REPRESENTATION VARIETIES AND POLYHEDRAL PRODUCTS

Alex Suciu

Northeastern University

Special Session

Representation Spaces and Toric Topology

AMS Spring Eastern Sectional Meeting Hunter College, New York City May 6, 2017

1/26

REFERENCES

- [MPPS17] Anca Măcinic, Stefan Papadima, Radu Popescu, and Alex Suciu, Flat connections and resonance varieties: from rank one to higher ranks, Trans. Amer. Math. Soc. **369** (2017), no. 2, 1309–1343.
 - [PS16] Stefan Papadima and Alex Suciu, *Naturality properties and comparison results for topological and infinitesimal embedded jump loci*, arxiv:1609.02768.

2 / 26

OVERVIEW

- The study of analytic germs of G-representation varieties and cohomology jump loci is a basic problem in deformation theory with homological constraints.
- Building on work of Goldman–Millson [1988], it was shown by Dimca–Papadima [2014] that the germs at the origin of those loci are isomorphic to the germs at the origin of infinitesimal jump loci of a CDGA that is a finite model for the space in question.
- Budur and Wang [2015] have extended this result away from the origin, by developing a theory of differential graded Lie algebra modules which control the corresponding deformation problem.

- ► The universality theorem of Kapovich and Millson [1998] shows that SL₂(ℂ)-representation varieties of Artin groups may have arbitrarily bad singularities away from 1.
- This lead us to focus on germs at the origin of the representation varieties Hom(π, G), and look for explicit descriptions via infinitesimal CDGA methods.
- This approach works very well in the case when G = SL(2, C) or one of its standard subgroups, and π is a right-angled Artin group, that is, the fundamental group of a polyhedral product of the form Z_Γ(S¹, *), for some finite simplicial graph Γ.

REPRESENTATION VARIETIES

- Let π be a finitely generated group.
- Let *G* be a complex, linear algebraic group.
- The set Hom(π, G) has a natural structure of an affine variety, called the G-representation variety of π.
- Every homomorphism $\varphi \colon \pi \to \pi'$ induces an algebraic morphism, $\varphi^! \colon \operatorname{Hom}(\pi', G) \to \operatorname{Hom}(\pi, G).$
- Example: $Hom(F_n, G) = G^n$.
- ► Hom(Z², GL_k(C)) is irreducible, but relatively little is known about the varieties of commuting matrices, Hom(Zⁿ, GL_k(C)).
- The varieties Hom(π₁(Σ_g), G) are connected if G = SL_k(ℂ), and irreducible if G = GL_k(ℂ).

COHOMOLOGY JUMP LOCI

- Let (X, x_0) be a pointed, path-connected space, and assume $\pi = \pi_1(X, x_0)$ is finitely generated.
- The *characteristic varieties* of X with respect to a representation $\iota: G \rightarrow GL(V)$ are the sets

 $\mathcal{V}_{r}^{i}(\boldsymbol{X},\iota) = \{ \rho \in \operatorname{Hom}(\pi, \boldsymbol{G}) \mid \dim_{\mathbb{C}} \mathcal{H}^{i}(\boldsymbol{X}, \boldsymbol{V}_{\iota \circ \rho}) \geq r \}.$

- For all $i \ge 0$, these sets form a descending filtration of Hom (π, G) .
- The pairs (Hom(π, G), Vⁱ_r(X, ι)) depend only on the homotopy type of X and on the representation ι.
- If X is a finite-type CW-complex, and ι is a rational representation, then the sets Vⁱ_r(X, ι) are closed subvarieties of Hom(π, G).

FLAT CONNECTIONS

The infinitesimal analogue of the G-representation variety is

 $F(A, \mathfrak{g}),$

the set of \mathfrak{g} -valued flat connections on a commutative, differential graded \mathbb{C} -algebra (A^{\bullet}, d) , where \mathfrak{g} is a Lie algebra.

 This set consists of all elements ω ∈ A¹ ⊗ g which satisfy the Maurer–Cartan equation,

$$d\omega + \frac{1}{2}[\omega, \omega] = 0.$$

If A¹ and g are finite dimensional, then F(A, g) is a Zariski-closed subset of the affine space A¹ ⊗ g.

7 / 26

HOLONOMY LIE ALGEBRA

- ▶ Let $A = (A^{\bullet}, d)$ be a connected CDGA with dim $A^1 < \infty$, and set $A_i = (A^i)^*$.
- ► The holonomy Lie algebra h(A) is the quotient of the free Lie algebra L(A₁) by the ideal generated by the image of the map

 $\partial_{\boldsymbol{A}} := \boldsymbol{d}^* + \mu^* \colon \boldsymbol{A}_2 \to \mathbb{L}^1(\boldsymbol{A}_1) \oplus \mathbb{L}^2(\boldsymbol{A}_1) \subset \mathbb{L}(\boldsymbol{A}_1),$

where $d^* \colon A_2 \to A_1 = \mathbb{L}^1(A_1)$ and $\mu^* \colon A_2 \to A_1 \land A_1 = \mathbb{L}^2(A_1)$.

▶ Functoriality: if $\varphi: A \to A'$ is a CDGA map, then the linear map $\varphi_1 = (\varphi^1)^* : A'_1 \to A_1$ extends to a Lie map $\mathbb{L}(\varphi_1) : \mathbb{L}(A'_1) \to \mathbb{L}(A_1)$, which in turn induces a Lie algebra map $\mathfrak{h}(\varphi) : \mathfrak{h}(A') \to \mathfrak{h}(A)$.

PROPOSITION (MPPS 2017)

The canonical isomorphism $A^1 \otimes \mathfrak{g} \cong \operatorname{Hom}(A_1, \mathfrak{g})$ restricts to an identification $\mathcal{F}(A, \mathfrak{g}) \cong \operatorname{Hom}_{\operatorname{Lie}}(\mathfrak{h}(A), \mathfrak{g})$.

INFINITESIMAL COHOMOLOGY JUMP LOCI

For each $\omega \in \mathcal{F}(\mathcal{A}, \mathfrak{g})$, we turn $\mathcal{A} \otimes \mathcal{V}$ into a cochain complex,

$$(\boldsymbol{A} \otimes \boldsymbol{V}, \boldsymbol{d}_{\omega}) \colon \boldsymbol{A}^{0} \otimes \boldsymbol{V} \xrightarrow{\boldsymbol{d}_{\omega}} \boldsymbol{A}^{1} \otimes \boldsymbol{V} \xrightarrow{\boldsymbol{d}_{\omega}} \boldsymbol{A}^{2} \otimes \boldsymbol{V} \xrightarrow{\boldsymbol{d}_{\omega}} \cdots,$$

using as differential the covariant derivative $d_{\omega} = d \otimes id_V + ad_{\omega}$. (The flatness condition on ω insures that $d_{\omega}^2 = 0$.)

The resonance varieties of the CDGA (A[•], d) with respect to a representation θ: g → gl(V) are the sets

 $\mathcal{R}^{i}_{r}(\boldsymbol{A},\theta) = \{ \omega \in \mathcal{F}(\boldsymbol{A},\mathfrak{g}) \mid \dim_{\mathbb{C}} \boldsymbol{H}^{i}(\boldsymbol{A} \otimes \boldsymbol{V}, \boldsymbol{d}_{\omega}) \geq r \}.$

- For each $i \ge 0$, these sets form a descending filtration of $\mathcal{F}(A, \mathfrak{g})$.
- If A, g, and V are all finite-dimensional, the sets Rⁱ_r(A, θ) are closed subvarieties of F(A, g).

- Let $\mathcal{F}^1(\mathcal{A},\mathfrak{g}) = \{\eta \otimes g \in \mathcal{F}(\mathcal{A},\mathfrak{g}) \mid d\eta = 0\}.$
- Let $\Pi(\mathbf{A}, \theta) = \{\eta \otimes \mathbf{g} \in \mathcal{F}^1(\mathbf{A}, \mathfrak{g}) \mid \det(\theta(\mathbf{g})) = \mathbf{0}\}.$
- For g = C, we have F(A, g) ≃ H¹(A). Also, for θ = id_C, we get the usual resonance varieties Rⁱ_r(A).
- ▶ In this rank 1 case, $\mathcal{F}^1(\mathcal{A}, \mathbb{C}) = \mathcal{F}(\mathcal{A}, \mathbb{C})$ and $\Pi(\mathcal{A}, \theta) = \{0\}$.

THEOREM (MPPS 2017)

Let $\omega = \eta \otimes g \in \mathcal{F}^1(\mathcal{A}, \mathfrak{g})$. Then ω belongs to $\mathcal{R}_1^k(\mathcal{A}, \theta)$ if and only if there is an eigenvalue λ of $\theta(g)$ such that $\lambda \eta$ belongs to $\mathcal{R}_1^k(\mathcal{A})$. Moreover,

$$\Pi(\boldsymbol{A},\theta) \subseteq \bigcap_{\boldsymbol{k}:H^{k}(\boldsymbol{A})\neq 0} \mathcal{R}_{1}^{k}(\boldsymbol{A},\theta).$$

ALGEBRAIC MODELS FOR SPACES

- From now on, X will be a connected space having the homotopy type of a finite CW-complex.
- Let A_{PL}(X) be the Sullivan CDGA of piecewise polynomial C-forms on X. Then H[•](A_{PL}(X)) ≅ H[•](X, C).
- ► A CDGA (A, d) is a model for X if it may be connected by a zig-zag of quasi-isomorphisms to A_{PL}(X).
- *A* is a *finite* model if $\dim_{\mathbb{C}} A < \infty$ and *A* is connected.
- ▶ X is formal if $(H^{\bullet}(X, \mathbb{C}), d = 0)$ is a (finite) model for X.
 - E.g.: Compact Kähler manifolds, complements of hyperplane arrangments.
- ▶ Thus, if *X* is formal, then $H^{\bullet}(X, \mathbb{C})$ is a finite model for *X*.
 - Converse not true. E.g.: all nilmanifolds, solvmanifolds, Sasakian manifolds, smooth quasi-projective varieties, etc, admit finite models, but many are non-formal.

GERMS OF JUMP LOCI

THEOREM (DIMCA–PAPADIMA 2014)

Suppose *X* admits a finite CDGA model *A*. Let $\iota : G \to GL(V)$ be a rational representation, and $\theta : \mathfrak{g} \to \mathfrak{gl}(V)$ its tangential representation. There is then an analytic isomorphism of germs,

 $\mathcal{F}(\boldsymbol{A},\mathfrak{g})_{(0)} \xrightarrow{\simeq} \operatorname{Hom}(\pi_1(\boldsymbol{X}),\boldsymbol{G})_{(1)},$

restricting to isomorphisms $\mathcal{R}_r^i(A,\theta)_{(0)} \xrightarrow{\simeq} \mathcal{V}_r^i(X,\iota)_{(1)}$ for all i,r.

Rank 1 case:

- For G = C^{*}, the representation variety Hom(π, C^{*}) = H¹(X, C^{*}) is the character group of π = π₁(X).
- For *ι*: C* → GL₁(C) and V = C, we get the usual characteristic varieties, Vⁱ_r(X)

The local analytic isomorphism H¹(A)₍₀₎ → Hom(π₁(X), C*)₍₁₎ is induced by the exponential map H¹(X, C) → H¹(X, C*).

THEOREM (DIMCA–PAPADIMA 2014, MPPS 2017)

If (\mathbf{A}, \mathbf{d}) is a finite CDGA such that $\mathbf{A}_{PL}(\mathbf{X}) \simeq \mathbf{A}$, then

 $\mathsf{TC}_{0}(\mathcal{R}^{i}_{r}(A)) \subseteq \mathcal{R}^{i}_{r}(H^{\bullet}(A)).$

Moreover, if (A, d) is rationally defined, with positive weights, and $A_{\text{PL}}(X) \simeq A$ over \mathbb{Q} , then each $\mathcal{R}_r^i(A)$ is a finite union of rationally defined linear subspaces of $H^1(A)$, and $\mathcal{R}_r^i(A) \subseteq \mathcal{R}_r^i(H^{\bullet}(A))$.

THEOREM (BUDUR–WANG 2017)

If X admits a finite CDGA model A, then all the components of the characteristic varieties $\mathcal{V}_r^i(X)$ passing through 1 are algebraic subtori.

LINEAR RESONANCE

- Suppose $\mathcal{R}_1^1(A) = \bigcup_{C \in \mathcal{C}} C$, a finite union of linear subspaces.
- ► Let A_C denote the sub-CDGA of the truncation $A^{\leq 2}$ defined by $A_C^1 = C$ and $A_C^2 = A^2$.

THEOREM (MPPS 2017)

For any Lie algebra g,

$$\mathcal{F}(\mathcal{A},\mathfrak{g}) \supseteq \mathcal{F}^{1}(\mathcal{A},\mathfrak{g}) \cup \bigcup_{0 \neq C \in \mathcal{C}} \mathcal{F}(\mathcal{A}_{C},\mathfrak{g}),$$

where each $\mathcal{F}(A_C, \mathfrak{g})$ is Zariski-closed in $\mathcal{F}(A, \mathfrak{g})$. Moreover, if A has zero differential, and $\mathfrak{g} = \mathfrak{sl}_2$ or \mathfrak{sol}_2 , then (*) holds as an equality, and

$$\mathcal{R}_1^1(\boldsymbol{A}, \boldsymbol{\theta}) = \Pi(\boldsymbol{A}, \boldsymbol{\theta}) \cup \bigcup_{\boldsymbol{0} \neq \boldsymbol{C} \in \mathcal{C}} \mathcal{F}(\boldsymbol{A}_{\boldsymbol{C}}, \mathfrak{g}).$$

(For $\mathfrak{g} = \mathfrak{sl}_2$ or \mathfrak{sol}_2 : if $g, g' \in \mathfrak{g}$, then [g, g'] = 0 if and only if rank $\{g, g'\} \leq 1$.)

TORIC COMPLEXES

- Let K be simplicial complex on n vertices.
- Let *T_K* = *Z_K*(*S*¹, ∗) be the subcomplex of *Tⁿ* obtained by deleting the cells corresponding to the missing simplices of *K*.
- T_K is a minimal CW-complex, of dimension dim K + 1.
- T_K is formal (Notbohm and Ray, 2005).
- ► The cohomology algebra A_K = H^{*}(T_K, C) is isomorphic to the exterior Stanley–Reisner ring of K.

RIGHT ANGLED ARTIN GROUPS

The fundamental group π_Γ = π₁(T_K) is the RAAG associated to the graph Γ := K⁽¹⁾ = (V, E),

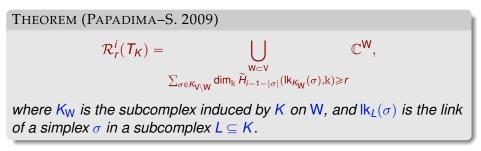
$$\pi_{\Gamma} = \langle \mathbf{v} \in \mathbf{V} \mid [\mathbf{v}, \mathbf{w}] = 1 \text{ if } \{\mathbf{v}, \mathbf{w}\} \in \mathbf{E} \rangle.$$

- Then $K(\pi_{\Gamma}, 1) = T_{\Delta_{\Gamma}}$, where Δ_{Γ} is the flag complex of Γ .
- ► The holonomy Lie algebra associated to (A_Γ, d = 0) has presentation

$$\mathfrak{h}(\Gamma) = \mathbb{L}(V)/([v, w] = 0 \text{ if } \{v, w\} \in E).$$

RESONANCE VARIETIES

Identify $H^1(T_K, \mathbb{C}) = \mathbb{C}^V$, the \mathbb{C} -vector space with basis $\{v \mid v \in V\}$.



In particular (PS 2006):
$$\mathcal{R}_1^1(\pi_{\Gamma}) = \bigcup_{\substack{W \subseteq V \\ \Gamma_W \text{ disconnected}}} \mathbb{C}^W$$
.

Similar formulas for the characteristic varieties $\mathcal{V}_r^i(\mathcal{T}_K)$.

ALEX SUCIU (NORTHEASTERN) REP VARIETIES AND POLYHEDRAL PRODUCTS NYC

FLAT CONNECTIONS

- Let $A = (A_{\Gamma}^{\bullet}, d = 0)$, and \mathfrak{g} a finite-dimensional Lie algebra.
- The isomorphism $\mathbb{C}^{\mathsf{V}} \otimes \mathfrak{g} \cong \mathsf{Hom}(\mathbb{C}^{\mathsf{V}}, \mathfrak{g})$ induces an iso $\mathcal{F}(\mathcal{A}, \mathfrak{g}) \cong \mathsf{Hom}_{\mathsf{Lie}}(\mathfrak{h}(\Gamma), \mathfrak{g}).$
- View ω ∈ C^V ⊗ g as a tuple of elements ω_V ∈ g, indexed by v ∈ V. Then ω ∈ F(A, g) if and only if [ω_u, ω_V] = 0 for all {u, v} ∈ E.
- For each subset W ⊆ V, let W₁,..., W_c be the connected components of the vertex set of Γ_W, let W = V\W, and put

$$S_{\mathsf{W}} = \left\{ \omega \in \mathbb{C}^{\mathsf{V}} \otimes \mathfrak{g} \middle| \begin{array}{c} \omega_{\mathsf{v}} = 0 & \text{for } \mathsf{v} \in \overline{\mathsf{W}} \\ \operatorname{rank}_{\{\omega_{\mathsf{v}}\}_{\mathsf{v} \in \mathsf{W}_{i}} \leqslant 1} & \text{for } 1 \leqslant i \leqslant c \end{array} \right\}.$$

Then S_W ≃ ∏^c_{i=1} cone (P(C^{W_i}) × P(g)) is a Zariski-closed subset of the affine space C^W ⊗ g ⊆ C^V ⊗ g.

18 / 26

PROPOSITION (MPPS 2017)

Let $\Gamma = (V, E)$ be a finite simplicial graph, and let \mathfrak{g} be a Lie algebra. Then $\mathcal{F}(A_{\Gamma}, \mathfrak{g}) \supseteq \bigcup_{W \subset V} S_W$. Moreover, if $\mathfrak{g} = \mathfrak{sl}_2$ or \mathfrak{sol}_2 , then

 $\mathcal{F}(A_{\Gamma},\mathfrak{g})=\bigcup_{W\subseteq V}S_W.$

- Let $\theta : \mathfrak{g} \to \mathfrak{gl}(V)$ be a finite-dimensional representation.
- Given a subset $W \subseteq V$, put

$$P_{\mathsf{W}} = \left\{ \omega \in \mathbb{C}^{\mathsf{V}} \otimes \mathfrak{g} \middle| \begin{array}{c} \omega_{\mathsf{v}} = \mathsf{0} & \text{if } \mathsf{v} \in \overline{\mathsf{W}} \\ \omega_{\mathsf{v}} = \lambda_{\mathsf{v}} g_{\mathsf{W}} & \text{if } \mathsf{v} \in \mathsf{W} \end{array} \right\}.$$

19 / 26

where $\lambda_{\mathbf{v}} \in \mathbb{C}$ and $g_{\mathbf{W}} \in \mathbf{V}(\det \circ \theta)$.

▶ Then P_W is a Zariski-closed subset of $\mathbb{C}^V \otimes \mathfrak{g}$, and $P_W \subseteq S_W$.

IRREDUCIBLE DECOMPOSITIONS

PROPOSITION (MPPS 2017) If $g = \mathfrak{sl}_2$ or \mathfrak{sol}_2 , then

 $\mathcal{R}_{1}^{1}(A_{\Gamma},\theta) = \bigcup_{\substack{\mathsf{W} \subseteq \mathsf{V} \\ c(\mathsf{W})=1}} P_{\mathsf{W}} \cup \bigcup_{\substack{\mathsf{W} \subseteq \mathcal{V} \\ c(\mathsf{W})>1}} S_{\mathsf{W}}.$

- For W ⊆ W' ⊆ V, let K_{WW'}: {W₁,..., W_c} → {W'₁,..., W'_{c'}} be the map from the connected components of Γ_W to those of Γ_{W'}.
- Define an order relation on the subsets of V by

 $W \leq W' \Leftrightarrow W \subseteq W'$ and $K_{WW'}$ is injective.

► Clearly, if c(W) > 1 and c(W') = 1, then $W \leq W'$. Furthermore, if c(W) = 1, then $W \leq W'$ if and only if $W \subseteq W'$.

THEOREM (MPPS 2017)

If $\Gamma = (V, E)$ be a finite, simplicial graph, and let $\theta : \mathfrak{sl}_2 \to \mathfrak{gl}(V)$ be a finite-dimensional representation. We then have the following decompositions into irreducible components:

$$\mathcal{F}(A_{\Gamma},\mathfrak{sl}_{2}) = \bigcup_{\substack{\mathsf{W} \leq -maximal}} S_{\mathsf{W}},$$
$$\mathcal{R}_{1}^{1}(A_{\Gamma},\theta) = \bigcup_{\substack{c(\mathsf{W})=1\\\mathsf{W} \leq -maximal}} P_{\mathsf{W}} \cup \bigcup_{\substack{c(\mathsf{W})>1\\ \nexists\mathsf{W} \lneq \mathsf{W}' \text{ with } c(\mathsf{W}') > 1}} S_{\mathsf{W}}.$$

RANK GREATER THAN 1

PROPOSITION (MPPS 2017)

Suppose \mathfrak{g} is a semisimple Lie algebra, $\mathfrak{g} \neq \mathfrak{sl}_2$. There is then a connected, finite simple graph Γ such that $\mathcal{F}(\mathcal{A}_{\Gamma}, \mathfrak{g}) \neq \bigcup_{W \subseteq V} S_W$.

Sketch of proof:

- Let $r = \operatorname{rank} \mathfrak{g}$. By assumption, r > 1.
- Let $\{\alpha_1, \ldots, \alpha_r\}$ be a system of simple roots.
- If r > 2, let Γ be the graph with vertex set V = {±α₁,..., ±α_r} and edges {α_i, −α_j} for i ≠ j. Clearly, Γ is connected.
- Pick ω ∈ F(A_Γ, g) so that ω_α is a generator of the root space g_α ⊆ g, for each α ∈ V. Then ω ∉ ⋃_{W⊆V} S_W.
- The case r = 2 is similar.

ARTIN GROUPS

• Let $\Gamma = (V, E, \ell)$ be a finite simplicial graph with labeling function $\ell \colon E \to \mathbb{Z}_{\geq 2}$. The corresponding *Artin group* is

$$\pi_{\Gamma,\ell} = \langle \mathbf{v} \in \mathbf{V} \mid \underbrace{\mathbf{vwv}\cdots}_{\ell(e)} = \underbrace{\mathbf{wvw}\cdots}_{\ell(e)} \text{ if } \mathbf{e} = \{\mathbf{v},\mathbf{w}\} \in \mathbf{E} \rangle.$$

- If $\ell(e) = 2$ for all $e \in E$, then $\pi_{\Gamma,\ell} = \pi_{\Gamma}$.
- To each labeled graph (Γ, ℓ) we associate an unlabeled graph, Γ, called the *odd contraction* of (Γ, ℓ), as follows.
- We first define an unlabeled graph Γ_{odd} by keeping all the vertices of Γ, and retaining only those edges for which the label is odd.
- We then let Γ be the graph whose vertices correspond to the connected components of Γ_{odd}, with two distinct components determining an edge {*c*, *c'*} in Γ if and only if there exist vertices *v* ∈ *c* and *v'* ∈ *c'* which are connected by an edge in Γ.

EXAMPLE

Let Γ be the complete graph on $\{1, 2, ..., n-1\}$, with $\ell(\{i, j\}) = 2$ if |i - j| > 1 and $\ell(\{i, j\}) = 3$ if |i - j| = 1. Then $\pi_{\Gamma, \ell} = B_n$. Moreover, Γ_{odd} is connected, and so $\tilde{\Gamma} = \bullet$.

- Let A[•]_{Γ,ℓ} = H[•](π_{Γ,ℓ}, C) and A[•]_Γ = H[•](π_Γ, C) be the respective cohomology algebras, both endowed with the zero differential.
- Then $\mathfrak{h}(\pi_{\Gamma,\ell}) = \mathfrak{h}(\pi_{\widetilde{\Gamma}})$ and

 $(\mathcal{F}(\boldsymbol{A}_{\Gamma,\ell},\mathfrak{g}),\mathcal{R}_1^1(\boldsymbol{A}_{\Gamma,\ell},\theta))\cong(\mathcal{F}(\boldsymbol{A}_{\tilde{\Gamma}},\mathfrak{g}),\mathcal{R}_1^1(\boldsymbol{A}_{\tilde{\Gamma}},\theta))$

This yields explicit decompositions into irreducible components for the varieties *F*(*A*_{Γ,ℓ}, *sl*₂) and *R*¹₁(*A*_{Γ,ℓ}, *θ*), for any labeled graph (Γ, ℓ) and any representation *θ*: *sl*₂ → *gl*(*V*).

KAPOVICH-MILLSON UNIVERSALITY

THEOREM (KAPOVICH–MILLSON 1998)

Let \mathcal{X} be an affine variety defined over \mathbb{Q} , and let $x \in \mathcal{X}$. There is then a labeled graph (Γ, ℓ) and a non-trivial representation $\rho \colon \pi_{\Gamma, \ell} \to \mathsf{PSL}_2$ with finite image and trivial centralizer such that

 $\left(\operatorname{Hom}(\pi_{\Gamma,\ell},\operatorname{PSL}_2)//\operatorname{PSL}_2\right)_{([\rho])}\cong \mathcal{X}_{(x)}$

and Hom $(\pi_{\Gamma,\ell}, \mathsf{PSL}_2)_{(\rho)} \cong \mathcal{X}_{(x)} \times \mathbb{C}^3_{(0)}$.

At the trivial representation, though, things are completely different.

THEOREM (KAPOVICH–MILLSON 1998)

For any labeled graph (Γ, ℓ) , the variety $\text{Hom}(\pi_{\Gamma, \ell}, \text{PSL}_2)$ has at worst a quadratic singularity at $\rho = 1$.

GERMS AT **1** OF REPRESENTATION VARIETIES

Let Γ be the odd contraction of (Γ, ℓ). We then have a local analytic isomorphism

$$\operatorname{Hom}(\pi_{\Gamma,\ell},\operatorname{\mathsf{PSL}}_2)_{(1)}\cong \mathcal{F}(A_{\widetilde{\Gamma}},\mathfrak{sl}_2)_{(0)}$$

which identifies $\mathcal{V}_1^1(\mathcal{K}(\pi_{\Gamma,\ell}, 1), \iota)_{(1)}$ with $\mathcal{R}_1^1(\mathcal{A}_{\tilde{\Gamma}}, \theta)_{(0)}$, for every rational representation $\iota \colon \mathsf{PSL}_2 \to \mathsf{GL}(\mathcal{V})$.

- The analytic singularity at 1 of Hom(π_{Γ,ℓ}, PSL₂) can then be completely described in terms of the graph Γ̃.
- Similarly, V¹₁(K(π_{Γ,ℓ}, 1), ι), can be completely described in terms of the graph Γ and the tangential representation of ι.