ALGEBRAIC MODELS FOR SASAKIAN MANIFOLDS AND WEIGHTED-HOMOGENEOUS SURFACE SINGULARITIES

Alex Suciu

Northeastern University

Joint work with Stefan Papadima (IMAR)

arxiv:1511.08948

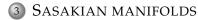
Workshop on Singularities and Topology Université de Nice March 9, 2016

ALEX SUCIU (NORTHEASTERN)

ALGEBRAIC MODELS



2 MODELS FOR GROUP ACTIONS



WEIGHTED HOMOGENEOUS SINGULARITIES

CDGAs

- Let $A = (A^{\bullet}, d)$ be a commutative, differential graded \mathbb{C} -algebra.
 - Multiplication $: A^i \otimes A^j \to A^{i+j}$ is graded-commutative.
 - Differential d: $A^i \rightarrow A^{i+1}$ satisfies the graded Leibnitz rule.
- Fix integer $q \ge 1$ (or $q = \infty$). We say that A is q-finite if
 - *A* is connected, i.e., $A^0 = \mathbb{C}$.
 - A^i is finite-dimensional, for each $i \leq q$ (or $i < \infty$).
- Two CDGAs have the same *q*-type if there is a zig-zag of connecting morphisms, each one inducing isomorphisms in homology up to degree *q* and a monomorphism in degree *q* + 1.
- A CDGA (A, d) is *q*-formal if it has the same *q*-type as $(H^{\bullet}(A), d = 0)$.

REGULAR SEQUENCES

- Let *H* be a connected, commutative graded algebra.
- A sequence {*e*_α} of homogeneous elements in *H*^{>0} is said to be *q*-regular if for each α, the class of *e*_α in

$$\overline{H}_{lpha} = H / \sum_{eta < lpha} oldsymbol{e}_{eta} H$$

is a non-zero divisor up to degree q. That is, the multiplication map $\bar{e}_{\alpha} : \overline{H}_{\alpha}^{i} \to \overline{H}_{\alpha}^{i+n_{\alpha}}$ is injective, for all $i \leq q$, where $n_{\alpha} = \deg(e_{\alpha})$.

THEOREM

Suppose e_1, \ldots, e_r is an even-degree, *q*-regular sequence in *H*. Then the Hirsch extension $A = H \otimes_{\tau} \bigwedge (t_1, \ldots, t_r)$ with d = 0 on *H* and $dt_{\alpha} = \tau(t_{\alpha}) = e_{\alpha}$ has the same *q*-type as

$$(H/\sum_{\alpha} e_{\alpha}H, d=0).$$

In particular, A is q-formal.

THE SULLIVAN MODEL

- To a large extent, the rational homotopy type of a space can be reconstructed from algebraic models associated to it.
- If the space is a smooth manifold *M*, the standard model is the de Rham algebra Ω_{dR}(*M*).
- More generally, any space X has an associated Sullivan CDGA, $A_{PL}(X)$, which serves as the reference algebraic model. In particular, $H^*(A_{PL}(X)) = H^*(X, \mathbb{C})$.
- A CDGA (A, d) is a *q*-model for X if A has the same *q*-type as $A_{\text{PL}}(X)$.
- We say X is *q*-formal if $A_{PL}(X)$ has this property.

THE MALCEV LIE ALGEBRA

- The 1-formality property of a connected CW-complex X with finite 1-skeleton depends only on its fundamental group, $\pi = \pi_1(X)$.
- Let m(π) = Prim(C[π]) be the Malcev Lie algebra of π, where ^ is completion with respect to powers of the augmentation ideal.
- The 1-formality of the group π is equivalent to

 $\mathfrak{m}(\pi)\cong\widehat{L},$

for some quadratic, finitely generated Lie algebra L, where $\hat{}$ is the degree completion.

• If $\mathfrak{m}(\pi) \cong \widehat{L}$, where *L* is merely assumed to have homogeneous relations, then π is said to be *filtered formal* (see [SW] for details).

COHOMOLOGY JUMP LOCI

- Let *X* be a connected, finite-type CW-complex, and let *G* be a complex linear algebraic group.
- The characteristic varieties of X with respect to a rational, finite-dimensional representation φ: G → GL(V) are the sets

$$\mathcal{V}^{i}_{s}(\boldsymbol{X},\varphi) = \Big\{ \rho \in \operatorname{Hom}(\pi, \boldsymbol{G}) \mid \dim H^{i}(\boldsymbol{X}, \boldsymbol{V}_{\varphi \circ \rho}) \geq s \Big\}.$$

- In degree i = 1, these varieties depend only on the group $\pi = \pi_1(X)$, and so we may denote them as $\mathcal{V}_s^1(\pi, \varphi)$.
- When $G = \mathbb{C}^*$ and $\varphi = id_{\mathbb{C}^*}$, we simply write these sets as $\mathcal{V}_s^i(X)$.

COMPACT LIE GROUP ACTIONS

- Let *M* be a compact, connected, smooth manifold (with $\partial M = \emptyset$).
- Suppose a compact, connected Lie group *K* acts smoothly and *almost freely* on *M* (i.e., all the isotropy groups are finite).
- Let $K \to EK \times M \to M_K$ be the Borel construction on M.
- Let $\tau: H^{\bullet}(K, \mathbb{C}) \to H^{\bullet+1}(M_{K}, \mathbb{C})$ be the transgression in the Serre spectral sequence of this bundle.
- Let N = M/K be the orbit space (a smooth orbifold).
- The projection map pr: $M_K \to N$ induces an isomorphism pr*: $H^{\bullet}(N, \mathbb{C}) \to H^{\bullet}(M_K, \mathbb{C})$.
- By a theorem of H. Hopf, we may dentify $H^{\bullet}(K, \mathbb{C}) = \bigwedge P^{\bullet}$, where $P = \operatorname{span}\{t_1, \ldots, t_r\}$ where $m_{\alpha} = \operatorname{deg}(t_{\alpha})$ is odd.

Theorem

There is a map $\sigma \colon P^{\bullet} \to Z^{\bullet+1}(A_{PL}(N))$ such that $\operatorname{pr}^* \circ [\sigma] = \tau$ and

 $A_{\rm PL}(M) \simeq A_{\rm PL}(N) \otimes_{\sigma} \bigwedge P.$

THEOREM

Suppose that

- The orbit space N = M/K is k-formal, for some $k > \max\{m_{\alpha}\}$.
- The characteristic classes e_α = (pr*)⁻¹(τ(t_α)) ∈ H^{m_α+1}(N, C) form a q-regular sequence in H[•] = H[•](N, C), for some q ≤ k.
 Then the CDGA

$$\left(oldsymbol{H}^ullet / \sum_lpha oldsymbol{e}_lpha oldsymbol{H}^ullet, oldsymbol{d} = \mathbf{0}
ight)$$

is a finite q-model for M. In particular, M is q-formal.

THEOREM

Suppose the orbit space N = M/K is 2-formal. Then:

- The group π = π₁(M) is filtered-formal. In fact, m(π) is the degree completion of L/r, where L = Lie(H₁(π, C)) and r is a homogeneous ideal generated in degrees 2 and 3.
- ② For every complex linear algebraic group G, the germ at 1 of the representation variety Hom(π, G) is defined by quadrics and cubics only.

The projection map $p: M \to M/K$ induces an epimorphism $p_{\sharp}: \pi_1(M) \twoheadrightarrow \pi_1^{\text{orb}}(M/K)$ between orbifold fundamental groups.

THEOREM

Suppose that the transgression $P^{\bullet} \to H^{\bullet+1}(M/K, \mathbb{C})$ is injective in degree 1. Then:

① If the orbit space N = M/K has a 2-finite 2-model, then p_{\sharp} induces analytic isomorphisms

 $\mathcal{V}^{1}_{\boldsymbol{s}}(\pi_{1}^{\mathrm{orb}}(\boldsymbol{N}))_{(1)} \cong \mathcal{V}^{1}_{\boldsymbol{s}}(\pi_{1}(\boldsymbol{M}))_{(1)}.$

2 If N is 2-formal, then p_{\sharp} induces an analytic isomorphism

 $\operatorname{Hom}(\pi_1^{\operatorname{orb}}({\it N}),\operatorname{SL}_2(\mathbb{C}))_{(1)}\cong\operatorname{Hom}(\pi_1({\it M}),\operatorname{SL}_2(\mathbb{C}))_{(1)}.$

SASAKIAN MANIFOLDS AND *q*-formality

- Sasakian geometry is an odd-dimensional analogue of Kähler geometry.
- Every compact Sasakian manifold *M* admits an almost-free circle action with orbit space $N = M/S^1$ a Kähler orbifold.
- The Euler class of the action coincides with the Kähler class of the base, *h* ∈ *H*²(*N*, ℚ).
- The class *h* satisfies the Hard Lefschetz property, i.e., $\cdot h^k : H^{n-k}(N, \mathbb{C}) \to H^{n+k}(N, \mathbb{C})$ is an isomorphism, for each $1 \leq k \leq n$. Thus, $\{h\}$ is an (n-1)-regular sequence in $H^{\bullet}(N, \mathbb{C})$

EXAMPLE

Let *N* be a compact Kähler manifold such that the Kähler class is integral, i.e., $h \in H^2(N, \mathbb{Z})$, and let *M* be the total space of the principal *S*¹-bundle classified by *h*. Then *M* is a (regular) Sasakian manifold.

- As shown by Deligne, Griffiths, Morgan, and Sullivan, compact Kähler manifolds are formal.
- As shown by A. Tievsky, every compact Sasakian manifold *M* has a finite model of the form (*H*[•](*N*, ℂ) ⊗ ∧(*t*), *d*), where *d* vanishes on *H*[•](*N*, ℂ) and sends *t* to *h*.

THEOREM

Let *M* be a compact Sasakian manifold of dimension 2n + 1. Then *M* is (n - 1)-formal.

- This result is optimal: for each $n \ge 1$, the (2n + 1)-dimensional Heisenberg compact nilmanifold (with orbit space T^{2n}) is a Sasakian manifold, yet it is not *n*-formal.
- This theorem strengthens a statement of H. Kasuya, who claimed that, for $n \ge 2$, a Sasakian manifold M^{2n+1} is 1-formal. The proof of that claim, though, has a gap.

SASAKIAN GROUPS

- A group π is said to be a *Sasakian group* if it can be realized as the fundamental group of a compact, Sasakian manifold.
- Open problem: Which finitely presented groups are Sasakian?
- A first, well-known obstruction is that $b_1(\pi)$ must be even.

THEOREM

Let $\pi = \pi_1(M^{2n+1})$ be the fundamental group of a compact Sasakian manifold of dimension 2n + 1. Then:

- ① The group π is filtered-formal, and in fact 1-formal if n > 1.
- 2 All irreducible components of the characteristic varieties $\mathcal{V}_{s}^{1}(\pi)$ passing through 1 are algebraic subtori of Hom (π, \mathbb{C}^{*}) .
- ③ If G is a complex linear algebraic group, then the germ at 1 of Hom(π, G) is defined by quadrics and cubics only, and in fact by quadrics only if n > 1.

RESONANCE VARIETIES

- Once again, let (A, d) be a CDGA model for a connected, finite-type CW-complex X. Let $\pi = \pi_1(X)$, let G be a complex algebraic group, and let g be its Lie algebra.
- The infinitesimal analogue (around the origin) of the G-representation variety Hom(π, G) is the set F(A, g) of g-valued flat connections on a CDGA A,

$$\mathcal{F}(\boldsymbol{A},\mathfrak{g}) = \Big\{ \omega \in \boldsymbol{A}^1 \otimes \mathfrak{g} \mid \boldsymbol{d}\omega + \frac{1}{2}[\omega,\omega] = \mathbf{0} \Big\}.$$

If dim A¹ < ∞, then F(A, g) is a Zariski-closed subset, which contains the closed subvariety

$$\mathcal{F}^{1}(\mathcal{A},\mathfrak{g}) = \{\eta \otimes \mathcal{g} \in \mathcal{A}^{1} \otimes \mathfrak{g} \mid \mathcal{d}\eta = \mathbf{0}\}.$$

• Next, we define the infinitesimal counterpart of the characteristic varieties.

ALEX SUCIU (NORTHEASTERN)

ALGEBRAIC MODELS

- Let $\theta : \mathfrak{g} \to \mathfrak{gl}(V)$ be a finite-dimensional representation.
- To each $\omega \in \mathcal{F}(\mathcal{A}, \mathfrak{g})$ there is an associated covariant derivative,

 $d_{\omega}\colon A^{\bullet}\otimes V\to A^{\bullet+1}\otimes V,$

given by $d_{\omega} = d \otimes id_V + ad_{\omega}$. By flatness, $d_{\omega}^2 = 0$.

• The resonance varieties of A with respect to θ are the sets

$$\mathcal{R}^i_{s}(\boldsymbol{A}, \theta) = \Big\{ \omega \in \mathcal{F}(\boldsymbol{A}, \mathfrak{g}) \mid \dim \boldsymbol{H}^i(\boldsymbol{A} \otimes \boldsymbol{V}, \boldsymbol{d}_\omega) \geqslant \boldsymbol{s} \Big\}.$$

If *A* is *q*-finite, these sets are Zariski-closed in $\mathcal{F}(A, \mathfrak{g}), \forall i \leq q$.

• If $H^{i}(A) \neq 0$, then $\mathcal{R}_{1}^{i}(A, \theta)$ contains the closed subvariety

$$\Pi(\boldsymbol{A},\theta) = \{\eta \otimes \boldsymbol{g} \in \mathcal{F}^1(\boldsymbol{A},\mathfrak{g}) \mid \det \theta(\boldsymbol{g}) = \boldsymbol{0}\}.$$

When g = C, θ = id_C we have that F(A, g) = H¹(A) and Rⁱ_s(A) are the usual resonance varieties of (A, d).

SMOOTH QUASI-PROJECTIVE VARIETIES

- Let X be a smooth quasi-projective variety.
- Let *E*(*X*) be the (finite!) set of regular, surjective maps *f*: *X* → *S* for which the generic fiber is connected and is a smooth curve *S* with χ(*S*) < 0, up to reparametrization at the target.
- All such maps extend to regular maps $\overline{f} : \overline{X} \to \overline{S}$, for some 'convenient' compactification $\overline{X} = X \cup D$.
- The variety X admits a finite CDGA model with positive weights, $A(X) = A(\overline{X}, D)$. Such a 'Gysin' model was constructed by Morgan, and was recently improved upon by C. Dupont.

THEOREM (ARAPURA)

The correspondence $f \rightsquigarrow f^*(H^1(S, \mathbb{C}^*))$ gives a bijection between the set $\mathcal{E}(X)$ and the set of positive-dimensional irreducible components of $\mathcal{V}_1^1(X)$ passing through the identity of the character group $H^1(X, \mathbb{C}^*)$.

THEOREM (DIMCA–PAPADIMA)

Let X be smooth, quasi-projective variety X, and let A be a finite CDGA model with positive weights. The set $\mathcal{E}(X)$ is then in bijection with the set of positive-dimensional, irreducible components of $\mathcal{R}^1_1(A) \subseteq H^1(A) = H^1(X, \mathbb{C})$ via the correspondence $f \rightsquigarrow f^!(H^1(S, \mathbb{C}))$.

WEIGHTED HOMOGENEOUS SINGULARITIES

- Let X be a complex affine surface endowed with a 'good' C*-action and having a normal, isolated singularity at 0.
- The punctured surface $X^* = X \setminus \{0\}$ is a smooth quasi-projective variety which deform-retracts onto the singularity link, *M*.
- The almost free C*-action on X* restricts to an S¹-action on M with finite isotropy subgroups. In particular, M is an orientable Seifert fibered 3-manifold.
- The orbit space, $M/S^1 = X^*/\mathbb{C}^*$, is a smooth projective curve Σ_g , of genus $g = \frac{1}{2}b_1(M)$. The canonical projection, $f \colon X^* \to X^*/\mathbb{C}^*$, induces an isomorphism on first homology.
- It turns out that $\mathcal{E}(X^*) = \emptyset$ if g = 1 and $\mathcal{E}(X^*) = \{f\}$ if g > 1.

THEOREM

Let $\mathfrak{g} = \mathfrak{sl}_2(\mathbb{C})$, and let $\theta : \mathfrak{g} \to \mathfrak{gl}(V)$ be a finite-dimensional rep. There is then a convenient compactification of X^* such that

$$\mathcal{F}(\mathbf{A}(\mathbf{X}^*), \mathfrak{g}) = \mathcal{F}^1(\mathbf{A}(\mathbf{X}^*), \mathfrak{g}) \cup \bigcup_{f \in \mathcal{E}(\mathbf{X}^*)} f^!(\mathcal{F}(\mathbf{A}(\mathbf{S}), \mathfrak{g})),$$
$$\mathcal{R}^1_1(\mathbf{A}(\mathbf{X}^*), \theta) = \Pi(\mathbf{A}(\mathbf{X}^*), \theta) \cup \bigcup_{f \in \mathcal{E}(\mathbf{X}^*)} f^!(\mathcal{F}(\mathbf{A}(\mathbf{S}), \mathfrak{g})).$$

- For the proof, we replace X^* (up to homotopy) by the singularity link M, and $A(X^*)$ by a finite model A for this almost free S^1 -manifold.
- As shown in [MPPS], the inclusions ⊇ hold for arbitrary smooth, quasi-projective varieties X, with equality if X is 1-formal.
- We do not know (yet) whether the above equalities hold for arbitrary smooth, quasi-projective varieties.

ALEX SUCIU (NORTHEASTERN)

ALGEBRAIC MODELS

REFERENCES

- Stefan Papadima and Alex Suciu, *The topology of compact Lie group actions through the lens of finite models*, arxiv:1511.08948.
- Anca Măcinic, Stefan Papadima, Radu Popescu, and Alex Suciu, Flat connections and resonance varieties: from rank one to higher ranks, arxiv:1312.1439, to appear in Trans. Amer. Math. Soc.
- Alex Suciu and He Wang, *Formality properties of finitely generated groups and Lie algebras*, arxiv:1504.08294.