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HYPERPLANE ARRANGEMENTS

HYPERPLANE ARRANGEMENTS

An arrangement of hyperplanes is a finite set A of codimension-1
linear subspaces in C`.

Intersection lattice L(A): poset of all intersections of A, ordered
by reverse inclusion, and ranked by codimension.

Complement: M(A) = C`z
Ť

HPA H.

The Boolean arrangement Bn
Bn: all coordinate hyperplanes zi = 0 in Cn.
L(Bn): Boolean lattice of subsets of t0,1un.
M(Bn): complex algebraic torus (C˚)n.

The braid arrangement An (or, reflection arr. of type An´1)
An: all diagonal hyperplanes zi ´ zj = 0 in Cn.
L(An): lattice of partitions of [n] = t1, . . . ,nu.
M(An): configuration space of n ordered points in C (a classifying
space for the pure braid group on n strings).
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HYPERPLANE ARRANGEMENTS

‚ ‚

‚

‚

x2 ´ x4 x1 ´ x2

x1 ´ x4

x2 ´ x3

x1 ´ x3 x3 ´ x4

FIGURE : A planar slice of the braid arrangement A4
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HYPERPLANE ARRANGEMENTS

We may assume that A is essential, i.e.,
Ş

HPA H = t0u.

Fix an ordering A = tH1, . . . ,Hnu, and choose linear forms
fi : C` Ñ C with ker(fi) = Hi .

Define an injective linear map

ι : C` Ñ Cn, z ÞÑ (f1(z), . . . , fn(z)).

This map restricts to an inclusion ι : M(A) ãÑ M(Bn). Hence,

M(A) = ι(C`)X (C˚)n,

a “very affine" subvariety of (C˚)n, and thus, a Stein manifold.

Therefore, M(A) has the homotopy type of a connected, finite cell
complex of dimension `.
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HYPERPLANE ARRANGEMENTS

In fact, M = M(A) admits a minimal cell structure (Dimca and
Papadima 2003). Consequently, H˚(M,Z) is torsion-free.

The Betti numbers bq(M) := rank Hq(M,Z) are given by

ÿ̀

q=0

bq(M)tq =
ÿ

XPL(A)

µ(X )(´t)rank(X ),

where µ : L(A)Ñ Z is the Möbius function, defined recursively by
µ(C`) = 1 and µ(X ) = ´

ř

YĽX µ(Y ).

The Orlik–Solomon algebra H˚(M,Z) is the quotient of the
exterior algebra on generators teH | H P Au by an ideal
determined by the circuits in the matroid of A.

Thus, the ring H˚(M,k) is determined by L(A), for every field k.
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COHOMOLOGY JUMP LOCI CHARACTERISTIC VARIETIES

COHOMOLOGY JUMP LOCI

Let X be a connected, finite cell complex, and let π = π1(X , x0).

Let k be an algebraically closed field, and let Hom(π,k˚) be the
affine algebraic group of k-valued, multiplicative characters on π.

The characteristic varieties of X are the jump loci for homology
with coefficients in rank-1 local systems on X :

Vq
s (X ,k) = tρ P Hom(π,k˚) | dimk Hq(X , kρ) ě su.

Here, kρ is the local system defined by ρ, i.e, k viewed as a kπ-module,
via g ¨ x = ρ(g)x , and Hi (X ,kρ) = Hi (C˚(rX ,k)bkπ kρ).

These loci are Zariski closed subsets of the character group.
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COHOMOLOGY JUMP LOCI RESONANCE VARIETIES

Let A = H˚(X ,k). If chark = 2, assume that H1(X ,Z) has no
2-torsion. Then: a P A1 ñ a2 = 0.

Thus, we get a cochain complex

(A, ¨a) : A0 a // A1 a // A2 // ¨ ¨ ¨ ,

known as the Aomoto complex of A.

The resonance varieties of X are the jump loci for the
Aomoto-Betti numbers

Rq
s (X ,k) = ta P A1 | dimk Hq(A, ¨a) ě su,

These loci are homogeneous subvarieties of A1 = H1(X ,k).
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COHOMOLOGY JUMP LOCI JUMP LOCI OF ARRANGEMENTS

JUMP LOCI OF ARRANGEMENTS

Let A = tH1, . . . ,Hnu be an arrangement in C3, and identify
H1(M(A), k) = kn, with basis dual to the meridians.

The resonance varieties R1
s(A, k) := R1

s(M(A), k) Ă kn lie in the
hyperplane tx P kn | x1 + ¨ ¨ ¨+ xn = 0u.

R1(A) = R1
1(A,C) is a union of linear subspaces in Cn.

Each subspace has dimension at least 2, and each pair of
subspaces meets transversely at 0.

R1
s(A,C) is the union of those linear subspaces that have

dimension at least s + 1.
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COHOMOLOGY JUMP LOCI JUMP LOCI OF ARRANGEMENTS

Each flat X P L2(A) of multiplicity k ě 3 gives rise to a local
component of R1(A), of dimension k ´ 1.

More generally, every k-multinet on a sub-arrangement B Ď A
gives rise to a component of dimension k ´ 1, and all components
of R1(A) arise in this way.

The resonance varieties R1(A, k) can be more complicated, e.g.,
they may have non-linear components.
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COHOMOLOGY JUMP LOCI JUMP LOCI OF ARRANGEMENTS

EXAMPLE (BRAID ARRANGEMENT A4)

‚ ‚

‚

‚

4
2 1 3 5 6

R1(A) Ă C6 has 4 components coming from the triple points, and one
component from the above 3-net:

L124 = tx1 + x2 + x4 = x3 = x5 = x6 = 0u,
L135 = tx1 + x3 + x5 = x2 = x4 = x6 = 0u,
L236 = tx2 + x3 + x6 = x1 = x4 = x5 = 0u,
L456 = tx4 + x5 + x6 = x1 = x2 = x3 = 0u,
L = tx1 + x2 + x3 = x1 ´ x6 = x2 ´ x5 = x3 ´ x4 = 0u.
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COHOMOLOGY JUMP LOCI JUMP LOCI OF ARRANGEMENTS

Let Hom(π1(M), k˚) = (k˚)n be the character torus.

The characteristic variety V1(A,k) := V1
1 (M(A),k) Ă (k˚)n lies in

the substorus tt P (k˚)n | t1 ¨ ¨ ¨ tn = 1u.

V1(A) = V1(A,C) is a finite union of torsion-translates of
algebraic subtori of (C˚)n.

If a linear subspace L Ă Cn is a component of R1(A), then the
algebraic torus T = exp(L) is a component of V1(A).

All components of V1(A) passing through the origin 1 P (C˚)n

arise in this way (and thus, are combinatorially determined).

In general, though, there are translated subtori in V1(A).
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COHOMOLOGY JUMP LOCI PROPAGATION OF JUMP LOCI

PROPAGATION OF JUMP LOCI

THEOREM (DENHAM, S., YUZVINSKY 2014)

Let A be a central, essential hyperplane arrangement in Cn with
complement M = M(A). Suppose A = Z[π] or A = Z[πab]. Then
Hp(M,A) = 0 for all p ‰ n, and Hn(M,A) is a free abelian group.

COROLLARY

1 M is a duality space of dimension n (due to Davis, Januszkiewicz,
Okun 2011).

2 M is an abelian duality space of dimension n.
3 The characteristic and resonance varieties of M propagate:

V1
1 (M,k) Ď ¨ ¨ ¨ Ď Vn

1 (M,k)

R1
1(M,k) Ď ¨ ¨ ¨ Ď Rn

1(M, k)
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THE MILNOR FIBRATION MILNOR FIBRATIONS OF ARRANGEMENTS

MILNOR FIBRATIONS OF ARRANGEMENTS

For each H P A, let fH : C` Ñ C be a linear form with kernel H.

For each choice of multiplicities m = (mH)HPA with mH P N, let

Qm := Qm(A) =
ź

HPA
f mH
H ,

a homogeneous polynomial of degree N =
ř

HPA mH .

The map Qm : C` Ñ C restricts to a map Qm : M(A)Ñ C˚.

This is the projection of a smooth, locally trivial bundle, known as
the Milnor fibration of the multi-arrangement (A,m),

Fm(A) // M(A)
Qm // C˚.

ALEX SUCIU HYPERPLANE ARRANGEMENTS NICE, JUNE 10, 2014 14 / 31



THE MILNOR FIBRATION MILNOR FIBRATIONS OF ARRANGEMENTS

The typical fiber, Fm(A) = Q´1
m (1), is called the Milnor fiber of the

multi-arrangement.

Fm(A) has the homotopy type of a finite cell complex, with gcd(m)
connected components, and of dimension `´ 1.

The (geometric) monodromy is the diffeomorphism

h : Fm(A)Ñ Fm(A), z ÞÑ e2πi/Nz.

If all mH = 1, the polynomial Q = Qm(A) is the usual defining
polynomial, and F (A) = Fm(A) is the usual Milnor fiber of A.

EXAMPLE

Let A be the single hyperplane t0u inside C. Then:
M(A) = C˚.
Qm(A) = zm.
Fm(A) = m-roots of 1.
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THE MILNOR FIBRATION MILNOR FIBRATIONS OF ARRANGEMENTS

EXAMPLE

Let A be a pencil of 3 lines through the origin of C2. Then F (A) is a
thrice-punctured torus, and h is an automorphism of order 3:

A

F (A)

h

F (A)

More generally, if A is a pencil of n lines in C2, then F (A) is a
Riemann surface of genus (n´1

2 ), with n punctures.
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THE MILNOR FIBRATION MILNOR FIBRATIONS OF ARRANGEMENTS

Let Bn be the Boolean arrangement, with Qm(Bn) = zm1
1 ¨ ¨ ¨ zmn

n .
Then M(Bn) = (C˚)n and

Fm(Bn) = ker(Qm) – (C˚)n´1 ˆZgcd(m)

Let A = tH1, . . . ,Hnu be an essential arrangement. The inclusion
ι : M(A)Ñ M(Bn) restricts to a bundle map

Fm(A) //

��

M(A)
Qm(A) //

ι
��

C˚

Fm(Bn) // M(Bn)
Qm(Bn) // C˚

Thus,
Fm(A) = M(A)X Fm(Bn)
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THE MILNOR FIBRATION HOMOLOGY OF THE MILNOR FIBER

HOMOLOGY OF THE MILNOR FIBER

Assume gcd(m) = 1. Then Fm(A) is the regular ZN -cover of
U(A) = P(M(A)) defined by the homomorphism

δm : π1(U(A))� ZN , xH ÞÑ mH mod N

Let xδm : Hom(ZN , k˚)Ñ Hom(π1(U(A)), k˚). If char(k) - N, then

dimk Hq(Fm(A),k) =
ÿ

sě1

ˇ

ˇ

ˇ
Vq

s (U(A),k)X im(xδm)
ˇ

ˇ

ˇ
.

This gives a formula for the characteristic polynomial

∆k
q(t) = det(t ¨ id´h˚)

of the algebraic monodromy, h˚ : Hq(F (A),k)Ñ Hq(F (A), k), in
terms of the characteristic varieties of U(A) and multiplicities m.
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THE MILNOR FIBRATION HOMOLOGY OF THE MILNOR FIBER

Let ∆ = ∆C
1 , and write

∆(t) =
ź

d |n

Φd (t)ed (A), (‹)

where Φd (t) is the d-th cyclotomic polynomial, and ed (A) P Zě0.

Not all divisors of n appear in (‹). For instance, if d - |AX |, for
some X P L2(A), then ed (A) = 0 (Libgober 2002).

In particular, if L2(A) has only flats of multiplicity 2 and 3, then
∆(t) = (t ´ 1)n´1(t2 + t + 1)e3 .

If multiplicity 4 appears, then also get factor of (t + 1)e2 ¨ (t2 + 1)e4 .

Question: Is ∆(t) determined by L(A)?
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THE MILNOR FIBRATION HOMOLOGY OF THE MILNOR FIBER

THEOREM (PAPADIMA–S. 2014)

Suppose all flats X P L2(A) have multiplicity 2 or 3. Then ∆A(t), and
thus b1(F (A)), are combinatorially determined.

The combinatorial quantities involved in this theorem (and its
generalizations) are

βp(A) = dimk H1(A, ¨σ),

where A = H˚(M(A), k), with char(k) = p, and σ =
ř

HPA eH P A1.

CONJECTURE (PS)

Let A be an arrangement of rank at least 3. Then eps(A) = 0, for all
primes p and integers s ě 1, with two possible exceptions:

e2(A) = e4(A) = β2(A) and e3(A) = β3(A).
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THE MILNOR FIBRATION TORSION IN HOMOLOGY

TORSION IN HOMOLOGY

THEOREM (COHEN–DENHAM–S. 2003)

For every prime p ě 2, there is a multi-arrangement (A,m) such that
H1(Fm(A),Z) has non-zero p-torsion.

1

2

1

1

2 2
3 3

Simplest example: the arrangement of 8 hyperplanes in C3 with

Qm(A) = x2y(x2 ´ y2)3(x2 ´ z2)2(y2 ´ z2)

Then H1(Fm(A),Z) = Z7 ‘Z2 ‘Z2.
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THE MILNOR FIBRATION TORSION IN HOMOLOGY

We now can generalize and reinterpret these examples, as follows.

THEOREM (DENHAM–S. 2014)

Suppose A admits a ‘pointed’ multinet, with distinguished hyperplane
H and multiplicity m. Let p be a prime dividing mH . There is then a
choice of multiplicities m1 on the deletion A1 = AztHu such that
H1(Fm1(A1),Z) has non-zero p-torsion.

This torsion is explained by the fact that the geometry of V1(A1, k)
varies with char(k).
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THE MILNOR FIBRATION TORSION IN HOMOLOGY

To produce p-torsion in the homology of the usual Milnor fiber, we use
a ‘polarization’ construction:

}  

(A,m) A }m, an arrangement of N =
ř

HPA mH hyperplanes, of
rank equal to rankA+ |tH P A : mH ě 2u|.

THEOREM (DS)

Suppose A admits a pointed multinet, with distinguished hyperplane H
and multiplicity m. Let p be a prime dividing mH .
There is then a choice of multiplicities m1 on the deletion A1 = AztHu
such that Hq(F (B),Z) has p-torsion, where B = A1}m1 and
q = 1 +

ˇ

ˇ

 

K P A1 : m1
K ě 3

(ˇ

ˇ.
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THE MILNOR FIBRATION TORSION IN HOMOLOGY

COROLLARY (DS)
For every prime p ě 2, there is an arrangement A such that
Hq(F (A),Z) has non-zero p-torsion, for some q ą 1.

Simplest example: the arrangement of 27 hyperplanes in C8 with
Q(A) = xy(x2´ y2)(x2´ z2)(y2´ z2)w1w2w3w4w5(x2´w2

1 )(x
2´ 2w2

1 )(x
2´ 3w2

1 )(x ´ 4w1)¨

((x ´ y)2´w2
2 )((x + y)2´w2

3 )((x ´ z)2´w2
4 )((x ´ z)2´ 2w2

4 ) ¨ ((x + z)2´w2
5 )((x + z)2´ 2w2

5 ).

Then H6(F (A),Z) has 2-torsion (of rank 108).
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BOUNDARY STRUCTURES THE BOUNDARY MANIFOLD OF AN ARRANGEMENT

THE BOUNDARY MANIFOLD OF AN ARRANGEMENT

Let A be a (central) arrangement of hyperplanes in Cd+1 (d ě 1).

Let P(A) = tP(H)uHPA, and let ν(W ) be a regular neighborhood
of the algebraic hypersurface W =

Ť

HPA P(H) inside CPd .

Let U = CPd
z int(ν(W )) be the exterior of P(A).

The boundary manifold of A is BU = Bν(W ): a compact,
orientable, smooth manifold of dimension 2d ´ 1.

EXAMPLE

Let A be a pencil of n hyperplanes in Cd+1, defined by Q = zn
1 ´ zn

2 .
If n = 1, then BU = S2d´1. If n ą 1, then BU = 7n´1S1 ˆS2(d´1).

EXAMPLE

Let A be a near-pencil of n planes in C3, defined by
Q = z1(zn´1

2 ´ zn´1
3 ). Then BU = S1 ˆ Σn´2, where Σg = 7gS1 ˆS1.
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BOUNDARY STRUCTURES THE BOUNDARY MANIFOLD OF AN ARRANGEMENT

By Lefschetz duality: Hq(BU,Z) – Hq(U,Z)‘H2d´q´1(U,Z)

Let A = H˚(U,Z); then Ǎ = HomZ(A,Z) is an A-bimodule, with
(a ¨ f )(b) = f (ba) and (f ¨ a)(b) = f (ab).

THEOREM (COHEN–S. 2006)

The ring pA = H˚(BU,Z) is the “double" of A, that is: pA = A‘ Ǎ, with
multiplication given by (a, f ) ¨ (b,g) = (ab,ag + fb), and grading
pAq = Aq ‘ Ǎ2d´q´1.

Now assume d = 2. Then BU is a graph-manifold of dimension 3,
modeled on a graph Γ based on the poset Lď2(A).

THEOREM (COHEN–S. 2008)

The manifold BU admits a minimal cell structure. Moreover,

V1
1 (BU) =

ď

vPV(Γ) : dvě3

ttv ´ 1 = 0u,

where dv denotes the degree of the vertex v, and tv =
ś

iPv ti .
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BOUNDARY STRUCTURES THE BOUNDARY OF THE MILNOR FIBER

THE BOUNDARY OF THE MILNOR FIBER

Let (A,m) be a multi-arrangement in Cd+1.

Define F m(A) = Fm(A)XD2(d+1) to be the closed Milnor fiber of
(A,m). Clearly, Fm(A) deform-retracts onto F m(A).

The boundary of the Milnor fiber of (A,m) is the compact,
smooth, orientable, (2d ´ 1)-manifold BF m(A) = Fm(A)XS2d+1.

The pair (F m, BF m) is (d ´ 1)-connected. In particular, if d ě 2,
then BF m is connected, and π1(BF m)Ñ π1(F m) is surjective.

FIGURE : Closed Milnor fiber for Q(A) = xy
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BOUNDARY STRUCTURES THE BOUNDARY OF THE MILNOR FIBER

EXAMPLE

Let Bn be the Boolean arrangement in Cn. Recall F = (C˚)n´1.
Hence, F = T n´1 ˆDn´1, and so BF = T n´1 ˆSn´2.
Let A be a near-pencil of n planes in C3. Then BF = S1 ˆ Σn´2.

The Hopf fibration π : Cd+1zt0u Ñ CPd restricts to regular, cyclic
n-fold covers, π : F Ñ U and π : BF Ñ BU, which fit into the ladder

Zn

��

Zn

��

Zn //

��

C˚

��

C˚

��
BF

π
��

// F

π
��

» // F

π

��

// M //

π

��

Cd+1zt0u

π
��

BU // U » // U U // CPd
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BOUNDARY STRUCTURES THE BOUNDARY OF THE MILNOR FIBER

Assume now that d = 2. The group π1(BU) has generators
x1, . . . , xn´1 corresponding to the meridians around the first n´ 1 lines
in P(A), and generators y1, . . . , ys corresponding to the cycles in the
associated graph Γ.

PROPOSITION (S. 2014)

The Zn-cover π : BF Ñ BU is classified by the homomorphism
π1(BU)� Zn given by xi ÞÑ 1 and yi ÞÑ 0.

EXAMPLE

Let A be a pencil of n + 1 planes in C3. Since BU = 7nS1 ˆS2, and
BF Ñ BU is a cover with n + 1 sheets, we see that BF = 7n

2
S1 ˆS2.
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BOUNDARY STRUCTURES THE BOUNDARY OF THE MILNOR FIBER

THEOREM (NÉMETHI–SZILARD 2012)

Let A be an arrangement of n planes in C3. The characteristic
polynomial of the algebraic monodromy acting on H1(BF ,C) is given by

∆(t) =
ź

XPL2(A)

(t ´ 1)(tgcd(µ(X )+1,n) ´ 1)µ(X )´1.

This shows that b1(BF ) is a much less subtle invariant than b1(F ):
it depends only on the number and type of multiple points of
P(A), but not on their relative position.

On the other hand, the torsion in H1(BF ,Z) is still not understood.

For a generic arrangement of n planes in C3, I expect that
H1(BF ,Z) = Zn(n´1)/2 ‘Z

(n´2)(n´3)/2
n .

In general, it would be interesting to see whether all the torsion in
H1(BF (A),Z) consists of Zn-summands, where n = |A|.
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BOUNDARY STRUCTURES THE BOUNDARY OF THE MILNOR FIBER
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