ARRANGEMENT COMPLEMENTS AND MILNOR FIBRATIONS

Alex Suciu

Northeastern University

Special Session

Advances in Arrangement Theory

Mathematical Congress of the Americas Montréal, Canada July 25, 2017

INTERSECTION LATTICE AND COMPLEMENT

- An arrangement of hyperplanes is a finite set A of codimension 1 linear subspaces in a finite-dimensional C-vector space V.
- The *intersection lattice*, *L*(*A*), is the poset of all intersections of *A*, ordered by reverse inclusion, and ranked by codimension.
- The *complement*, $M(A) = V \setminus \bigcup_{H \in A} H$, is a connected, smooth quasi-projective variety, and also a Stein manifold.
- It has the homotopy type of a minimal CW-complex of dimension equal to dim V. In particular, H_•(M(A), ℤ) is torsion-free.
- The fundamental group π = π₁(M(A)) admits a finite presentation, with generators x_H for each H ∈ A.

COHOMOLOGY RING

- For each $H \in A$, let α_H be a linear form s.t. $H = \text{ker}(\alpha_H)$. The logarithmic 1-form $\omega_H = \frac{1}{2\pi i} \text{ d } \log \alpha_H \in \Omega_{dR}(M)$ is a closed form, representing a class $e_H \in H^1(M, \mathbb{Z})$.
- Let *E* be the \mathbb{Z} -exterior algebra on $\{e_H \mid H \in \mathcal{A}\}$, and let $\partial : E^{\bullet} \to E^{\bullet-1}$ be the differential given by $\partial(e_H) = 1$.
- (Orlik–Solomon 1980). The cohomology ring A = H[•](M(A), ℤ) is determined by the intersection lattice: A = E/I, where

$$I = \mathsf{ideal} \left\{ \partial \left(\prod_{H \in \mathcal{B}} e_H \right) \, \Big| \, \mathcal{B} \subseteq \mathcal{A} \text{ and } \mathsf{codim} \bigcap_{H \in \mathcal{B}} H < |\mathcal{B}| \, \right\}.$$

- The map $e_H \mapsto \omega_H$ extends to a cdga quasi-isomorphism, $(H^{\bullet}(M, \mathbb{R}), d = 0) \xrightarrow{\simeq} \Omega^{\bullet}_{d\mathbb{R}}(M)$. Therefore, $M(\mathcal{A})$ is formal.
- Also, *M*(*A*) is minimally pure (i.e., *H^k*(*M*(*A*), ℚ) is pure of weight 2*k*, for all *k*), which again implies formality (Dupont 2016).

3 / 18

RESONANCE VARIETIES

For a connected, finite CW-complex X, set A = H[•](X, C). For each a ∈ A¹, we have a cochain complex

$$(\mathbf{A}, \cdot \mathbf{a}): \mathbf{A}^0 \xrightarrow{\cdot \mathbf{a}} \mathbf{A}^1 \xrightarrow{\cdot \mathbf{a}} \mathbf{A}^2 \longrightarrow \cdots$$

• The resonance varieties of X are defined as

 $\mathcal{R}^q_s(X) = \{ a \in A^1 \mid \dim H^q(A, \cdot a) \ge s \}.$

- They are Zariski closed, homogeneous subsets of affine space A¹.
- Now let M = M(A). Since M is formal, its resonance varieties are unions of linear subspaces of H¹(M, C) ≅ C^{|A|}.
- (Falk–Yuzvinsky 2007) The irreducible components of $\mathcal{R}_1^1(M)$ arise from multinets on sub-arrangements of \mathcal{A} : each such *k*-multinet yields a (linear) component of dimension $k 1 \ge 2$.

CHARACTERISTIC VARIETIES

- Let X be a connected, finite cell complex, and set $\pi = \pi_1(X, x_0)$.
- The *characteristic varieties* of *X* are the jump loci for homology with coefficients in rank-1 local systems,

 $\mathcal{V}^{\boldsymbol{q}}_{\boldsymbol{s}}(\boldsymbol{X}) = \{ \rho \in \operatorname{Hom}(\pi, \mathbb{C}^*) \mid \dim H_{\boldsymbol{q}}(\boldsymbol{X}, \mathbb{C}_{\rho}) \geq \boldsymbol{s} \}.$

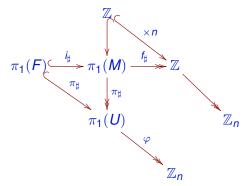
- These loci are Zariski closed subsets of the character group. For q = 1, they depend only on π/π'' .
- They determine the characteristic polynomial of the algebraic monodromy of every regular Z_n-cover Y → X.
- Now let M = M(A) be an arrangement complement. Since M is a smooth, quasi-projective variety, the characteristic varieties of M are unions of torsion-translated algebraic subtori of the character torus, Hom(π, C*) ≃ (C*)^{|A|}.

MILNOR FIBER AND MONODROMY

- Let \mathcal{A} be an arrangement of *n* hyperplanes in \mathbb{C}^{d+1} , $d \ge 1$.
- (Milnor 1968). The polynomial map $f := \prod_{H \in \mathcal{A}} \alpha_H : \mathbb{C}^{d+1} \to \mathbb{C}$ restricts to a smooth fibration, $f : M(\mathcal{A}) \to \mathbb{C}^*$.
- Define the *Milnor fiber* of A as $F(A) := f^{-1}(1)$.
- The monodromy diffeo, $h: F \to F$, is given by $h(z) = e^{2\pi i/n} z$.
- *F* is a Stein manifold. It has the homotopy type of a connected, finite cell complex of dimension *d*.
- In general, *F* is neither formal, nor minimal.

A REGULAR \mathbb{Z}_n -COVER

- The Hopf fibration $\mathbb{C}^* \to \mathbb{C}^{d+1} \setminus \{0\} \xrightarrow{\pi} \mathbb{CP}^d$ restricts to a trivial fibration $\mathbb{C}^* \to M(\mathcal{A}) \xrightarrow{\pi} U(\mathcal{A}) := \mathbb{P}(M(\mathcal{A})).$
- In turn, this fibration restricts to a regular Z_n-cover π: F → U, classified by the homomorphism φ: π₁(U) → Z_n taking each meridional loop x_H to 1.



THE ALGEBRAIC MONODROMY

- Let $\Delta_{\mathcal{A}}(t)$ be the characteristic polynomial of $h_*: H_1(F, \mathbb{C}) \bigcirc$.
- WLOG, we may assume $\overline{\mathcal{A}} = \mathbb{P}(\mathcal{A})$ is a line arrangement in \mathbb{CP}^2 .
- Let $\beta_p(\mathcal{A}) = \dim_{\mathbb{F}_p} H^1(H^{\bullet}(M(\mathcal{A}), \mathbb{F}_p), \cdot \sigma)$, where $\sigma = \sum_{H \in \mathcal{A}} e_H$. (An integer depending only on $L(\mathcal{A})$ and on the prime *p*.)

THEOREM (PAPADIMA-S. 2017)

If $\overline{\mathcal{A}}$ has only points of multiplicity 2 and 3, then

$$\Delta_{\mathcal{A}}(t) = (t-1)^{n-1}(t^2+t+1)^{\beta_3(\mathcal{A})}.$$

CONJECTURE

If $rank(\mathcal{A}) \ge 3$, then

$$\Delta_{\mathcal{A}}(t) = (t-1)^{|\mathcal{A}|-1}((t+1)(t^2+1))^{\beta_2(\mathcal{A})}(t^2+t+1)^{\beta_3(\mathcal{A})}.$$

8 / 18

THE BOUNDARY MANIFOLD

- As before, let A be a central arrangement of hyperplanes in $V = \mathbb{C}^{d+1}$ ($d \ge 1$).
- Let $\overline{U}(\mathcal{A}) = \mathbb{CP}^d \setminus \operatorname{int}(N)$, where N is a (closed) regular neighborhood of the hypersurface $\bigcup_{H \in \mathcal{A}} \mathbb{P}(H) \subset \mathbb{CP}^d$.
- The boundary manifold of the arrangement, $\partial \overline{U} = \partial N$, is a compact, orientable, smooth manifold of dimension 2d 1.

EXAMPLE

- Let \mathcal{A} be a pencil of *n* hyperplanes in \mathbb{C}^{d+1} . If n = 1, then $\partial \overline{U} = S^{2d-1}$. If n > 1, then $\partial \overline{U} = \sharp^{n-1}S^1 \times S^{2(d-1)}$.
- Let \mathcal{A} be a near-pencil of n planes in \mathbb{C}^3 . Then $\partial \overline{U} = S^1 \times \Sigma_{n-2}$, where $\Sigma_g = \sharp^g S^1 \times S^1$.

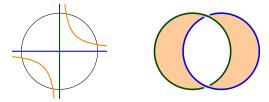
- When d = 2, the boundary manifold $\partial \overline{U}$ is a 3-dimensional graph-manifold M_{Γ} , where
 - Γ is the incidence graph of \mathcal{A} , with $V(\Gamma) = L_1(\mathcal{A}) \cup L_2(\mathcal{A})$ and $E(\Gamma) = \{(L, P) \mid P \in L\}.$
 - Vertex manifolds M_ν = S¹ × (S²\U_{{ν,w}∈E(Γ)} D²_{ν,w}) are glued along edge manifolds M_e = S¹ × S¹ via flip maps.

THEOREM (JIANG-YAU 1993) $U(\mathcal{A}) \cong U(\mathcal{A}') \Rightarrow M_{\Gamma} \cong M_{\Gamma'} \Rightarrow \Gamma \cong \Gamma' \Rightarrow L(\mathcal{A}) \cong L(\mathcal{A}').$

THEOREM (COHEN-S. 2008)

- $\mathcal{V}_1^1(M_{\Gamma}) = \bigcup_{v \in V(\Gamma) : \deg(v) \ge 3} \{\prod_{i \in v} t_i = 1\}.$ Moreover, TFAE:
 - M_{Γ} is formal.
 - $\operatorname{TC}_1(\mathcal{V}_1^1(M_{\Gamma})) = \mathcal{R}_1^1(M_{\Gamma}).$
 - *A* is a pencil or a near-pencil.

THE BOUNDARY OF THE MILNOR FIBER



• Let $\overline{F}(\mathcal{A}) = F(\mathcal{A}) \cap D^{2(d+1)}$ be the *closed Milnor fiber* of \mathcal{A} .

- The boundary of the Milnor fiber of A is the compact, smooth, orientable, (2d - 1)-manifold $\partial \overline{F} = F \cap S^{2d+1}$.
- The pair $(\overline{F}, \partial \overline{F})$ is (d-1)-connected. In particular, if $d \ge 2$, then $\partial \overline{F}$ is connected, and $\pi_1(\partial \overline{F}) \to \pi_1(\overline{F})$ is surjective.
- If \mathcal{A} is the Boolean arrangement in \mathbb{C}^n , then $F = (\mathbb{C}^*)^{n-1}$. Hence, $\overline{F} = T^{n-1} \times D^{n-1}$, and so $\partial \overline{F} = T^{n-1} \times S^{n-2}$.
- If \mathcal{A} is a near-pencil of *n* planes in \mathbb{C}^3 , then $\partial \overline{F} = S^1 \times \Sigma_{n-2}$.

- The Hopf fibration $\pi : \mathbb{C}^{d+1} \setminus \{0\} \to \mathbb{CP}^d$ restricts to regular, cyclic *n*-fold covers, $\pi : \overline{F} \to \overline{U}$ and $\pi : \partial \overline{F} \to \partial \overline{U}$.
- Assume now that d = 2. The fundamental group of $\partial \overline{U} = M_{\Gamma}$ has generators \overline{x}_H for $H \in \mathcal{A}$ and generators y_c for the cycles of Γ .

PROPOSITION (S. 2014)

The \mathbb{Z}_n -cover $\pi: \partial \overline{F} \to \partial \overline{U}$ is classified by the homomorphism $\pi_1(\partial \overline{U}) \to \mathbb{Z}_n$ given by $x_H \mapsto 1$ and $y_c \mapsto 0$.

THEOREM (NÉMETHI-SZILARD 2012)

The characteristic polynomial of h_* : $H_1(\partial \overline{F}, \mathbb{C}) \bigcirc$ is given by

$$\delta_{\mathcal{A}}(t) = \prod_{v \in L_2(\mathcal{A})} (t-1)(t^{\gcd(m_v,n)}-1)^{m_v-2}.$$

• Note: $H_1(\partial \overline{F}, \mathbb{Z})$ may have torsion. E.g., if \mathcal{A} is generic, then $H_1(\partial \overline{F}, \mathbb{Z}) = \mathbb{Z}^{n(n-1)/2} \oplus \mathbb{Z}_n^{(n-2)(n-3)/2}$.

ALEX SUCIU (NORTHEASTERN)

MONTRÉAL, JULY 24, 2017 12 / 18

TRIVIAL ALGEBRAIC MONODROMY

- Let \mathcal{A} be an arrangement of *n* planes in \mathbb{C}^3 .
- Let $F \xrightarrow{i} M \xrightarrow{f} \mathbb{C}^*$ be the Milnor fibration, with monodromy $h: F \to F$, and let $\pi: F \to U$ be the corresponding \mathbb{Z}_n -cover.

THEOREM (DIMCA, PAPADIMA 2011)

If h_* : $H_1(F, \mathbb{C}) \bigcirc$ is the identity, then:

- F is 1-formal.
- The map π^* : $H^1(U, \mathbb{C}) \to H^1(F, \mathbb{C})$ is an isomorphism which identifies $\mathcal{R}^1_s(M)$ with $\mathcal{R}^1_s(F)$, for all $s \ge 1$.
- The map π*: H¹(U, C*) → H¹(F, C*) is a surjection with finite kernel, which establishes a bijection between the sets of irreducible components of V¹_s(U) and V¹_s(F) passing through 1.

If $p: Y \to X$ is a regular \mathbb{Z}_n -cover, and the monodromy acts trivially on $H_1(Y, \mathbb{C})$, we cannot conclude that it acts trivially on $H_1(Y, \mathbb{Z})$.

EXAMPLE (COHEN, DENHAM, S. 2003)

Let F_m be the Milnor fiber of the deleted braid arrangement, with a suitable choice of multiplicities m. Then h_* acts trivially on $H_1(F_m, \mathbb{C})$, but not on $H_1(F_m, \mathbb{Z})$, which has torsion subgroup $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ on which the monodromy acts as $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$.

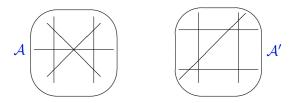
Questions:

• Is
$$H_1(F(\mathcal{A}), \mathbb{Z})$$
 always torsion-free?

Suppose h_{*}: H₁(F, C) bis trivial (which conjecturally happens precisely when β₂(A) = β₃(A) = 0). Is then H₁(F, Z) torsion-free (so that h_{*}: H₁(F, Z) is also trivial)?

Suppose A and A' have trivial monodromy action (over Z), and suppose L(A) ≇ L(A'). Is it true that π₁(F) ≇ π₁(F')?

A PAIR OF ARRANGEMENTS



- Let A and A' be the above pair of arrangements. Both have 2 triple points and 9 double points, yet L(A) ≇ L(A').
- As noted by Rose and Terao (1988), the respective OS-algebras are isomorphic. In fact, as shown by Falk (1993), U(A) ≃ U(A').
- Since L(A) ≇ L(A'), the corresponding boundary manifolds, ∂U
 and ∂U', are not homotopy equivalent, and so U ≇ U'.
- In fact, V¹₁(∂U) consists of 7 codimension-1 subtori in (C*)¹³, while V¹₁(∂U) consists of 8 such subtori.

- The corresponding Milnor fibers, *F* and *F'*, have trivial algebraic monodromy (over ℤ); in particular, b₁(*F*) = b₁(*F'*) = 5.
- The boundaries of the Milnor fibers, ∂F and ∂F', have the same characteristic polynomials for the algebraic monodromy (over ℂ):

$$\delta = \delta' = (t-1)^{13}(t^2 + t + 1)^2.$$

• $V_1^1(U) = T_P \cup T_Q$, where T_P and T_Q are the 2-dim subtori of $(\mathbb{C}^*)^5$ corresponding to the triple points of \mathcal{A} , and similarly for $V_1^1(U')$.

- Thus, $\mathcal{V}_1^1(F) = \pi^*(T_P) \cup \pi^*(T_Q)$ and $\mathcal{V}_1^1(F') = \pi'^*(T_{P'}) \cup \pi'^*(T_{Q'})$.
- But $\mathcal{V}_{2}^{1}(F) = \pi^{*}(T_{P}) \cap \pi^{*}(T_{Q}) = \{\mathbf{1}, \rho, \rho^{2}\} \cong \mathbb{Z}_{3},$ whereas $\mathcal{V}_{2}^{1}(F') = \pi'^{*}(T_{P'}) \cap \pi'^{*}(T_{Q'}) = \{\mathbf{1}\}.$
- Thus, $\pi_1(F) \ncong \pi_1(F')$.

REFERENCES

- S. Papadima, A.I. Suciu, *The Milnor fibration of a hyperplane arrangement: from modular resonance to algebraic monodromy*, Proceedings of the London Mathematical Society **114** (2017), no. 6, 961–1004.
- [2] A.I. Suciu, Hyperplane arrangements and Milnor fibrations, Annales de la Faculté des Sciences de Toulouse 23 (2014), no. 2, 417–481.
- [3] A.I. Suciu, On the topology of Milnor fibrations of hyperplane arrangements, Revue Roumaine de Mathématiques Pures et Appliquées 62 (2017), no. 1, 191–215.
- [4] A.I. Suciu, *Homotopy types of Milnor fibers of line arrangements*, in preparation.