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POLYHEDRAL PRODUCTS

POLYHEDRAL PRODUCTS

Let pX ,Aq be a pair of topological spaces, and let L be a simplicial
complex on vertex set rms.

The corresponding polyhedral product (or, generalized
moment-angle complex) is defined as

ZLpX ,Aq “
ď

σPL

pX ,Aqσ Ă Xˆm,

where pX ,Aqσ “ tx P Xˆm | xi P A if i R σu.

Homotopy invariance:

pX ,Aq » pX 1,A1q ùñ ZLpX ,Aq » ZLpX 1,A1q.

Converts simplicial joins to direct products:

ZK˚LpX ,Aq – ZK pX ,Aq ˆ ZLpX ,Aq.

Takes a cellular pair pX ,Aq to a cellular subcomplex of Xˆm.
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POLYHEDRAL PRODUCTS

The usual moment-angle complexes (which play an important role in
toric topology) are:

Complex moment-angle complex, ZLpD2,S1q.
π1 “ π2 “ t1u.

Real moment-angle complex, ZLpD1,S0q.
π1 “ W 1

L, the derived subgroup of WΓ, the right-angled Coxeter
group associated to Γ “ Lp1q.

EXAMPLE

Let L “ two points. Then:

ZLpD2,S1q “ D2 ˆ S1 Y S1 ˆ D2 “ S3

ZLpD1,S0q “ D1 ˆ S0 Y S0 ˆ D1 “ S1

D1

S0

D1 × S0 S0 ×D1

ZL(D1, S0)

S0 × S0
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POLYHEDRAL PRODUCTS

EXAMPLE

Let L be a circuit on 4 vertices. Then:

ZLpD2,S1q “ S3 ˆ S3

ZLpD1,S0q “ S1 ˆ S1

EXAMPLE

More generally, let L be an m-gon. Then:

ZLpD2,S1q “ # m´3
r“1 r ¨

ˆ

m ´ 2
r ` 1

˙

Sr`2 ˆ Sm´r .

(McGavran 1979)

ZLpD1,S0q “ an orientable surface of genus 1` 2m´3pm ´ 4q.
(Coxeter 1937)
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POLYHEDRAL PRODUCTS

If pM, BMq is a compact manifold of dimension d , and L is a
PL-triangulation of Sm on n vertices, then ZLpM, BMq is a compact
manifold of dimension pd ´ 1qn `m ` 1.

(Bosio–Meersseman 2006) If K is a polytopal triangulation of Sm,
then

ZLpD2,S1q if n `m ` 1 is even, or
ZLpD2,S1q ˆ S1 if n `m ` 1 is odd

is a complex manifold.

This construction generalizes the classical constructions of
complex structures on S2p´1 ˆ S1 (Hopf) and S2p´1 ˆ S2q´1

(Calabi–Eckmann).

In general, the resulting complex manifolds are not symplectic,
thus, not Kähler. In fact, they may even be non-formal
(Denham–Suciu 2007).
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POLYHEDRAL PRODUCTS

The GMAC construction enjoys nice functoriality properties in both
arguments. E.g:

Let f : pX ,Aq Ñ pY ,Bq be a (cellular) map. Then fˆn : Xˆn Ñ Yˆn

restricts to a (cellular) map ZLpf q : ZLpX ,Aq Ñ ZLpY ,Bq.

Much is known from work of M. Davis about the fundamental
group and the asphericity problem for ZLpX q “ ZLpX , ˚q. E.g.:

π1pZLpX , ˚qq is the graph product of Gv “ π1pX , ˚q along the graph
Γ “ Lp1q “ pV,Eq, where

ProdΓpGv q “ ˚
vPV

Gv{trgv ,gw s “ 1 if tv ,wu P E, gv P Gv , gw P Gwu.

Suppose X is aspherical. Then: ZLpX , ˚q is aspherical iff L is a flag
complex.
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TORIC COMPLEXES AND RAAGS TORIC COMPLEXES

TORIC COMPLEXES

Let L be a simplicial complex on vertex set V “ tv1, . . . , vmu.

Let TL “ ZLpS1, ˚q be the subcomplex of T m obtained by deleting
the cells corresponding to the missing simplices of L.

TL is a connected, minimal CW-complex, of dimension dim L` 1.

TL is formal (Notbohm–Ray 2005).

(Kim–Roush 1980, Charney–Davis 1995) The cohomology
algebra H˚pTL, kq is the exterior Stanley–Reisner ring

kxLy “
Ź

V ˚{pv˚σ | σ R Lq,

where k “ Z or a field, V is the free k-module on V, and
V ˚ “ HomkpV ,kq, while v˚σ “ v˚i1 ¨ ¨ ¨ v

˚
is for σ “ ti1, . . . , isu.
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TORIC COMPLEXES AND RAAGS RIGHT ANGLED ARTIN GROUPS

RIGHT ANGLED ARTIN GROUPS

The fundamental group πΓ :“ π1pTL, ˚q is the RAAG associated to
the graph Γ :“ Lp1q “ pV,Eq,

πΓ “ xv P V | rv ,ws “ 1 if tv ,wu P Ey.

Moreover, K pπΓ,1q “ T∆Γ
, where ∆Γ is the flag complex of Γ.

(Kim–Makar-Limanov–Neggers–Roush 1980, Droms 1987)
Γ – Γ1 ðñ πΓ – πΓ1 .

(Papadima–S. 2006) The associated graded Lie algebra of πΓ has
(quadratic) presentation

grpπΓq “ LpVq{prv ,ws “ 0 if tv ,wu P Eq.

(Duchamp–Krob 1992, PS06) The lower central series quotients
of πΓ are torsion-free, with ranks φk given by

ź8

k“1
p1´ tk qφk “ PΓp´tq,

where PΓptq “
ř

kě0 fk p∆Γqtk is the clique polynomial of Γ.
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TORIC COMPLEXES AND RAAGS CHEN RANKS

CHEN RANKS

The Chen Lie algebra of a f.g. group π is the associated graded
Lie algebra of its maximal metabelian quotient, grpπ{π2q.

Write θk pπq “ rank grk pπ{π
2q for the Chen ranks.

(K.-T. Chen 1951) grpFn{F 2n q is torsion-free, with ranks θ1 “ n and
θk “ pk ´ 1q

`n`k´2
k

˘

for k ě 2.

(PS 06) grpπΓ{π
2
Γq is torsion-free, with ranks given by θ1 “ |V| and

8
ÿ

k“2

θk tk “ QΓ

ˆ

t
1´ t

˙

.

Here QΓptq “
ř

jě2 cjpΓqt j is the “cut polynomial" of Γ, with

cjpΓq “
ÿ

WĂV : |W|“j

b̃0pΓWq.
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TORIC COMPLEXES AND RAAGS CHEN RANKS

EXAMPLE

Let Γ be a pentagon, and Γ1 a square with an edge attached to a
vertex. Then:

PΓ “ PΓ1 “ 1` 5t ` 5t2, and so

φk pπΓq “ φk pπΓ1q, for all k ě 1.

QΓ “ 5t2 ` 5t3 but QΓ1 “ 5t2 ` 5t3 ` t4, and so

θk pπΓq ‰ θk pπΓ1q, for k ě 4.
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TORIC COMPLEXES AND RAAGS COHOMOLOGY JUMP LOCI

COHOMOLOGY JUMP LOCI

Let X be a connected, finite CW-complex X with π :“ π1pX q.

Fix a field k and set A “ H.pX , kq. If charpkq “ 2, assume H1pX ,Zq
is torsion-free. Then, for each a P A1, we have a2 “ 0, and so we
get a cochain complex, pA, ¨aq : A0 ¨a // A1 ¨a // A2 // ¨ ¨ ¨ .

The resonance varieties of X are defined as

Ri
spX q “ ta P A1 | dim H ipA, ¨aq ě su.

They are Zariski closed, homogeneous subsets of A1 “ H1pX ,kq.

The characteristic varieties of X are the jump loci for homology
with coefficients in rank-1 local systems,

V i
spX , kq “ tρ P Hompπ,k˚q | dim HipX , kρq ě su.

These loci are Zariski closed subsets of the character group. For
i “ 1, they depend only on π{π2 (and k).
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TORIC COMPLEXES AND RAAGS JUMP LOCI OF TORIC COMPLEXES

JUMP LOCI OF TORIC COMPLEXES

For a field k, identify H1pTL,kq “ kV, the k-vector space with basis V.

THEOREM (PAPADIMA–S. 2009)

Ri
spTL, kq “

ď

WĂV
ř

σPLVzW
dimk rHi´1´|σ|plkLW

pσq,kqěs

kW,

where LW is the subcomplex induced by L on W, and lkK pσq is the link
of a simplex σ in a subcomplex K Ď L.

In particular,
R1

1pπΓq “
ď

WĎV
ΓW disconnected

kW.

Similar formulas hold for the characteristic varieties V i
spTL,kq.
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TORIC COMPLEXES AND RAAGS JUMP LOCI OF TORIC COMPLEXES
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EXAMPLE

Let Γ and Γ1 be the two graphs above. Both have

Pptq “ 1` 6t ` 9t2 ` 4t3, and Qptq “ t2p6` 8t ` 3t2q.

Thus, πΓ and πΓ1 have the same LCS and Chen ranks.
Each resonance variety has 3 components, of codimension 2:

R1pπΓ,kq “ k23 Y k25 Y k35 , R1pπΓ1 ,kq “ k15 Y k25 Y k26 .

Yet the two varieties are not isomorphic, since

dimpk23 X k25 X k35q “ 3, but dimpk15 X k25 X k26q “ 2.
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PROPAGATION OF JUMP LOCI

PROPAGATION OF JUMP LOCI

We say that the resonance varieties of a graded algebra
A “

Àn
i“0 Ai propagate if

R1
1pAq Ď ¨ ¨ ¨ Ď Rn

1pAq.

(Eisenbud–Popescu–Yuzvinsky 2003) If MpAq is the complement
of a hyperplane arrangement, then the resonance varieties of the
Orlik–Solomon algebra A “ H˚pMpAq,Cq propagate.

The resonance varieties of A “ H˚pTL,kq may not propagate.
E.g., if L “ , then R1

1pAq “ k4, yet R2
1pAq “ k2 Y k2.

THEOREM (DENHAM–S.–YUZVINSKY 2016/17, GENERALIZING EPY)

Suppose the k-dual of A has a linear free resolution over E “
Ź

A1.
Then the resonance varieties of A propagate.
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PROPAGATION OF JUMP LOCI DUALITY SPACES

DUALITY SPACES

In order to study propagation of jump loci in a topological setting, we
turn to a notion due to Bieri and Eckmann (1978).

X is a duality space of dimension n if H ipX ,Zπq “ 0 for i ‰ n and
HnpX ,Zπq ‰ 0 and torsion-free.

Let D “ HnpX ,Zπq be the dualizing Zπ-module. Given any
Zπ-module A, we have H ipX ,Aq – Hn´ipX ,D b Aq.

If D “ Z, with trivial Zπ-action, then X is a Poincaré duality space.

If X “ K pπ,1q is a duality space, then π is a duality group.
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PROPAGATION OF JUMP LOCI ABELIAN DUALITY SPACES

ABELIAN DUALITY SPACES

We introduce in (DSY17) an analogous notion, by replacing π ; πab.

X is an abelian duality space of dimension n if H ipX ,Zπabq “ 0 for
i ‰ n and HnpX ,Zπabq ‰ 0 and torsion-free.

Let B “ HnpX ,Zπabq be the dualizing Zπab-module. Given any
Zπab-module A, we have H ipX ,Aq – Hn´ipX ,B b Aq.

The two notions of duality are independent.

THEOREM (DSY)

Let X be an abelian duality space of dimension n. If ρ : π1pX q Ñ k˚
satisfies H ipX ,kρq ‰ 0, then H jpX , kρq ‰ 0, for all i ď j ď n.
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PROPAGATION OF JUMP LOCI ABELIAN DUALITY SPACES

COROLLARY (DSY)

Let X be an abelian duality space of dimension n. Then:
The characteristic varieties propagate: V1

1 pX , kq Ď ¨ ¨ ¨ Ď Vn
1 pX , kq.

dimk H1pX , kq ě n ´ 1.
If n ě 2, then H ipX ,kq ‰ 0, for all 0 ď i ď n.

PROPOSITION (DSY)

Let M be a closed, orientable 3-manifold. If b1pMq is even and
non-zero, then the resonance varieties of M do not propagate.

EXAMPLE

Let M be the 3-dimensional Heisenberg nilmanifold.
Characteristic varieties propagate: V i

1pM,kq “ t1u for i ď 3.
Resonance does not propagate: R1

1pM,kq “ k2, R3
1pM, kq “ 0.
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PROPAGATION OF JUMP LOCI ARRANGEMENTS OF SMOOTH HYPERSURFACES

ARRANGEMENTS OF SMOOTH HYPERSURFACES

THEOREM (DENHAM–S. 2017)

Let U be a connected, smooth, complex quasi-projective variety of
dimension n. Suppose U has a smooth compactification Y for which

1 Components of Y zU form an arrangement of hypersurfaces A;

2 For each submanifold X in the intersection poset LpAq, the
complement of the restriction of A to X is a Stein manifold.

Then:
1 U is both a duality space and an abelian duality space of

dimension n.
2 If A is a finite-dimensional representation of π “ π1pUq, and if

Aγg “ 0 for all g in a building set GX , for some X P LpAq, then
H ipU,Aq “ 0 for all i ‰ n.

3 The `2-Betti numbers of U vanish for all i ‰ n.
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PROPAGATION OF JUMP LOCI LINEAR, ELLIPTIC, AND TORIC ARRANGEMENTS

LINEAR, ELLIPTIC, AND TORIC ARRANGEMENTS

THEOREM (DS17)

Suppose that A is one of the following:

1 An affine-linear arrangement in Cn, or a hyperplane arrangement
in CPn;

2 A non-empty elliptic arrangement in En;

3 A toric arrangement in pC˚qn.
Then the complement MpAq is both a duality space and an abelian
duality space of dimension n ´ r , n ` r , and n, respectively, where r is
the corank of the arrangement.

This theorem extends several previous results:
1 Davis, Januszkiewicz, Leary, and Okun (2011);
2 Levin and Varchenko (2012);
3 Davis and Settepanella (2013), Esterov and Takeuchi (2014).
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DUALITY IN TORIC COMPLEXES THE COHEN–MACAULAY PROPERTY

THE COHEN–MACAULAY PROPERTY

A simplicial complex L is Cohen–Macaulay if for each simplex σ P L,
the reduced cohomology of lkpσq is concentrated in degree dim L´ |σ|
and is torsion-free.

THEOREM (N. BRADY–MEIER 2001, JENSEN–MEIER 2005)

A RAAG πΓ is a duality group if and only if ∆Γ is Cohen–Macaulay.
Moreover, πΓ is a Poincaré duality group if and only if Γ is a complete
graph.

THEOREM (DSY17)

A toric complex TL is an abelian duality space (of dimension dim L` 1)
if and only if L is Cohen-Macaulay, in which case both the resonance
and characteristic varieties of TL propagate.
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DUALITY IN TORIC COMPLEXES BESTVINA–BRADY GROUPS

BESTVINA–BRADY GROUPS

The Bestvina–Brady group associated to a graph Γ is defined as
NΓ “ kerpν : πΓ Ñ Zq, where νpvq “ 1, for each v P V pΓq.

A counterexample to either the Eilenberg–Ganea conjecture or
the Whitehead conjecture can be constructed from these groups.

The cohomology ring H˚pNΓ,kq was computed by Papadima–S.
(2007) and Leary–Saadetoğlu (2011).

The jump loci R1
1pNΓ, kq and V1

1 pNΓ,kq were computed in PS07.

THEOREM (DAVIS–OKUN 2012)

Suppose ∆Γ is acyclic. Then NΓ is a duality group if and only if ∆Γ is
Cohen–Macaulay.

THEOREM (DSY17)

A Bestvina–Brady group NΓ is an abelian duality group if and only if ∆Γ

is acyclic and Cohen–Macaulay.
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