Finiteness properties, cohomology jump loci, and tropical varieties

Alex Suciu

Northeastern University

Topology Seminar
Northeastern University
April 13, 2021

(1) FINITENESS PROPERTIES OF ABELIAN COVERS

- The Bieri-Neumann-Strebel-Renz invariants
(2) COHOMOLOGY JUMP LOCI
- Characteristic varieties
- Resonance varieties
- Bounding the Σ-invariants
(3) TROPICAL GEOMETRY
- Tropical varieties
- A tropical bound for the \sum-invariants
- Alexander polynomial and BNS invariant

4) Applications

- One-relator groups
- Compact 3-manifolds
- Kähler manifolds
- Hyperplane arrangements

The Bieri-Neumann-Strebel-Renz invariants

- Let G be a finitely generated group, $n=b_{1}(G)>0$. Let $S(G)=S^{n-1}$ be the unit sphere in $\operatorname{Hom}(G, \mathbb{R})=\mathbb{R}^{n}$.
- (Bieri-Neumann-Strebel 1987)

$$
\Sigma^{1}(G)=\left\{\chi \in S(G) \mid \operatorname{Cay}_{\chi}(G) \text { is connected }\right\}
$$

where $\operatorname{Cay}_{\chi}(G)$ is the induced subgraph of $\operatorname{Cay}(G)$ on vertex set $G_{\chi}=\{g \in G \mid \chi(g) \geq 0\}$.

- (Bieri-Renz 1988)

$$
\Sigma^{q}(G, \mathbb{Z})=\left\{\chi \in S(G) \mid \text { the monoid } G_{\chi} \text { is of type } F_{q}\right\}
$$

i.e., there is a projective $\mathbb{Z} G_{\chi}$-resolution $P_{\bullet} \rightarrow \mathbb{Z}$, with P_{i} finitely generated for all $i \leq q$. Moreover, $\Sigma^{1}(G, \mathbb{Z})=-\Sigma^{1}(G)$.

- The BNSR-invariants of form a descending chain of open subsets,

$$
S(G) \supseteq \Sigma^{1}(G, \mathbb{Z}) \supseteq \Sigma^{2}(G, \mathbb{Z}) \supseteq \cdots .
$$

- The Σ-invariants control the finiteness properties of normal subgroups $N \triangleleft G$ for which G / N is free abelian:

$$
N \text { is of type } \mathrm{FP}_{q} \Longleftrightarrow S(G, N) \subseteq \Sigma^{q}(G, \mathbb{Z})
$$

where $S(G, N)=\{\chi \in S(G) \mid \chi(N)=0\}$.

- In particular: $\operatorname{ker}(\chi: G \rightarrow \mathbb{Z})$ is f.g. $\Longleftrightarrow\{ \pm \chi\} \subseteq \Sigma^{1}(G)$.
- More generally, let X be a connected CW-complex with finite q-skeleton, for some $q \geq 1$.
- Let $G=\pi_{1}\left(X, x_{0}\right)$. For each $\chi \in S(X):=S(G)$, let

$$
\widehat{\mathbb{Z}}_{\chi}=\left\{\lambda \in \mathbb{Z}^{G} \mid\{g \in \operatorname{supp} \lambda \mid \chi(g) \geq c\} \text { is finite, } \forall c \in \mathbb{R}\right\}
$$

be the Novikov-Sikorav completion of $\mathbb{Z} G$.

- (Farber-Geoghegan-Schütz 2010)

$$
\Sigma^{q}(X, \mathbb{Z})=\left\{\chi \in S(X) \mid H_{i}\left(X, \widehat{\mathbb{Z}}_{-\chi}\right)=0, \forall i \leq q\right\}
$$

- (Bieri 2007) If G is FP_{k}, then $\Sigma^{q}(G, \mathbb{Z})=\Sigma^{q}(K(G, 1), \mathbb{Z}), \forall q \leq k$.

Characteristic varieties

- Let $\mathbb{T}_{G}:=\operatorname{Hom}\left(G, \mathbb{C}^{*}\right)$ be the character group of $G=\pi_{1}(X)$, also denoted by $\operatorname{Char}(X):=H^{1}\left(X, \mathbb{C}^{*}\right)$.
- The characteristic varieties of X are the sets

$$
\mathcal{V}^{i}(X)=\left\{\rho \in \mathbb{T}_{G} \mid H_{i}\left(X, \mathbb{C}_{\rho}\right) \neq 0\right\} .
$$

- If X has finite q-skeleton, then $\mathcal{V}^{i}(X)$ is Zariski closed for all $i \leq q$.
- We may define similarly $\mathcal{V}^{i}(X, \mathbb{k}) \subset H^{1}\left(X, \mathbb{k}^{*}\right)$ for any field k.
- These constructions are compatible with restriction and extension of the base field. Namely, if $\mathbb{k} \subset \mathbb{L}$ is a field extension, then

$$
\begin{gathered}
\mathcal{V}^{i}(X, \mathbb{k})=\mathcal{V}^{i}(X, \mathbb{L}) \cap H^{1}\left(X, \mathbb{k}^{\times}\right) \\
\mathcal{V}^{i}(X, \mathbb{L})=\mathcal{V}^{i}(X, \mathbb{k}) \times_{\mathbb{k}} \mathbb{L}
\end{gathered}
$$

- Let $X^{\mathrm{ab}} \rightarrow X$ be the maximal abelian cover. View $H_{*}\left(X^{\mathrm{ab}}, \mathbb{C}\right)$ as a module over $\mathbb{C}\left[G_{a b}\right]$. Then

$$
\bigcup_{i \leq q} \mathcal{V}^{i}(X)=\bigcup_{i \leq q} V\left(\operatorname{ann}\left(H_{i}\left(X^{\mathrm{ab}}, \mathbb{C}\right)\right)\right) .
$$

- Let exp: $\mathbb{C}^{n} \rightarrow\left(\mathbb{C}^{*}\right)^{n}$. Given a subvariety $W \subset\left(\mathbb{C}^{*}\right)^{n}$, define its exponential tangent cone at 1 (identity of $\left.\left(\mathbb{C}^{*}\right)^{n}\right)$ as

$$
\tau_{1}(W)=\left\{z \in \mathbb{C}^{n} \mid \exp (\lambda z) \in W, \forall \lambda \in \mathbb{C}\right\} .
$$

- $\tau_{1}(W)$ depends only on $W_{(1)}$; it is non-empty iff $1 \in W$.
- If $T \cong\left(\mathbb{C}^{*}\right)^{r}$ is an algebraic subtorus, then $\tau_{1}(T)=T_{1}(T) \cong \mathbb{C}^{r}$
- (Dimca-Papadima-S. 2009) $\tau_{1}(W)$ is a finite union of rationally defined linear subspaces.
- Set $\tau_{1}^{k}(W)=\tau_{1}(W) \cap \mathbb{k}^{n}$, for a subfield $\mathbb{k} \subset \mathbb{C}$.

Resonance varieties

- Let $A=H^{*}(X, \mathbb{C})$. For each $a \in A^{1}$, we have that $a^{2}=0$. Thus, there is a cochain complex

$$
(A, \cdot a): A^{0} \xrightarrow{a} A^{1} \xrightarrow{a} A^{2} \longrightarrow \cdots .
$$

- The resonance varieties of X are the homogeneous algebraic sets

$$
\mathcal{R}^{i}(X)=\left\{a \in A^{1} \mid H^{i}(A, a) \neq 0\right\}
$$

- Identify $A^{1}=H^{1}(X, \mathbb{C})$ with \mathbb{C}^{n}, where $n=b_{1}(X)$. The map $\exp : H^{1}(X, \mathbb{C}) \rightarrow H^{1}\left(X, \mathbb{C}^{*}\right)$ has image $\mathbb{T}_{G}^{0}=\left(\mathbb{C}^{*}\right)^{n}$.
- (Dimca-Papadima-S. 2009)

$$
\tau_{1}\left(\mathcal{V}^{i}(X)\right) \subseteq \mathcal{R}^{i}(X)
$$

- (DPS-2009, DP-2014) If X is a q-formal space, then, for all $i \leq q$,

$$
\tau_{1}\left(\mathcal{V}^{i}(X)\right)=\mathcal{R}^{i}(X)
$$

Bounding the Σ-invariants

THEOREM (PAPADIMA-S. 2010)
Let X be a connected CW-complex with finite q-skeleton. Let $\chi: \pi_{1}(X) \rightarrow \mathbb{R}$ be a non-zero homomorphism, and let $b_{i}(X, \chi)$ be the corresponding i-th Novikov-Betti number. Then,

- $-\chi \in \Sigma^{q}(X, \mathbb{Z}) \Longrightarrow b_{i}(X, \chi)=0, \forall i \leq q$.
- $\chi \notin \tau_{1}^{\mathbb{R}}(\mathcal{V} \leq q(X)) \Longleftrightarrow b_{i}(X, \chi)=0, \forall i \leq q$.

COROLLARY

$$
\Sigma^{q}(X, \mathbb{Z}) \subseteq S\left(\tau_{1}^{\mathbb{R}}\left(\mathcal{V}^{\leq q}(X)\right)\right)^{c}
$$

- Thus, $\Sigma^{q}(X, \mathbb{Z})$ is contained in the complement of a finite union of rationally defined great subspheres.
- If X is q-formal, then $\Sigma^{i}(X, \mathbb{Z}) \subseteq S\left(\mathcal{R}^{\leq i}(X)\right)^{\text {c }}$ for all $i \leq q$.

Tropical varieties

- Let $\mathbb{K}=\mathbb{C}\{\{t\}\}=\bigcup_{n \geq 1} \mathbb{C}\left(\left(t^{1 / n}\right)\right)$ be the field of Puiseux series $/ \mathbb{C}$.
- A non-zero element of \mathbb{K} has the form $c(t)=c_{1} t^{a_{1}}+c_{2} t^{a_{2}}+\cdots$, where $c_{i} \in \mathbb{C}^{*}$ and $a_{1}<a_{2}<\cdots$ are rational numbers with a common denominator.
- The (algebraically closed) field \mathbb{K} admits a valuation $v: \mathbb{K}^{*} \rightarrow \mathbb{Q}$, given by $v(c(t))=a_{1}$.
- Let $v:\left(\mathbb{K}^{*}\right)^{n} \rightarrow \mathbb{Q}^{n} \subset \mathbb{R}^{n}$ be the n-fold product of the valuation.
- The tropicalization of a subvariety $W \subset\left(\mathbb{K}^{*}\right)^{n}$, denoted $\operatorname{Trop}(W)$, is the closure (in the Euclidean topology) of $v(W)$ in \mathbb{R}^{n}.
- This is a rational polyhedral complex in \mathbb{R}^{n}. For instance, if W is a curve, then $\operatorname{Trop}(W)$ is a graph with rational edge directions.
- If T be an algebraic subtorus of $\left(\mathbb{K}^{*}\right)^{n}$, then $\operatorname{Trop}(T)$ is the linear subspace $\operatorname{Hom}\left(\mathbb{K}^{*}, T\right) \otimes \mathbb{R} \subset \operatorname{Hom}\left(\mathbb{K}^{*},\left(\mathbb{K}^{*}\right)^{n}\right) \otimes \mathbb{R}=\mathbb{R}^{n}$.
- Moreover, if $z \in\left(\mathbb{K}^{*}\right)^{n}$, then $\operatorname{Trop}(z \cdot T)=\operatorname{Trop}(T)+v(z)$.
- For a variety $W \subset\left(\mathbb{C}^{*}\right)^{n}$, we may define its tropicalization by setting $\operatorname{Trop}(W)=\operatorname{Trop}\left(W \times_{\mathbb{C}} \mathbb{K}\right)$.
- In this case, the tropicalization is a polyhedral fan in \mathbb{R}^{n}.
- If $W=V(f)$ is a hypersurface, defined by a Laurent polynomial $f \in \mathbb{C}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$, then $\operatorname{Trop}(W)$ is the positive-codimensional skeleton of the inner normal fan to the Newton polytope of f.

Tropicalizing the characteristic varieties

- Recall $\mathbb{K}=\mathbb{C}\left\{\{t\}\right.$ comes with a valuation map, $v: \mathbb{K}^{*} \rightarrow \mathbb{Q}$.
- Let $\nu_{X}: \operatorname{Char}_{\mathbb{K}}(X) \rightarrow \mathbb{Q}^{n} \subset \mathbb{R}^{n}$ be the composite

$$
H^{1}\left(X, \mathbb{K}^{*}\right) \xrightarrow{v_{*}} H^{1}(X, \mathbb{Q}) \longrightarrow H^{1}(X, \mathbb{R}) .
$$

- l.e., if $\rho: \pi_{1}(X) \rightarrow \mathbb{K}^{*}$ is a \mathbb{K}-valued character, then the morphism $v \circ \rho: \pi_{1}(X) \rightarrow \mathbb{Q}$ defines $\nu_{X}(\rho) \in H^{1}(X, \mathbb{Q})=\mathbb{Q}^{n} \subset \mathbb{R}^{n}$.
- Given an algebraic subvariety $W \subset H^{1}\left(X, \mathbb{C}^{*}\right)$ we define its tropicalization as the closure in $H^{1}(X, \mathbb{R}) \cong \mathbb{R}^{n}$ of the image of $W \times_{\mathbb{C}} \mathbb{K} \subset H^{1}\left(X, \mathbb{K}^{*}\right)$ under ν_{X},

$$
\operatorname{Trop}(W):=\overline{\nu_{X}\left(W \times_{\mathbb{C}} \mathbb{K}\right)}
$$

- Applying this definition to the characteristic varieties $\mathcal{V}^{i}(X)$, and recalling that $\mathcal{V}^{i}(X, \mathbb{K})=\mathcal{V}^{i}(X) \times_{\mathbb{C}} \mathbb{K}$, we have that

$$
\operatorname{Trop}\left(\mathcal{V}^{i}(X)\right)=\overline{\nu_{X}\left(\mathcal{V}^{i}(X, \mathbb{K})\right)}
$$

LEMMA

Let $W \subset\left(\mathbb{C}^{*}\right)^{n}$ be an algebraic variety. Then $\tau_{1}^{\mathbb{R}}(W) \subseteq \operatorname{Trop}(W)$.
Sketch of proof.

- Every irreducible component of $\tau_{1}^{\mathbb{R}}(W)$ is of the form $L \otimes_{\mathbb{Q}} \mathbb{R}$, for some linear subspace $L \subset \mathbb{Q}^{n}$.
- The complex torus $T:=\exp \left(L \otimes_{\mathbb{Q}} \mathbb{C}\right)$ lies inside W.
- Thus, $\operatorname{Trop}(T)=L \otimes_{\mathbb{Q}} \mathbb{R}$ lies inside $\operatorname{Trop}(W)$.

PROPOSITION

- $\tau_{1}^{\mathbb{R}}\left(\mathcal{V}^{i}(X)\right) \subseteq \operatorname{Trop}\left(\mathcal{V}^{i}(X)\right)$, for all $i \leq q$.
- If there is a subtorus $T \subset \operatorname{Char}^{0}(X)$ such that $T \not \subset \mathcal{V}^{i}(X)$, yet $\rho T \subset \mathcal{V}^{i}(X)$ for some $\rho \in \operatorname{Char}(X)$, then $\tau_{1}^{\mathbb{R}}\left(\mathcal{V}^{i}(X)\right) \varsubsetneqq \operatorname{Trop}\left(\mathcal{V}^{i}(X)\right)$.

A tropical bound for the Σ-invariants

THEOREM (PS-2010, S-2021)
Let $\rho: \pi_{1}(X) \rightarrow \mathbb{k}^{*}$ be a character such that $\rho \in \mathcal{V} \leq q(X, \mathbb{k})$. Let
$v: \mathbb{k}^{*} \rightarrow \mathbb{R}$ be the homomorphism defined by a valuation on \mathbb{k}, and write $\chi=v \circ \rho$. If the homomorphism $\chi: \pi_{1}(X) \rightarrow \mathbb{R}$ is non-zero, then $\chi \notin \Sigma^{q}(X, \mathbb{Z})$.

Sketch of proof.

- Let $\hat{\mathbb{k}}$ be the topological completion of \mathbb{k} with respect to the absolute value $|c|=\exp (-v(c))$. Get a field extension, $\iota: \mathbb{k} \hookrightarrow \hat{\mathbb{k}}$.
- Let $G=\pi_{1}(X)$. Extend $\rho: G \rightarrow \mathbb{k}^{\times}$to a ring map, $\bar{\rho}: \mathbb{Z} G \rightarrow \mathbb{k}$.
- Since $\chi=v \circ \rho$, we can extend $\bar{\rho}$ to a morphism of topological rings, $\hat{\rho}: \widehat{\mathbb{Z}}_{-\chi} \rightarrow \hat{\mathbb{K}}$, making $\hat{\mathbb{K}}$ into a $\widehat{\mathbb{Z} G}_{-\chi}$-module, denoted $\hat{\mathbb{k}}_{\hat{\rho}}$.
- Restricting scalars via the inclusion $\mathbb{Z} G \hookrightarrow \widehat{\mathbb{Z}}_{-\chi}$ yields the $\mathbb{Z} G$-module $\hat{\mathbb{k}}_{\iota \circ \rho}$, defined by the character $\iota \circ \rho: G \rightarrow \hat{\mathbb{k}}^{\times}$.
- For a ring R, a bounded below chain complex of flat right R-modules K_{*}, and a left R-module M, there is a (right half-plane, boundedly converging) Künneth spectral sequence,

$$
E_{i j}^{2}=\operatorname{Tors}_{i}^{R}\left(H_{j}(K), M\right) \Rightarrow H_{i+j}\left(K \otimes_{R} M\right) .
$$

- Use ring $R=\widehat{\mathbb{Z}}_{-\chi}$, chain complex of free R-modules $K_{*}=C_{*}(\widetilde{X}, \mathbb{Z}) \otimes_{\mathbb{Z} G} \widehat{\mathbb{Z} G}_{-\chi}$, and R-module $M=\hat{\mathbb{k}}_{\hat{\rho}}$.
- Now let $\rho \in \mathcal{V} \leq q(X, \mathbb{k})$, and suppose $\chi=v \circ \rho \in \Sigma^{q}(X, \mathbb{Z})$.
- This is equivalent to $H_{j}(X, \widehat{\mathbb{Z G}}-\chi)=0$ for all $j \leq q$; that is, $H_{j}(K)=0$ for $j \leq q$. Therefore, $E_{i j}^{2}=0$ for $j \leq q$.
- Hence, $H_{i+j}\left(X, \hat{\mathbb{k}}_{\iota \rho \rho}\right)=0$ for $j \leq q$, and so $H_{j}\left(X, \hat{\mathbb{k}}_{\iota \rho \rho}\right)=0$ for $j \leq q$.
- This is equivalent to $\iota \circ \rho \notin \mathcal{V} \leq q(X, \hat{\mathbb{k}})$. Hence, $\rho \notin \mathcal{V} \leq q(X, \mathbb{k})$, contradicting our hypothesis on ρ.
- Therefore, $\chi \notin \Sigma^{q}(X, \mathbb{Z})$.

Theorem (S-2021)

$$
\Sigma^{q}(X, \mathbb{Z}) \subseteq S(\operatorname{Trop}(\mathcal{V} \leq q(X)))^{c}
$$

Sketch of proof.

- Let $\rho: \pi_{1}(X) \rightarrow \mathbb{K}^{\times}$and set $\chi=v \circ \rho: \pi_{1}(X) \rightarrow \mathbb{Q}$, a rational point on $H^{1}(X, \mathbb{R})$.
- Suppose $\rho \in \mathcal{V} \leq q(X, \mathbb{K})=\mathcal{V} \leq q(X) \times_{\mathbb{C}} \mathbb{K}$.
- Then χ is a rational point on $\operatorname{Trop}(\mathcal{V} \leq q(X))=\overline{\nu x(\mathcal{V} \leq q(X, \mathbb{K}))}$.
- Conversely, all rational points on $\operatorname{Trop}(\mathcal{V} \leq q(X))$ are of the form $\nu_{x}(\rho)=v \circ \rho$, for some $\rho \in \mathcal{V} \leq q(X, \mathbb{K})$.
- Finally, assume that $\chi \neq 0$, so that χ represents an (arbitrary) rational point in $S(\operatorname{Trop}(\mathcal{V} \leq q(X))$.
- By the previous theorem, $\chi \in \Sigma^{q}(X, \mathbb{Z})^{c}$.
- But the rational points are dense in $S(\operatorname{Trop}(\mathcal{V} \leq q(X))$), and $\Sigma^{q}(X, \mathbb{Z})^{c}$ is closed in $S(X)$, so we're done.

COROLLARY

$$
\begin{gathered}
\Sigma^{q}(X, \mathbb{Z}) \subseteq S\left(\operatorname{Trop}\left(\mathcal{V}^{\leq q}(X)\right)\right)^{c} \subseteq S\left(\tau_{1}^{\mathbb{R}}\left(\mathcal{V}^{\leq q}(X)\right)\right)^{c} . \\
\Sigma^{1}(G) \subseteq-S\left(\operatorname{Trop}\left(\mathcal{V}^{1}(G)\right)\right)^{c} \subseteq S\left(\tau_{1}^{\mathbb{R}}\left(\mathcal{V}^{1}(G)\right)\right)^{c} .
\end{gathered}
$$

COROLLARY

```
If \mathcal{V}
```


THEOREM

Let $f_{\alpha}: G \rightarrow G_{\alpha}$ be a finite collection of epimorphisms. If each $\mathcal{V}^{1}\left(G_{\alpha}\right)$ contains a component of $\mathbb{T}_{G_{\alpha}}$, then

$$
\Sigma^{1}(G) \subseteq\left(\bigcup_{\alpha} S\left(f_{\alpha}^{*}\left(H^{1}\left(G_{\alpha}, \mathbb{R}\right)\right)\right)\right)^{c}
$$

The Alexander polynomial

- Let $H=G_{a b} / \operatorname{tors}\left(G_{a b}\right)$ be the maximal torsion-free abelian quotient of $G=\pi_{1}(X)$ and $q: X^{H} \rightarrow X$ the respective cover.
- Set $A_{X}:=H_{1}\left(X^{H}, q^{-1}\left(x_{0}\right), \mathbb{Z}\right)$, viewed as a $\mathbb{Z}[H]$-module.
- Let $E_{1}\left(A_{X}\right) \subseteq \mathbb{Z}[H]$ be the ideal of codimension 1 minors in a presentation for A_{X}.
- $\Delta_{X}:=\operatorname{gcd}\left(E_{1}\left(A_{X}\right)\right) \in \mathbb{Z}[H]$ is the Alexander polynomial of X. It only depends on G, so also write it as Δ_{G}.
- Suppose $I_{H}^{p} \cdot\left(\Delta_{G}\right) \subseteq E_{1}\left(A_{G}\right)$, for some $p \geq 0$. Then

$$
\mathcal{V}^{1}(X) \cap \mathbb{T}_{G}^{0}=\{1\} \cup V\left(\Delta_{G}\right)
$$

- This condition is satisfied if G is a 1-relator group, or $G=\pi_{1}(M)$, where M is a closed, orientable 3-manifold with empty or toroidal boundary (C. McMullen, D. Eisenbud-W. Neumann).
- Let $\operatorname{Newt}\left(\Delta_{G}\right) \subset H_{1}(G, \mathbb{R})$ be the Newton polytope of Δ_{G}.
- Given $\phi \in H^{1}(G ; \mathbb{Z}) \cong \operatorname{Hom}(H, \mathbb{Z})$, its Alexander norm, $\|\phi\|_{A}$, is the length of $\phi\left(\operatorname{Newt}\left(\Delta_{G}\right)\right)$.
- This defines a semi-norm on $H^{1}(G, \mathbb{R})$, with unit ball

$$
B_{A}=\left\{\phi \in H^{1}(G ; \mathbb{R}) \mid\|\phi\|_{A} \leq 1\right\}
$$

- If Δ_{G} is symmetric (i.e., invariant under $t_{i} \mapsto t_{i}^{-1}$), then B_{A} is, up to a scale factor of $1 / 2$, the polar dual of the Newton polytope of Δ_{G},

$$
2 B_{A}=\operatorname{Newt}\left(\Delta_{G}\right)^{*}
$$

PROPOSITION

If Δ_{G} is symmetric and $I_{H}^{p} \cdot\left(\Delta_{G}\right) \subseteq E_{1}\left(A_{G}\right)$, for some $p \geq 0$, then

$$
\Sigma^{1}(G) \subseteq \bigcup_{F \text { an open facet of } B_{A}} S(F)
$$

Two-generator, one-relator groups

- Let $G=\langle x, y \mid r\rangle$, with $b_{1}(G)=2$. K. Brown gave a combinatorial algorithm for computing $\Sigma^{1}(G)$.

EXAMPLE

- Let $G=\left\langle a, b \mid b^{2}\left(a b^{-1}\right)^{2} a^{-2}\right\rangle$.

- Then $\Sigma^{1}(G)=S^{1} \backslash\left\{\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),(0,-1),(-1,0)\right\}$.
- On the other hand, $\Delta_{G}=1+a+b$.
- Thus, $\Sigma^{1}(G)=-S\left(\operatorname{Trop}\left(V\left(\Delta_{G}\right)\right)\right)^{c}$, though $\tau_{1} \mathcal{V}^{1}(G)=\{0\}$.

EXAMPLE

- Let $G=\langle a, b| a^{2} b a^{-1} b a^{2} b a^{-1} b^{-3} a^{-1} b a^{2} b a^{-1} b a$ $\left.b^{-1} a^{-2} b^{-1} a b^{-1} a^{-2} b^{-1} a b^{3} a b^{-1} a^{-2} b^{-1} a b^{-1} a^{-1} b\right\rangle$.
- Then $\Delta_{G}=(a-1)(a b-1)$, and so $S\left(\operatorname{Trop}\left(V\left(\Delta_{G}\right)\right)\right)$ consists of two pairs of points.
- Yet $\Sigma^{1}(G)$ consists of two open arcs joining those points.

Compact 3-manifolds

- Let M be a compact, connected, orientable 3-manifold with $b_{1}(M)>0$.
- A non-zero class $\phi \in H^{1}(M ; \mathbb{Z})=\operatorname{Hom}\left(\pi_{1}(M), \mathbb{Z}\right)$ is a fibered if there exists a fibration $p: M \rightarrow S^{1}$ such that the induced map $p_{*}: \pi_{1}(M) \rightarrow \pi_{1}\left(S^{1}\right)=\mathbb{Z}$ coincides with ϕ.
- The Thurston norm $\|\phi\|_{T}$ of a class $\phi \in H^{1}(M ; \mathbb{Z})$ is the infimum of $-\chi(\hat{S})$, where S runs though all the properly embedded, oriented surfaces in M dual to ϕ, and \hat{S} denotes the result of discarding all components of S which are disks or spheres.
- Thurston showed that $\|-\|_{T}$ defines a seminorm on $H^{1}(M ; \mathbb{Z})$, which can be extended to a continuous seminorm on $H^{1}(M ; \mathbb{R})$.
- The unit norm ball, $B_{T}=\left\{\phi \in H^{1}(M ; \mathbb{R}) \mid\|\phi\|_{T} \leq 1\right\}$, is a rational polyhedron with finitely many sides and symmetric in the origin.
- There are facets of B_{T}, called the fibered faces (coming in antipodal pairs), so that a class $\phi \in H^{1}(M ; \mathbb{Z})$ fibers if and only if it lies in the cone over the interior of a fibered face.
- Bieri, Neumann, and Strebel showed that the BNS invariant of $G=\pi_{1}(M)$ is the projection onto $S(G)$ of the open fibered faces of the Thurston norm ball B_{T}; in particular, $\Sigma^{1}(G)=-\Sigma^{1}(G)$.

Proposition

Let M be a compact, connected, orientable, 3-manifold with empty or toroidal boundary. Set $G=\pi_{1}(M)$ and assume $b_{1}(M) \geq 2$. Then
(1) $\operatorname{Trop}\left(\mathcal{V}^{1}(G) \cap \mathbb{T}_{G}^{0}\right)$ is the positive-codimension skeleton of $\mathcal{F}\left(B_{A}\right)$, the face fan of the unit ball in the Alexander norm.
(2) $\Sigma^{1}(G)$ is contained in the union of the open cones on the facets of B_{A}.

Part (2) is inspired by, and partly recovers a theorem of C. McMullen.

Kähler manifolds

- Let M be a compact Kähler manifold. Then M is formal.
- (Beauville, Catanese, Green-Lazarsfeld, Simpson, Arapura, B. Wang) $\mathcal{V}^{i}(M)$ are finite unions of torsion translates of algebraic subtori of $H^{1}\left(M, \mathbb{C}^{*}\right)$.

Theorem (Delzant 2010)

$$
\Sigma^{1}(M)=S(M) \backslash \bigcup_{\alpha} S\left(f_{\alpha}^{*}\left(H^{1}\left(C_{\alpha}, \mathbb{R}\right)\right)\right)
$$

where the union is taken over those orbifold fibrations $f_{\alpha}: M \rightarrow C_{\alpha}$ with the property that either $\chi\left(C_{\alpha}\right)<0$, or $\chi\left(C_{\alpha}\right)=0$ and f_{α} has some multiple fiber.

In degree 1, we may recast this result in the tropical setting, as follows.
Corollary

$$
\Sigma^{1}(M)=S\left(\operatorname{Trop}\left(\mathcal{V}^{1}(M)\right)^{c} .\right.
$$

Hyperplane arrangements

- Let $\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\}$ be an (essential, central) arrangement of hyperplanes in \mathbb{C}^{d}.
- Its complement, $M(\mathcal{A}) \subset\left(\mathbb{C}^{*}\right)^{d}$, is a smooth, quasi-projective Stein manifold; thus, it has the homotopy type of a finite, d-dimensional CW-complex.
- $H^{*}(M(\mathcal{A}), \mathbb{Z})$ is the Orlik-Solomon algebra of $L(\mathcal{A})$.
- (Arapura) The characteristic varieties $\mathcal{V}^{i}(\mathcal{A}):=\mathcal{V}^{i}(M(\mathcal{A})) \subset\left(\mathbb{C}^{*}\right)^{n}$. are unions of translated subtori.
- Consequently, $\operatorname{Trop}\left(\mathcal{V}^{i}(\mathcal{A})\right)=-\operatorname{Trop}\left(\mathcal{V}^{i}(\mathcal{A})\right)$.
- (DSY 2016/17) $M(\mathcal{A})$ is an "abelian duality space"; thus, its jump loci propagate: $\mathcal{V}^{1}(\mathcal{A}) \subseteq \mathcal{V}^{2}(\mathcal{A}) \subseteq \cdots \subseteq \mathcal{V}^{d-1}(\mathcal{A})$.
- (Arnol'd, Brieskorn) $M(\mathcal{A})$ is formal. Thus, $\tau_{1}\left(\mathcal{V}^{i}(\mathcal{A})\right)=\mathcal{R}^{i}(\mathcal{A})$.

Theorem

Let M be the complement of an arrangement of n hyperplanes in \mathbb{C}^{d}.
Then, for each $1 \leq q \leq d-1$:

- $\operatorname{Trop}\left(\mathcal{V}^{q}(M)\right)$ is the union of a subspace arrangement in \mathbb{R}^{n}.
- $\Sigma^{q}(M, \mathbb{Z}) \subseteq S\left(\operatorname{Trop}\left(\mathcal{V}^{q}(M)\right)\right)^{c}$.

QUESTION (MFO Miniworkshop 2007)
Given an arrangement \mathcal{A}, do we have

$$
\Sigma^{1}(M(\mathcal{A}))=S\left(\mathcal{R}^{1}(\mathcal{A}, \mathbb{R})\right)^{c} ?
$$

ExAMPLE (Koban-McCammond-Meier 2013)

- Let \mathcal{A} be the braid arrangement in \mathbb{C}^{n}, defined by $\prod_{1 \leq i<j \leq n}\left(z_{i}-z_{j}\right)=0$. Then $M(\mathcal{A})=\operatorname{Conf}(n, \mathbb{C}) \simeq K\left(P_{n}, 1\right)$.
- Answer to (\star) is yes: $\Sigma^{1}(M(\mathcal{A}))$ is the complement of the union of $\binom{n}{3}+\binom{n}{4}$ planes in $\mathbb{C}\binom{n}{2}$, intersected with the unit sphere.

EXAMPLE

- Let \mathcal{A} be the "deleted B_{3} " arrangement, defined by $z_{1} z_{2}\left(z_{1}^{2}-z_{2}^{2}\right)\left(z_{1}^{2}-z_{2}^{2}\right)\left(z_{2}^{2}-z_{3}^{2}\right)=0$.
- (S. 2002) $\mathcal{V}^{1}(\mathcal{A})$ contains a (1-dimensional) translated torus $\rho \cdot T$.
- Thus, $\operatorname{Trop}(\rho \cdot T)=\operatorname{Trop}(T)$ is a line in \mathbb{C}^{8} which is not contained in $\mathcal{R}^{1}(\mathcal{A}, \mathbb{R})$. Hence, the answer to (\star) is no.

QUESTION (REVISED)

$$
\Sigma^{1}(M(\mathcal{A}))=S\left(\operatorname{Trop}\left(\mathcal{V}^{1}(\mathcal{A})\right)^{c} ?\right.
$$

REFERENCE

固
Alexander I. Suciu, Sigma-invariants and tropical varieties, arXiv:2010.07499. To appear in Math. Annalen, doi:10.1007/s00208-021-02172-z.

