POLYHEDRAL PRODUCTS, DUALITY PROPERTIES, AND COHEN–MACAULAY COMPLEXES

Alex Suciu

Northeastern University

Special Session

Geometry and Combinatorics of Cell Complexes

Mathematical Congress of the Americas Montréal, Canada July 28, 2017

POLYHEDRAL PRODUCTS

- Let (X, A) be a pair of topological spaces, and let L be a simplicial complex on vertex set [m].
- The corresponding *polyhedral product* (or, *generalized moment-angle complex*) is defined as

$$\mathcal{Z}_L(X, A) = \bigcup_{\sigma \in L} (X, A)^{\sigma} \subset X^{\times m},$$

where $(X, A)^{\sigma} = \{x \in X^{\times m} \mid x_i \in A \text{ if } i \notin \sigma\}.$

• Homotopy invariance:

 $(X, A) \simeq (X', A') \implies \mathcal{Z}_L(X, A) \simeq \mathcal{Z}_L(X', A').$

• Converts simplicial joins to direct products:

 $\mathcal{Z}_{K*L}(X, A) \cong \mathcal{Z}_{K}(X, A) \times \mathcal{Z}_{L}(X, A).$

• Takes a cellular pair (X, A) to a cellular subcomplex of $X^{\times m}$.

The usual moment-angle complexes (which play an important role in toric topology) are:

• Complex moment-angle complex, $\mathcal{Z}_L(D^2, S^1)$.

• $\pi_1 = \pi_2 = \{1\}.$

- Real moment-angle complex, $\mathcal{Z}_L(D^1, S^0)$.
 - $\pi_1 = W'_L$, the derived subgroup of W_{Γ} , the right-angled Coxeter group associated to $\Gamma = L^{(1)}$.

EXAMPLE

Let L = two points. Then:

 $\begin{aligned} \mathcal{Z}_L(D^2,S^1) &= D^2 \times S^1 \cup S^1 \times D^2 = S^3 \\ \mathcal{Z}_L(D^1,S^0) &= D^1 \times S^0 \cup S^0 \times D^1 = S^1 \end{aligned}$

POLYHEDRAL PRODUCTS AND DUALITY MO

EXAMPLE

Let *L* be a circuit on 4 vertices. Then: $\mathcal{Z}_L(D^2, S^1) = S^3 \times S^3$ $\mathcal{Z}_L(D^1, S^0) = S^1 \times S^1$

EXAMPLE

More generally, let *L* be an *m*-gon. Then:

$$\mathcal{Z}_{L}(D^{2}, S^{1}) = \#_{r=1}^{m-3} r \cdot {\binom{m-2}{r+1}} S^{r+2} \times S^{m-r}.$$
(McGavran 1979)

 $\mathcal{Z}_L(D^1, S^0) =$ an orientable surface of genus $1 + 2^{m-3}(m-4)$. (Coxeter 1937)

- If (M, ∂M) is a compact manifold of dimension d, and L is a PL-triangulation of S^m on n vertices, then Z_L(M, ∂M) is a compact manifold of dimension (d − 1)n + m + 1.
- (Bosio–Meersseman 2006) If *K* is a *polytopal* triangulation of *S*^{*m*}, then
 - $\mathcal{Z}_L(D^2, S^1)$ if n + m + 1 is even, or
 - $\mathcal{Z}_L(D^2, S^1) \times S^1$ if n + m + 1 is odd

is a complex manifold.

- This construction generalizes the classical constructions of complex structures on $S^{2p-1} \times S^1$ (Hopf) and $S^{2p-1} \times S^{2q-1}$ (Calabi–Eckmann).
- In general, the resulting complex manifolds are *not* symplectic, thus, not Kähler. In fact, they may even be non-formal (Denham–Suciu 2007).

- The GMAC construction enjoys nice functoriality properties in both arguments. E.g:
 - Let $f: (X, A) \to (Y, B)$ be a (cellular) map. Then $f^{\times n}: X^{\times n} \to Y^{\times n}$ restricts to a (cellular) map $\mathcal{Z}_L(f): \mathcal{Z}_L(X, A) \to \mathcal{Z}_L(Y, B)$.
- Much is known from work of M. Davis about the fundamental group and the asphericity problem for $\mathcal{Z}_L(X) = \mathcal{Z}_L(X, *)$. E.g.:
 - $\pi_1(\mathcal{Z}_L(X, *))$ is the graph product of $G_v = \pi_1(X, *)$ along the graph $\Gamma = L^{(1)} = (V, E)$, where

 $\mathsf{Prod}_{\Gamma}(G_{v}) = \underset{v \in \mathsf{V}}{*} G_{v} / \{ [g_{v}, g_{w}] = 1 \text{ if } \{v, w\} \in \mathsf{E}, \, g_{v} \in G_{v}, \, g_{w} \in G_{w} \}.$

Suppose X is aspherical. Then: Z_L(X, *) is aspherical iff L is a flag complex.

TORIC COMPLEXES

- Let *L* be a simplicial complex on vertex set $V = \{v_1, \ldots, v_m\}$.
- Let T_L = Z_L(S¹, *) be the subcomplex of T^m obtained by deleting the cells corresponding to the missing simplices of L.
- T_L is a connected, minimal CW-complex, of dimension dim L + 1.
- T_L is formal (Notbohm–Ray 2005).
- (Kim–Roush 1980, Charney–Davis 1995) The cohomology algebra $H^*(T_L, \Bbbk)$ is the exterior Stanley–Reisner ring

 $\Bbbk \langle L \rangle = \bigwedge V^* / (v_\sigma^* \mid \sigma \notin L),$

where $\mathbb{k} = \mathbb{Z}$ or a field, *V* is the free \mathbb{k} -module on V, and $V^* = \operatorname{Hom}_{\mathbb{k}}(V, \mathbb{k})$, while $v_{\sigma}^* = v_{i_1}^* \cdots v_{i_s}^*$ for $\sigma = \{i_1, \ldots, i_s\}$.

RIGHT ANGLED ARTIN GROUPS

- The fundamental group π_Γ := π₁(T_L, *) is the RAAG associated to the graph Γ := L⁽¹⁾ = (V, E), π_Γ = ⟨v ∈ V | [v, w] = 1 if {v, w} ∈ E⟩.
- Moreover, $K(\pi_{\Gamma}, 1) = T_{\Delta_{\Gamma}}$, where Δ_{Γ} is the flag complex of Γ .
- (Kim–Makar-Limanov–Neggers–Roush 1980, Droms 1987) $\Gamma \cong \Gamma' \iff \pi_{\Gamma} \cong \pi_{\Gamma'}.$
- (Papadima–S. 2006) The associated graded Lie algebra of π_Γ has (quadratic) presentation

 $\operatorname{\mathsf{gr}}(\pi_{\Gamma}) = \mathbb{L}(\mathsf{V})/([v, w] = 0 \text{ if } \{v, w\} \in \mathsf{E}).$

 (Duchamp–Krob 1992, PS06) The lower central series quotients of π_Γ are torsion-free, with ranks φ_k given by

 $\prod_{k=1}^{\infty} (1 - t^{k})^{\phi_{k}} = P_{\Gamma}(-t),$ where $P_{\Gamma}(t) = \sum_{k \ge 0} f_{k}(\Delta_{\Gamma})t^{k}$ is the clique polynomial of Γ .
ALEX SUCIU (NORTHEASTERN)
POLYHEDRAL PRODUCTS AND DUALITY
MONTRÉAL, JULY 28, 2017
8 / 22

CHEN RANKS

- The *Chen Lie algebra* of a f.g. group π is the associated graded Lie algebra of its maximal metabelian quotient, gr(π/π").
- Write $\theta_k(\pi) = \operatorname{rank} \operatorname{gr}_k(\pi/\pi'')$ for the Chen ranks.
- (K.-T. Chen 1951) $\operatorname{gr}(F_n/F_n'')$ is torsion-free, with ranks $\theta_1 = n$ and $\theta_k = (k-1)\binom{n+k-2}{k}$ for $k \ge 2$.
- (PS 06) $\operatorname{gr}(\pi_{\Gamma}/\pi_{\Gamma}'')$ is torsion-free, with ranks given by $\theta_1 = |V|$ and

$$\sum_{k=2}^{\infty} \theta_k t^k = Q_{\Gamma}\left(\frac{t}{1-t}\right).$$

• Here $Q_{\Gamma}(t) = \sum_{j \ge 2} c_j(\Gamma) t^j$ is the "cut polynomial" of Γ , with

$$c_j(\Gamma) = \sum_{\mathsf{W}\subset\mathsf{V}\colon|\mathsf{W}|=j} \tilde{b}_0(\Gamma_\mathsf{W}).$$

9 / 22

EXAMPLE

Let Γ be a pentagon, and Γ' a square with an edge attached to a vertex. Then:

•
$$P_{\Gamma} = P_{\Gamma'} = 1 + 5t + 5t^2$$
, and so
 $\phi_k(\pi_{\Gamma}) = \phi_k(\pi_{\Gamma'})$, for all $k \ge 1$.
• $Q_{\Gamma} = 5t^2 + 5t^3$ but $Q_{\Gamma'} = 5t^2 + 5t^3 + t^4$, and so
 $\theta_k(\pi_{\Gamma}) \ne \theta_k(\pi_{\Gamma'})$, for $k \ge 4$.

COHOMOLOGY JUMP LOCI

- Let X be a connected, finite CW-complex X with $\pi := \pi_1(X)$.
- Fix a field \Bbbk and set $A = H^{\bullet}(X, \Bbbk)$. If char(\Bbbk) = 2, assume $H_1(X, \mathbb{Z})$ is torsion-free. Then, for each $a \in A^1$, we have $a^2 = 0$, and so we get a cochain complex, $(A, \cdot a) \colon A^0 \xrightarrow{\cdot a} A^1 \xrightarrow{\cdot a} A^2 \longrightarrow \cdots$.
- The resonance varieties of X are defined as

 $\mathcal{R}^i_{\boldsymbol{s}}(\boldsymbol{X}) = \{ \boldsymbol{a} \in \boldsymbol{A}^1 \mid \dim \boldsymbol{H}^i(\boldsymbol{A}, \cdot \boldsymbol{a}) \geq \boldsymbol{s} \}.$

- They are Zariski closed, homogeneous subsets of $A^1 = H^1(X, \mathbb{k})$.
- The characteristic varieties of X are the jump loci for homology with coefficients in rank-1 local systems,

 $\mathcal{V}_{\boldsymbol{s}}^{i}(\boldsymbol{X}, \Bbbk) = \{ \rho \in \operatorname{Hom}(\pi, \Bbbk^{*}) \mid \dim H_{i}(\boldsymbol{X}, \Bbbk_{\rho}) \geq \boldsymbol{s} \}.$

• These loci are Zariski closed subsets of the character group. For i = 1, they depend only on π/π'' (and k).

JUMP LOCI OF TORIC COMPLEXES

For a field k, identify $H^1(T_L, k) = k^V$, the k-vector space with basis V.

THEOREM (PAPADIMA–S. 2009) $\mathcal{R}_{s}^{i}(T_{L}, \mathbb{k}) = \bigcup_{\substack{\mathsf{W} \subset \mathsf{V} \\ \sum_{\sigma \in L_{\mathsf{V}\setminus\mathsf{W}}} \dim_{\mathbb{k}} \widetilde{H}_{i-1-|\sigma|}(\mathsf{Ik}_{L_{\mathsf{W}}}(\sigma), \mathbb{k}) \ge s}} \mathbb{k}^{\mathsf{W}},$

where L_W is the subcomplex induced by L on W, and $lk_K(\sigma)$ is the link of a simplex σ in a subcomplex $K \subseteq L$.

In particular,

$$\mathcal{R}_1^1(\pi_{\Gamma}) = \bigcup_{\substack{\mathsf{W} \subseteq \mathsf{V} \\ \Gamma_\mathsf{W} \text{ disconnected}}} \Bbbk^\mathsf{W}.$$

Similar formulas hold for the characteristic varieties $\mathcal{V}_{s}^{i}(T_{L}, \mathbb{k})$.

EXAMPLE

Let Γ and Γ' be the two graphs above. Both have

 $P(t) = 1 + 6t + 9t^2 + 4t^3$, and $Q(t) = t^2(6 + 8t + 3t^2)$.

Thus, π_{Γ} and $\pi_{\Gamma'}$ have the same LCS and Chen ranks. Each resonance variety has 3 components, of codimension 2:

$$\mathcal{R}_{1}(\pi_{\Gamma}, \Bbbk) = \Bbbk^{\overline{23}} \cup \Bbbk^{\overline{25}} \cup \Bbbk^{\overline{35}}, \qquad \mathcal{R}_{1}(\pi_{\Gamma'}, \Bbbk) = \Bbbk^{\overline{15}} \cup \Bbbk^{\overline{25}} \cup \Bbbk^{\overline{26}}$$

Yet the two varieties are not isomorphic, since

$$\text{dim}(\Bbbk^{\overline{23}} \cap \Bbbk^{\overline{25}} \cap \Bbbk^{\overline{35}}) = 3, \quad \text{but} \quad \text{dim}(\Bbbk^{\overline{15}} \cap \Bbbk^{\overline{25}} \cap \Bbbk^{\overline{26}}) = 2.$$

PROPAGATION OF JUMP LOCI

• We say that the resonance varieties of a graded algebra $A = \bigoplus_{i=0}^{n} A^{i}$ propagate if

 $\mathcal{R}_1^1(A) \subseteq \cdots \subseteq \mathcal{R}_1^n(A).$

- (Eisenbud–Popescu–Yuzvinsky 2003) If $M(\mathcal{A})$ is the complement of a hyperplane arrangement, then the resonance varieties of the Orlik–Solomon algebra $A = H^*(M(\mathcal{A}), \mathbb{C})$ propagate.
- The resonance varieties of $A = H^*(T_L, \Bbbk)$ may not propagate. E.g., if L = , then $\mathcal{R}^1_1(A) = \Bbbk^4$, yet $\mathcal{R}^2_1(A) = \Bbbk^2 \cup \Bbbk^2$.

THEOREM (DENHAM–S.–YUZVINSKY 2016/17, GENERALIZING EPY)

Suppose the k-dual of A has a linear free resolution over $E = \bigwedge A^1$. Then the resonance varieties of A propagate.

DUALITY SPACES

In order to study propagation of jump loci in a topological setting, we turn to a notion due to Bieri and Eckmann (1978).

- X is a *duality space* of dimension n if $H^i(X, \mathbb{Z}\pi) = 0$ for $i \neq n$ and $H^n(X, \mathbb{Z}\pi) \neq 0$ and torsion-free.
- Let $D = H^n(X, \mathbb{Z}\pi)$ be the dualizing $\mathbb{Z}\pi$ -module. Given any $\mathbb{Z}\pi$ -module A, we have $H^i(X, A) \cong H_{n-i}(X, D \otimes A)$.
- If $D = \mathbb{Z}$, with trivial $\mathbb{Z}\pi$ -action, then X is a Poincaré duality space.

• If $X = K(\pi, 1)$ is a duality space, then π is a *duality group*.

ABELIAN DUALITY SPACES

We introduce in (DSY17) an analogous notion, by replacing $\pi \sim \pi_{ab}$.

- X is an *abelian duality space* of dimension n if $H^i(X, \mathbb{Z}\pi_{ab}) = 0$ for $i \neq n$ and $H^n(X, \mathbb{Z}\pi_{ab}) \neq 0$ and torsion-free.
- Let $B = H^n(X, \mathbb{Z}\pi_{ab})$ be the dualizing $\mathbb{Z}\pi_{ab}$ -module. Given any $\mathbb{Z}\pi_{ab}$ -module A, we have $H^i(X, A) \cong H_{n-i}(X, B \otimes A)$.
- The two notions of duality are independent.

THEOREM (DSY)

Let X be an abelian duality space of dimension n. If $\rho : \pi_1(X) \to \Bbbk^*$ satisfies $H^i(X, \Bbbk_\rho) \neq 0$, then $H^j(X, \Bbbk_\rho) \neq 0$, for all $i \leq j \leq n$.

COROLLARY (DSY)

Let X be an abelian duality space of dimension n. Then:

- The characteristic varieties propagate: $\mathcal{V}_1^1(X, \Bbbk) \subseteq \cdots \subseteq \mathcal{V}_1^n(X, \Bbbk)$.
- dim_k $H^1(X, \mathbb{k}) \ge n-1$.
- If $n \ge 2$, then $H^i(X, \Bbbk) \ne 0$, for all $0 \le i \le n$.

PROPOSITION (DSY)

Let M be a closed, orientable 3-manifold. If $b_1(M)$ is even and non-zero, then the resonance varieties of M do not propagate.

EXAMPLE

- Let *M* be the 3-dimensional Heisenberg nilmanifold.
- Characteristic varieties propagate: $\mathcal{V}_1^i(M, \mathbb{k}) = \{1\}$ for $i \leq 3$.
- Resonance does not propagate: $\mathcal{R}_1^1(M, \Bbbk) = \Bbbk^2$, $\mathcal{R}_1^3(M, \Bbbk) = 0$.

ARRANGEMENTS OF SMOOTH HYPERSURFACES

THEOREM (DENHAM-S. 2017)

Let U be a connected, smooth, complex quasi-projective variety of dimension n. Suppose U has a smooth compactification Y for which

- **O** Components of $Y \setminus U$ form an arrangement of hypersurfaces A;
- For each submanifold X in the intersection poset L(A), the complement of the restriction of A to X is a Stein manifold.

Then:

- U is both a duality space and an abelian duality space of dimension n.
- If *A* is a finite-dimensional representation of $\pi = \pi_1(U)$, and if $A^{\gamma_g} = 0$ for all *g* in a building set \mathcal{G}_X , for some $X \in L(\mathcal{A})$, then $H^i(U, A) = 0$ for all $i \neq n$.
- So The ℓ_2 -Betti numbers of U vanish for all $i \neq n$.

LINEAR, ELLIPTIC, AND TORIC ARRANGEMENTS

THEOREM (DS17)

Suppose that A is one of the following:

- An affine-linear arrangement in Cⁿ, or a hyperplane arrangement in CPⁿ;
- A non-empty elliptic arrangement in Eⁿ;
- **3** A toric arrangement in $(\mathbb{C}^*)^n$.

Then the complement M(A) is both a duality space and an abelian duality space of dimension n - r, n + r, and n, respectively, where r is the corank of the arrangement.

This theorem extends several previous results:

- Davis, Januszkiewicz, Leary, and Okun (2011);
- Levin and Varchenko (2012);
- Davis and Settepanella (2013), Esterov and Takeuchi (2014).

ALEX SUCIU (NORTHEASTERN)

POLYHEDRAL PRODUCTS AND DUALITY

THE COHEN-MACAULAY PROPERTY

A simplicial complex *L* is *Cohen–Macaulay* if for each simplex $\sigma \in L$, the reduced cohomology of $lk(\sigma)$ is concentrated in degree dim $L - |\sigma|$ and is torsion-free.

THEOREM (N. BRADY-MEIER 2001, JENSEN-MEIER 2005)

A RAAG π_{Γ} is a duality group if and only if Δ_{Γ} is Cohen–Macaulay. Moreover, π_{Γ} is a Poincaré duality group if and only if Γ is a complete graph.

THEOREM (DSY17)

A toric complex T_L is an abelian duality space (of dimension dim L + 1) if and only if L is Cohen-Macaulay, in which case both the resonance and characteristic varieties of T_L propagate.

BESTVINA-BRADY GROUPS

- The Bestvina–Brady group associated to a graph Γ is defined as
 N_Γ = ker(ν: π_Γ → ℤ), where ν(ν) = 1, for each ν ∈ V(Γ).
- A counterexample to either the Eilenberg–Ganea conjecture or the Whitehead conjecture can be constructed from these groups.
- The cohomology ring H^{*}(N_Γ, k) was computed by Papadima–S. (2007) and Leary–Saadetoğlu (2011).
- The jump loci $\mathcal{R}_1^1(N_{\Gamma}, \Bbbk)$ and $\mathcal{V}_1^1(N_{\Gamma}, \Bbbk)$ were computed in PS07.

THEOREM (DAVIS-OKUN 2012)

Suppose Δ_{Γ} is acyclic. Then N_{Γ} is a duality group if and only if Δ_{Γ} is Cohen–Macaulay.

THEOREM (DSY17)

A Bestvina–Brady group N_{Γ} is an abelian duality group if and only if Δ_{Γ} is acyclic and Cohen–Macaulay.

ALEX SUCIU (NORTHEASTERN)

POLYHEDRAL PRODUCTS AND DUALITY

MONTRÉAL, JULY 28, 2017 21 / 22

REFERENCES

- [DS17] G. Denham, A.I. Suciu, *Local systems on arrangements of smooth, complex algebraic hypersurfaces*, preprint arxiv:1706.00956.
- [DSY16] G. Denham, A.I. Suciu, and S. Yuzvinsky, *Combinatorial covers and vanishing of cohomology*, Selecta Math. **22** (2016), no. 2, 561–594.
- [DSY17] G. Denham, A.I. Suciu, and S. Yuzvinsky, *Abelian duality and propagation of resonance*, Selecta Math. (2017).
 - [DS07] G. Denham, A. I. Suciu, Moment-angle complexes, monomial ideals, and Massey products, Pure Appl. Math. Q. 3 (2007), no. 1, 25–60.
 - [PS06] S. Papadima, A.I. Suciu, *Algebraic invariants for right-angled Artin groups*, Math. Annalen **334** (2006), no. 3, 533–555.
 - [PS07] S. Papadima, A.I. Suciu, Algebraic invariants for Bestvina–Brady groups, J. Lond. Math. Soc. 76 (2007), no. 2, 273–292.
 - [PS09] S. Papadima, A.I. Suciu, *Toric complexes and Artin kernels*, Adv. Math. 220 (2009), no. 2, 441–477.
 - [PS10] S. Papadima, A.I. Suciu, *Bieri–Neumann–Strebel–Renz invariants and homology jumping loci*, Proc. Lond. Math. Soc. **100** (2010), no. 3, 795–834.