits a q-finite q-model A. Then, for all i ď q and all s,

(Dimca–Papadima 2014) V i
s(X )(1) – Ri

s(A)(0).
In particular, if X is q-formal, then V i

s(X )(1) – Ri
s(X )(0).

(Macinic, Papadima, Popescu, S. 2017) TC0(Ri
s(A)) Ď Ri

s(X ).
(Budur–Wang 2017) All the irreducible components of V i

s(X )
passing through the origin of H1(X ,C˚) are algebraic subtori.

EXAMPLE

Let G be a f.p. group with Gab = Zn and V1
1 (G) = tt P (C˚)n |

řn
i=1 ti = nu. Then G admits no 1-finite 1-model.
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JUMP LOCI INFINITESIMAL FINITENESS OBSTRUCTIONS

THEOREM (PAPADIMA–S. 2017)

Suppose X is (q + 1) finite, or X admits a q-finite q-model. Then
bi(Mq(X )) ă 8, for all i ď q + 1.

COROLLARY

Let G be a f.g. group. Assume that either G is finitely presented, or G
has a 1-finite 1-model. Then b2(M1(G)) ă 8.

EXAMPLE

Consider the free metabelian group G = Fn / F2n with n ě 2.
We have V1(G) = V1(Fn) = (C˚)n, and so G passes the
Budur–Wang test.
But b2(M1(G)) = 8, and so G admits no 1-finite 1-model (and is
not finitely presented).
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JUMP LOCI BOUNDING THE Σ AND Ω-INVARIANTS

BOUNDING THE Σ AND Ω-INVARIANTS

Let V i(X ) =
Ť

jďi V i
1(X ).

THEOREM (PAPADIMA–S. 2010)

Σi(X ,Z) Ď S(X )zS(τR
1 (V i(X )).

EXAMPLE (KOBAN–MCCAMMOND–MEIER 2015)

Σ1(Pn) = R1(Pn,R)A.

Given a homogeneous variety V Ă kn, the set
σr (V ) =

 

P P Grr (kn)
ˇ

ˇP XV ‰ t0u
(

is Zariski closed.

THEOREM (S. 2012/2014)

Ωi
r (X ) Ď Grr (H1(X ,Q))zσr

(
τQ

1 (V i(X ))
)
.

If the upper bound for the Σ-invariants is attained, then the upper
bound for the Ω-invariants is also attained.
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JUMP LOCI BOUNDING THE Σ AND Ω-INVARIANTS

RESONANCE VARIETIES OF PD-ALGEBRAS

Let A be a PDn algebra.

For all 0 ď i ď n and all a P A1, the square

(An´i)˚
(δn´i´1

a )˚ // (An´i´1)˚

Ai δi
a //

PD –

OO

Ai+1

PD –

OO

commutes up to a sign of (´1)i .

Consequently, (
H i(A, δa)

)˚
– Hn´i(A, δ´a).

Hence, for all i and s,
Ri

s(A) = Rn´i
s (A).

In particular, Rn
1(A) = t0u.

ALEX SUCIU (NORTHEASTERN) DUALITY, FINITENESS, AND JUMP LOCI NOTRE DAME COLLOQUIUM 28 / 32



JUMP LOCI 3-DIMENSIONAL POINCARÉ DUALITY ALGEBRAS

3-DIMENSIONAL POINCARÉ DUALITY ALGEBRAS

Let A be a PD3-algebra with b1(A) = n ą 0. Then
R3

1(A) = R0
1(A) = t0u.

R2
s(A) = R1

s(A) for 1 ď s ď n.
Ri

s(A) = H, otherwise.

Write Rs(A) = R1
s(A). Then

R2k (A) = R2k+1(A) if n is even.
R2k´1(A) = R2k (A) if n is odd.

If µA has rank n ě 3, then Rn´2(A) = Rn´1(A) = Rn(A) = t0u.

If n ě 4, and k = k̄, then dimR1(A) ě null(µA) ě 2.

If n is even, then R1(A) = R0(A) = A1.

If n = 2g + 1 ą 1, then R1(A) ‰ A1 if and only if µA is “generic”,
i.e., Dc P A1 such that the 2-form γc P

Ź2 A1, γc(a^ b) =
µA(a^ b^ c), has maximal rank, i.e., γ

g
c ‰ 0 in

Ź2g A1.
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JUMP LOCI 3-DIMENSIONAL POINCARÉ DUALITY ALGEBRAS

THEOREM (S. 2018)

Suppose rankγc ą 2, for all non-zero c P A1. Then:
If n is odd, then R1

1(A) is a hypersurface of degree (n´ 3)/2
which is smooth if n ď 7, and singular in codimension 5 if n ě 9.
If n is even, then R1

2(A) is a subvariety of codimension 3 and
degree 1

4 (
n´1

3 ) + 1, which is smooth if n ď 10, and is singular in
codimension 7 if n ě 12.

THEOREM (S. 2019)

Let M be a closed, orientable, 3-dimensional manifold.
If n is odd and µM is generic, then TC1(V1

1 (M)) = R1
1(M).

If n is even, then TC1(V1
1 (M)) = R1

1(M) if and only if ∆M = 0.
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JUMP LOCI 3-DIMENSIONAL POINCARÉ DUALITY ALGEBRAS

RESONANCE VARIETIES OF 3-FORMS OF LOW RANK

n µ R1
3 123 0

n µ R1 = R2 R3
5 125+345 tx5 = 0u 0

n µ R1 R2 = R3 R4
6 123+456 C6 tx1 = x2 = x3 = 0uY tx4 = x5 = x6 = 0u 0

123+236+456 C6 tx3 = x5 = x6 = 0u 0

n µ R1 = R2 R3 = R4 R5
7 147+257+367 tx7 = 0u tx7 = 0u 0

456+147+257+367 tx7 = 0u tx4 = x5 = x6 = x7 = 0u 0
123+456+147 tx1 = 0uY tx4 = 0u tx1 = x2 = x3 = x4 = 0uY tx1 = x4 = x5 = x6 = 0u 0

123+456+147+257 tx1x4 + x2x5 = 0u tx1 = x2 = x4 = x5 = x2
7 ´ x3x6 = 0u 0

123+456+147+257+367 tx1x4 + x2x5 + x3x6 = x2
7 u 0 0

n µ R1 R2 = R3 R4 = R5 R6
8 147+257+367+358 C8 tx7 = 0u tx3 =x5 =x7 =x8 =0uYtx1 =x3 =x4 =x5 =x7 =0u 0

456+147+257+367+358 C8 tx5 = x7 = 0u tx3 = x4 = x5 = x7 = x1x8 + x2
6 = 0u 0

123+456+147+358 C8 tx1 = x5 = 0uY tx3 = x4 = 0u tx1 = x3 = x4 = x5 = x2x6 + x7x8 = 0u 0
123+456+147+257+358 C8 tx1 = x5 = 0uY tx3 = x4 = x5 = 0u tx1 = x2 = x3 = x4 = x5 = x7 = 0u 0

123+456+147+257+367+358 C8 tx3 = x5 = x1x4´ x2
7 = 0u tx1 = x2 = x3 = x4 = x5 = x6 = x7 = 0u 0

147+268+358 C8 tx1 = x4 = x7 = 0uY tx8 = 0u tx1 =x4 =x7 =x8 =0uYtx2 =x3 =x5 =x6 =x8 =0u 0
147+257+268+358 C8 L1Y L2Y L3 L1Y L2 0

456+147+257+268+358 C8 C1YC2 L1Y L2 0
147+257+367+268+358 C8 L1Y L2Y L3Y L4 L1

1Y L1
2Y L1

3 0
456+147+257+367+268+358 C8 C1YC2YC3 L1Y L2Y L3 0

123+456+147+268+358 C8 C1YC2 L 0
123+456+147+257+268+358 C8 tf1 = ¨ ¨ ¨ = f20 = 0u 0 0

123+456+147+257+367+268+358 C8 tg1 = ¨ ¨ ¨ = g20 = 0u 0 0

THEOREM (S. 2010)

Let M be a closed, orientable, 3-dimensional manifold. Suppose b1(M)
is odd and µM is generic. Then TC1(V1

1 (M)) = R1
1(M).
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