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Abelian Galois covers A parameter set for covers

Galois covers

Sample questions:

1 Given a (finite) CW-complex X , how to parametrize the Galois
covers of X with fixed deck-transformation group A?

2 Given an infinite Galois A-cover, Y → X , are the Betti numbers of
Y finite?

I If so, how to compute the Betti numbers of Y?
I Furthermore, do the Galois covers of Y have finite Betti numbers?

3 Do the Galois A-covers that have finite Betti numbers form an
open subspace of the parameter space?

4 Given a finite Galois A-cover, Y → X , how to compute the Betti
numbers of Y ?
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Abelian Galois covers A parameter set for covers

Let X be a connected CW-complex with finite 1-skeleton. We may
assume X has a single 0-cell, call it x0. Set G = π1(X , x0).

Any epimorphism ν : G� A gives rise to a (connected) Galois
cover, X ν → X , with group of deck transformations A.

Moreover, if α ∈ Aut(A), then Xα◦ν ∼= X ν (A-equivariant homeo).

Conversely, if p : (Y , y0)→ (X , x0) is a Galois A-cover, we get a
short exact sequence

1 // π1(Y , y0)
p] // π1(X , x0)

ν // A // 1 ,

and an A-equivariant homeomorphism Y ∼= X ν .

Thus, the set of Galois A-covers of X can be identified with

Epi(G,A)/Aut(A).
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Abelian Galois covers A parameter set for covers

Now assume A is a (finitely generated) Abelian group. Then
Hom(G,A)←→ Hom(H,A), where H = Gab.

Proposition (A.S.–Yang–Zhao)
There is a bijection

Epi(H,A)/Aut(A)←→ GLn(Z)×P Γ

where n = rank H, r = rank A, and
P is a parabolic subgroup of GLn(Z);
GLn(Z)/P = Grn−r (Zn);
Γ = Epi(Zn−r ⊕ Tors(H),Tors(A))/Aut(Tors(A))—a finite set;
GLn(Z)×P Γ is the twisted product under the diagonal P-action.
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Abelian Galois covers A parameter set for covers

Simplest situation is when A = Zr .
All Galois Zr -covers of X arise as pull-backs of the universal cover
of the r -torus:

X ν //

��

Rr

��
X f // T r ,

where f] : π1(X )→ π1(T r ) realizes the epimorphism ν : G� Zr .

Hence:{
Galois Zr -covers of X

}
←→

{
r -planes in H1(X ,Q)

}
X ν → X ←→ Pν

where Pν := im(ν∗ : H1(Zr ,Q)→ H1(X ,Q)).
Thus:

Epi(H,Zr )/Aut(Zr ) ∼= Grn−r (Zn) ∼= Grr (Qn).
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Abelian Galois covers The Dwyer–Fried sets

The Dwyer–Fried sets
Moving about the parameter space for A-covers, and recording how
the Betti numbers of those covers vary leads to:

Definition
The Dwyer–Fried invariants of X are the subsets

Ωi
A(X ) = {[ν] ∈ Epi(G,A)/Aut(A) | bj(X ν) <∞, for j ≤ i}.

where X ν → X is the cover corresponding to ν : G� A.

In particular, when A = Zr ,

Ωi
r (X ) =

{
Pν ∈ Grr (H1(X ,Q))

∣∣ bj(X ν) <∞ for j ≤ i
}
,

with the convention that Ωi
r (X ) = ∅ if r > n = b1(X ). For a fixed r > 0,

get filtration

Grr (Qn) = Ω0
r (X ) ⊇ Ω1

r (X ) ⊇ Ω2
r (X ) ⊇ · · · .

Alex Suciu (Northeastern Univ.) Abelian Galois covers and local systems Univ. de Nice, May 25, 2011 7 / 38



Abelian Galois covers The Dwyer–Fried sets

The Ω-sets are homotopy-type invariants: If X ' Y , then, for each
r > 0, there is an isomorphism Grr (H1(Y ,Q)) ∼= Grr (H1(X ,Q))
sending each subset Ωi

r (Y ) bijectively onto Ωi
r (X ).

Thus, we may extend the definition of the Ω-sets from spaces to
groups: Ωi

r (G) = Ωi
r (K (G,1)), and similarly for Ωi

A(X ).

Example

Let X = S1 ∨ Sk , for some k > 1. Then X ab '
∨

j∈Z Sk
j . Thus,

Ωi
1(X ) =

{
{pt} for i < k ,

∅ for i ≥ k .
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Abelian Galois covers The Dwyer–Fried sets

Comparison diagram

There is an commutative diagram,

Ωi
A(X ) �

� //

��

Epi(G,A)/Aut A ∼= GLn(Z)×P Γ

��
Ωi

r (X ) �
� // Grr (Qn)

If Ωi
r (X ) = ∅, then Ωi

A(X ) = ∅.

The above is a pull-back diagram if and only if:

If X ν is a Zr -cover with finite Betti numbers up to degree i , then
any regular Tors(A)-cover of X ν has the same finiteness property.
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Abelian Galois covers The Dwyer–Fried sets

Example

Let X = S1 ∨ RP2. Then G = Z ∗ Z2, Gab = Z⊕ Z2, Gfab = Z, and

X fab '
∨
j∈Z

RP2
j , X ab '

∨
j∈Z

S1
j ∨

∨
j∈Z

S2
j .

Thus, b1(X fab) = 0, yet b1(X ab) =∞.

Hence, Ω1
1(X ) 6= ∅, but Ω1

Z⊕Z2
(X ) = ∅.
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Characteristic varieties Jump loci for rank 1 local systems

Characteristic varieties

Group of complex-valued characters of G:

Ĝ = Hom(G,C×) = H1(X ,C×)

Let Gab = G/G′ ∼= H1(X ,Z) be the abelianization of G. The map
ab : G� Gab induces an isomorphism Ĝab

'−→ Ĝ.
Ĝ0 = (C×)n, an algebraic torus of dimension n = rank Gab.

Ĝ =
∐

Tors(Gab)(C×)n.

Ĝ parametrizes rank 1 local systems on X :

ρ : G→ C×  Cρ

the complex vector space C, viewed as a right module over the
group ring ZG via a · g = ρ(g)a, for g ∈ G and a ∈ C.
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Characteristic varieties Jump loci for rank 1 local systems

The homology groups of X with coefficients in Cρ are defined as

H∗(X ,Cρ) = H∗(Cρ ⊗ZG C•(X̃ ,Z)),

where C•(X̃ ,Z) is the ZG-equivariant cellular chain complex of the
universal cover of X .

Definition
The characteristic varieties of X are the sets

V i(X ) = {ρ ∈ Ĝ | Hj(X ,Cρ) 6= 0, for some j ≤ i}.

Get filtration {1} = V0(X ) ⊆ V1(X ) ⊆ · · · ⊆ Ĝ.
If X has finite k -skeleton, then V i(X ) is a Zariski closed subset of
the algebraic group Ĝ, for each i ≤ k .
The varieties V i(X ) are homotopy-type invariants of X .
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Characteristic varieties Jump loci for rank 1 local systems

The characteristic varieties may be reinterpreted as the support
varieties for the Alexander invariants of X .

Let X ab → X be the maximal abelian cover. View H∗(X ab,C) as a
module over C[Gab]. Then

V i(X ) = V
(

ann
(⊕

j≤i

Hj
(
X ab,C

)))
.

Let X fab → X be the max free abelian cover. View H∗(X fab,C) as a
module over C[Gfab] ∼= Z[t±1

1 , . . . , t±1
n ], where n = b1(G). Then

W i(X ) := V i(X ) ∩ Ĝ0 = V
(

ann
(⊕

j≤i

Hj
(
X fab,C

)))
.

Example

Let L = (L1, . . . ,Ln) be a link in S3, with complement X = S3 \
⋃n

i=1 Li
and Alexander polynomial ∆L = ∆L(t1, . . . , tn). Then

V1(X ) = {z ∈ (C×)n | ∆L(z) = 0} ∪ {1}.
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Characteristic varieties Jump loci for rank 1 local systems

The characteristic varieties

V i
j (X ,k) = {ρ ∈ Hom(π1(X ),k×) | dimk Hi(X ,kρ) ≥ j}

can be used to compute the homology of finite abelian Galois covers
(work of A. Libgober, E. Hironaka, P. Sarnak–S. Adams, M. Sakuma,
D. Matei–A. S. from the 1990s). E.g.:

Theorem (Matei–A.S. 2002)
Let ν : π1(X )� Zn. Suppose k̄ = k and chark - n, so that Zn ⊂ k×.
Then:

dimk H1(X ν ,k) = dimk H1(X , k) +
∑

1 6=k |n

ϕ(k) · depthk(νn/k ),

where depthk(ρ) = max{j | ρ ∈ V1
j (X ,k)}.
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Characteristic varieties Computing the Ω-invariants

Computing the Ω-invariants

Theorem (Dwyer–Fried 1987, Papadima–S. 2010)

Let X be a connected CW-complex with finite k-skeleton. For an
epimorphism ν : π1(X )� Zr , the following are equivalent:

1 The vector space
⊕k

i=0 Hi(X ν ,C) is finite-dimensional.

2 The algebraic torus Tν = im
(
ν̂ : Ẑr ↪→ π̂1(X )

)
intersects the

varietyWk (X ) in only finitely many points.

Let exp : H1(X ,C)→ H1(X ,C×) be the coefficient homomorphism
induced by the homomorphism C→ C×, z 7→ ez .

Under the isomorphism H1(X ,C×) ∼= π̂1(X ), we have

exp(Pν ⊗ C) = Tν .
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Characteristic varieties Computing the Ω-invariants

Thus, we may reinterpret the Ω-invariants, as follows:

Corollary

Ωi
r (X ) =

{
P ∈ Grr (H1(X ,Q))

∣∣ dim
(
exp(P ⊗ C) ∩W i(X )

)
= 0

}
.

More generally, for any abelian group A:

Theorem ([SYZ])

Ωi
A(X ) =

{
[ν] ∈ Epi(H,A)/Aut(A) | im(ν̂) ∩ V i(X ) is finite

}
.
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Characteristic varieties Computing the Ω-invariants

Characteristic subspace arrangements
Set n = b1(X ), and identify H1(X ,C) = Cn and H1(X ,C×)0 = (C×)n.
Given a Zariski closed subset W ⊂ (C×)n, define the exponential
tangent cone at 1 to W as

τ1(W ) = {z ∈ Cn | exp(λz) ∈W , ∀λ ∈ C}.

Lemma (Dimca–Papadima–A.S. 2009)
τ1(W ) is a finite union of rationally defined linear subspaces of Cn.

The i -th characteristic arrangement of X , is the subspace arrangement
Ci(X ) in H1(X ,Q) defined as:

τ1(W i(X )) =
⋃

L∈Ci (X)

L⊗ C.
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Characteristic varieties Computing the Ω-invariants

Theorem

Ωi
r (X ) ⊆

( ⋃
L∈Ci (X)

{
P ∈ Grr (H1(X ,Q))

∣∣ P ∩ L 6= {0}
}){

.

Proof.
Fix an r -plane P ∈ Grr (H1(X ,Q)), and let T = exp(P ⊗ C). Then:

P ∈ Ωi
r (X )⇐⇒ T ∩W i(X ) is finite

=⇒ τ1(T ∩W i(X )) = {0}

⇐⇒ (P ⊗ C) ∩ τ1(W i(X )) = {0}

⇐⇒ P ∩ L = {0}, for each L ∈ Ci(X ),
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Characteristic varieties Computing the Ω-invariants

For “straight” spaces, the inclusion holds as an equality.
If r = 1, the inclusion always holds as an equality.
In general, though, the inclusion is strict. E.g., there exist finitely
presented groups G for which Ω1

2(G) is not open.

Example

Let G = 〈x1, x2, x3 | [x2
1 , x2], [x1, x3], x1[x2, x3]x−1

1 [x2, x3]〉. Then
Gab = Z3, and

V1(G) = {1} ∪
{

t ∈ (C×)3 | t1 = −1
}
.

Let T = (C×)2 be an algebraic 2-torus in (C×)3. Then

T ∩ V1(G) =

{
{1} if T = {t1 = 1}
C× otherwise

Thus, Ω1
2(G) consists of a single point in Gr2(H1(G,Q)) = QP2, and so

it’s not open.
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Characteristic varieties Computing the Ω-invariants

Special Schubert varieties
Let V be a homogeneous variety in kn. The set
σr (V ) =

{
P ∈ Grr (kn)

∣∣ P ∩ V 6= {0}
}

is Zariski closed.
If L ⊂ kn is a linear subspace, σr (L) is the special Schubert variety
defined by L. If codim L = d , then codimσr (L) = d − r + 1.

Theorem
Ωi

r (X ) ⊆ Grr
(
H1(X ,Q)

)
\
(⋃

L∈Ci (X) σr (L)
)
.

Thus, each set Ωi
r (X ) is contained in the complement of a Zariski

closed subset of Grr (H1(X ,Q)): the union of the special Schubert
varieties corresponding to the subspaces comprising Ci(X ).

Corollary
1 If codim Ci(X ) ≥ d, then Ωi

r (X ) = ∅, for all r ≥ d + 1.
2 If τ1(W1(X )) 6= {0}, then b1(X fab) =∞.
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Resonance varieties Jump loci for the Aomoto complex

Resonance varieties
Let A = H∗(X ,C). For each a ∈ A1, we have a2 = 0. Thus, we get a
cochain complex of finite-dimensional, complex vector spaces,

(A,a) : A0 a // A1 a // A2 a // · · · .

Definition

The resonance varieties of X are the sets

Ri(X ) = {a ∈ A1 | H j(A, ·a) 6= 0, for some j ≤ i}.

Get filtration R0(X ) ⊆ R1(X ) ⊆ · · · ⊆ Rk (X ) ⊆ H1(X ,C) = Cn.
If X has finite k -skeleton, then Ri(X ) is a homogeneous algebraic
subvariety of Cn, for each i ≤ k
These varieties are homotopy-type invariants of X .
τ1(W i(X )) ⊆ TC1(W i(X )) ⊆ Ri(X ).
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Resonance varieties Straight spaces

Straight spaces
Let X be a connected CW-complex with finite k -skeleton.

Definition

We say X is k-straight if the following conditions hold, for each i ≤ k :

1 All positive-dimensional components ofW i(X ) are algebraic
subtori.

2 TC1(W i(X )) = Ri(X ).
If X is k -straight for all k ≥ 1, we say X is a straight space.

The k -straightness property depends only on the homotopy type
of a space.
Hence, we may declare a group G to be k -straight if there is a
K (G,1) which is k -straight; in particular, G must be of type Fk .
X is 1-straight if and only if π1(X ) is 1-straight.
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Resonance varieties Straight spaces

Theorem
Let X be a k-straight space. Then, for all i ≤ k,

1 τ1(W i(X )) = TC1(W i(X )) = Ri(X ).
2 Ri(X ,Q) =

⋃
L∈Ci (X) L.

In particular, the resonance varieties Ri(X ) are unions of rationally
defined subspaces.

Example

Let G be the group with generators x1, x2, x3, x4 and relators
r1 = [x1, x2], r2 = [x1, x4][x−2

2 , x3], r3 = [x−1
1 , x3][x2, x4]. Then

R1(G) = {z ∈ C4 | z2
1 − 2z2

2 = 0},

which splits into two linear subspaces defined over R, but not over Q.
Thus, G is not 1-straight.
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Resonance varieties Straight spaces

Theorem
Suppose X is k-straight. Then, for all i ≤ k and r ≥ 1,

Ωi
r (X ) = Grr (H1(X ,Q)) \ σr (Ri(X ,Q)).

In other words, each set Ωi
r (X ) is the complement of a finite union of

special Schubert varieties in the rational Grassmannian; in particular,
Ωi

r (X ) is a Zariski open set.
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Kahler manifolds

Characteristic varieties
The structure of the characteristic varieties of smooth, complex
projective and quasi-projective varieties (and, more generally, Kähler
and quasi-Kähler manifolds) was determined by Beauville, Green–
Lazarsfeld, Simpson, Campana, and Arapura in the 1990s.

Theorem (Arapura 1997)

Let X = X \ D, where X is a compact Kähler manifold and D is a
normal-crossings divisor. If either D = ∅ or b1(X ) = 0, then each
characteristic variety V i(X ) is a finite union of unitary translates of
algebraic subtori of H1(X ,C×).

In degree 1, the condition that b1(X ) = 0 if D 6= ∅ may be lifted.
Furthermore, each positive-dimensional component of V1(X ) is of the
form ρ · T , with T an algebraic subtorus, and ρ a torsion character.
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Kahler manifolds

Theorem (Dimca–Papadima–A.S. 2009)
Let X be a 1-formal, quasi-Kähler manifold, and let {Lα} be the
positive-dimensional, irreducible components of R1(X ). Then:

1 Each Lα is a linear subspace of H1(X ,C) of dimension at least
2ε(α) + 2, for some ε(α) ∈ {0,1}.

2 The restriction of ∪ : H1(X ,C) ∧ H1(X ,C)→ H2(X ,C) to Lα ∧ Lα
has rank ε(α).

3 If α 6= β, then Lα ∩ Lβ = {0}.

If M is a compact Kähler manifold, then M is formal, and so the
theorem applies: each Lα has dimension 2g(α) ≥ 4, and the restriction
of the cup-product map to Lα ∧ Lα has rank ε(α) = 1.
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Kahler manifolds Dwyer–Fried sets

Theorem
Let X be a 1-formal, quasi-Kähler manifold (for instance, a compact
Kähler manifold). Then:

1 Ω1
1(X ) = R1

(X ,Q){ and Ω1
r (X ) ⊆ σr (R1(X ,Q)){, for r ≥ 2.

2 IfW1(X ) contains no positive-dimensional translated subtori, then
Ω1

r (X ) = σr (R1(X ,Q)){, for all r ≥ 1.

In general, though, this last inclusion can be strict.

Theorem
Let X be a 1-formal, smooth, quasi-projective variety. Suppose

1 W1(X ) has a 1-dimensional component not passing through 1;

2 R1(X ) has no codimension-1 components.
Then Ω1

2(X ) is strictly contained in σ2(R1(X ,Q)){.

Concrete example: the complement of the “deleted B3” arrangement.
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Kahler manifolds Dwyer–Fried sets

The Dwyer–Fried sets of a compact Kähler manifold need not be open.

Example
Let C1 be a curve of genus 2 with an elliptic involution σ1. Then
Σ1 = C1/σ1 is a curve of genus 1.

Let C2 be a curve of genus 3 with a free involution σ2. Then
Σ2 = C2/σ2 is a curve of genus 2.

We let Z2 act freely on the product C1 × C2 via the involution
σ1 × σ2. The quotient space, M, is a smooth, minimal, complex
projective surface of general type with pg(M) = q(M) = 3, K 2

M = 8.

The group π = π1(M) can be computed by method due to I. Bauer,
F. Catanese, F. Grunewald. Identifying πab = Z6, π̂ = (C×)6, get

V1(π) = {t | t1 = t2 = 1} ∪ {t4 = t5 = t6 = 1, t3 = −1}.

It follows that Ω1
2(π) is not open.
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Kahler manifolds Dwyer–Fried sets

Proposition ([SYZ])

Suppose V i(X ) is a union of algebraic subgroups. If X ν is a free
abelian cover with finite Betti numbers up to degree i, then any finite
regular abelian cover of X ν has the same finiteness property.

For general quasi-projective varieties, the conclusion does not hold.

Example
The Brieskorn 3-manifold M = Σ(3,3,6) is the singularity link of a
weighted homogeneous polynomial; thus, it has the homotopy
type of a smooth (non-formal) quasi-projective variety.
A shown in [Dimca–Papadima-A.S. 2011], the variety V1(M) has 3
positive-dimensional irreducible components, all of dimension 2,
none of which passes through the identity.
It follows that b1(Σ(3,3,6)fab) <∞, while b1(Σ(3,3,6)ab) =∞.
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Hyperplane arrangements

Hyperplane arrangements

Let A be an arrangement of n hyperplanes in Cd , defined by a
polynomial f =

∏
H∈A αH , with αH linear forms.

The complement, X = X (A) = Cd \
⋃

H∈AH, is a smooth,
quasi-projective variety. It is also a formal space.

The homology groups H∗(X ,Z) are torsion-free.

The cohomology ring A = H∗(X ,C) is the quotient A = E/I of the
exterior algebra on n generators, modulo an ideal determined by
the intersection lattice L(A).

The fundamental group G = π1(X (A)) has a presentation
associated to a generic plane section, with generators
corresponding to the lines, and commutator relators
corresponding to the multiple points. In particular, Gab = Zn.
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Hyperplane arrangements

Identify Ĝ = H1(X ,C×) = (C×)n and H1(X ,C) = Cn.
Set V i(A) = V i(X ), etc.
Tangent cone formula holds:

τ1(V i(A)) = TC1(V i(A)) = Ri(A).

Components of Ri(A) are rationally defined linear subspaces of
Cn, depending only on L(A).
Components of V i(A) are subtori of (C×)n, possibly translated by
roots of 1.
Components passing through 1 are combinatorially determined:

L ⊂ Ri(A) T = exp(L) ⊂ V i(A).

V1(A) may contain translated subtori.
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Hyperplane arrangements

Example (Braid arrangement A3)
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R1(A) ⊂ C6 has 4 local components (from triple points), and one
non-local component, from neighborly partition Π = (16|25|34):

L124 = {x1 + x2 + x4 = x3 = x5 = x6 = 0},
L135 = {x1 + x3 + x5 = x2 = x4 = x6 = 0},
L236 = {x2 + x3 + x6 = x1 = x4 = x5 = 0},
L456 = {x4 + x5 + x6 = x1 = x2 = x3 = 0},
LΠ = {x1 + x2 + x3 = x1 − x6 = x2 − x5 = x3 − x4 = 0}.

There are no translated components.
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Hyperplane arrangements

Theorem
Suppose Vk (A) contains no translated components. Then:

1 X (A) is k-straight.
2 Ωk

r (A) = Grr (Qn) \ σr (Rk (A,Q)), for all 1 ≤ r ≤ n.

Proposition

Let A be an arrangement of n lines in C2, and let m be the maximum
multiplicity of its intersection points.

1 If m = 2, then Ω1
r (A) = Grr (Qn), for all r ≥ 1.

2 If m ≥ 3, then Ω1
r (A) = ∅, for all r ≥ n −m + 2.

Proposition
Suppose A has 1 or 2 lines which contain all the intersection points of
multiplicity 3 and higher. Then X (A) is 1-straight, and

Ω1
r (A) = σr (R1(A,Q)){.
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Example (Deleted B3 arrangement)
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Let A be defined by f = z0z1(z2
0 − z2

1 )(z2
0 − z2

2 )(z2
1 − z2

2 ). Then:
R1(A) ⊂ C8 contains 7 local components (from 6 triple points and
1 quadruple point), and 5 non-local components (from braid
sub-arrangements). In particular, codimR1(A) = 5.
In addition to the corresponding 12 subtori, V1(A) ⊂ (C×)8 also
contains ρ · T , where T ∼= C×, and ρ is a root of unity of order 2.
Thus, the complement X is not 1-straight.
But X is formal, so Ω1

2(A) is strictly contained in σ2(R1(A)){.
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Milnor fibration

Let A = {H1, . . . ,Hn} be an arrangement in Cd , defined by a
polynomial f = α1 · · ·αn.

Milnor fibration: f : Cd \ V (f )→ C \ {0}.

Milnor fiber: F = f−1(1), a smooth, affine variety, with the
homotopy type of a (d − 1)-dimensional, finite CW-complex
(not necessarily formal: H. Zuber 2010).

F is a Galois, Z-cover of X = Cd \ V (f ); it is also a Galois,
Zn-cover of U = CPd−1 \ V (f ).

Hence, we may compute H1(F ,k) by counting certain torsion
points on the varieties V1

j (U, k), provided chark - n.

Let s = (s1, . . . , sn) be positive integers with gcd(s) = 1. The
polynomial fs = αs1

1 · · ·α
sn
n defines a multi-arrangement As, with

X (As) = X (A), but F (As) 6' F (A), in general.
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Question (Dimca–Némethi 2002)

Let f : Cd → C be a homogeneous polynomial, X = Cd \ V (f ), and
F = f−1(1). If H∗(X ,Z) is torsion-free, is H∗(F ,Z) also torsion-free?

Answer (Cohen–Denham–A.S. 2003, Denham–A.S. 2011)
Not for H1(F (As),Z), nor for H∗(F (A),Z).

Example
Take A to be the deleted B3 arrangement, with weights
s = (2,1,3,3,2,2,1,1), so that

fs = z2
0z1(z2

0 − z2
1 )3(z2

0 − z2
2 )2(z2

1 − z2
2 ).

Then dimk H1(F (As),k) = 7 if chark 6= 2,3,5, yet
dimk H1(F (As),k) = 9 if chark = 2. In fact:

H1(F (As),Z) = Z7 ⊕ Z2 ⊕ Z2
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Example

Let A be the arrangement of 24 hyperplanes in C8, defined by

f = z1z2(z2
1 − z2

2 )(z2
1 − z2

3 )(z2
2 − z2

3 )y1y2y3y4y5(z1 − y1)(z1 − y2)·
(z2

1 − 4y2
1 )(z1 − y3)(z2

1 − y2
4 )(z1 − 2y4)(z2

1 − y2
5 )(z1 − 2y5).

The 2-torsion part of H6(F (A),Z) is (Z2)54.

Question
Are any of the following determined by the intersection lattice L(A):

1 The translated components in Vk (A).
2 The Dwyer–Fried sets Ωi

r (A).
3 The Betti numbers of F (A).
4 The torsion in H∗(F (A),Z).
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