BRAIDS AND LINE ARRANGEMENTS Old and New

Alex Suciu

Northeastern University

Conference on Braids, Links, and Applications

Institute of the Mathematical Sciences of the Americas

University of Miami

November 15, 2021

1 HYPERPLANE ARRANGEMENTS

- Complement and intersection lattice
- Cohomology rings of arrangements
- Fundamental groups of arrangements

2 LIE ALGEBRAS ATTACHED TO GROUPS

- Lower central series
- Associated graded Lie algebra
- Chen Lie algebras
- Holonomy Lie algebra

3 ARRANGEMENT GROUPS AND LIE ALGEBRAS

- Holonomy Lie algebras of arrangements
- Lower central series of arrangement groups
- Decomposable arrangements

BRAID-LIKE GROUPS

- Artin braid groups
- Welded braid groups
- Virtual braid groups

HYPERPLANE ARRANGEMENTS

- An arrangement of hyperplanes is a finite collection A of codimension 1 linear (or affine) subspaces in C^ℓ.
- Intersection lattice L(A): poset of all intersections of A, ordered by reverse inclusion, and ranked by codimension.

Complement: M(A) = C^ℓ \ U_{H∈A} H. It is a smooth, quasiprojective variety and also a Stein manifold. It has the homotopy type of a finite, connected, ℓ-dimensional CW-complex. EXAMPLE (THE BOOLEAN ARRANGEMENT)

- ▶ \mathcal{B}_n : all coordinate hyperplanes $z_i = 0$ in \mathbb{C}^n .
- $L(\mathcal{B}_n)$: Boolean lattice of subsets of $\{0, 1\}^n$.
- $M(\mathcal{B}_n)$: complex algebraic torus $(\mathbb{C}^*)^n \simeq K(\mathbb{Z}^n, 1)$.

EXAMPLE (THE BRAID ARRANGEMENT)

- ► A_n : all diagonal hyperplanes $z_i z_j = 0$ in \mathbb{C}^n .
- ► L(A_n): lattice of partitions of [n] := {1,..., n}, ordered by refinement.
- M(A_n): the (ordered) configuration space of *n* distinct points in C; it is a classifying space K(P_n, 1) for the pure braid group on *n* strands, P_n.

COHOMOLOGY RINGS OF ARRANGEMENTS

► The homology groups H_q(M(A), Z) are finitely generated and torsion-free, with ranks given by

$$\sum_{q=0}^\ell b_q(M(\mathcal{A}))t^q = \sum_{X\in L(\mathcal{A})} \mu(X)(-t)^{\mathsf{rank}(X)}$$
 ,

where $\mu: L(\mathcal{A}) \to \mathbb{Z}$ is the Möbius function, defined by $\mu(\mathbb{C}^{\ell}) = 1$ and $\mu(X) = -\sum_{Y \supseteq X} \mu(Y)$.

- ► Let *E* be the \mathbb{Z} -exterior algebra on degree 1 classes e_H dual to the meridians around the hyperplanes $H \in A$.
- ► Let $\partial: E^* \to E^{*-1}$ be the differential given by $\partial(e_H) = 1$, and set $e_B = \prod_{H \in B} e_H$ for each $B \subset A$.

Building on work of Arnold & Brieskorn, Orlik and Solomon described the cohomology ring of *M*(*A*) solely in terms of *L*(*A*): *H*^{*}(*M*(*A*), ℤ) ≅ *E*/⟨∂*e*_B | codim(∩_{*μ*∈B}*H*) < |B|⟩.</p>

FUNDAMENTAL GROUPS OF ARRANGEMENTS

- Let A' = {H ∩ C²}_{H∈A} be a generic planar section of A. Then the arrangement group, G(A) = π₁(M(A)), is isomorphic to π₁(M(A')).
- ► So let \mathcal{A} be an arrangement of *n* affine lines in \mathbb{C}^2 . Taking a generic projection $\mathbb{C}^2 \to \mathbb{C}$ yields the braid monodromy $\alpha = (\alpha_1, \ldots, \alpha_s)$, where $s = \#\{\text{multiple points}\}$ and the braids $\alpha_r \in P_n$ can be read off an associated braided wiring diagram,

► The group G(A) has a presentation with meridional generators x_1, \ldots, x_n and commutator relators $x_i \alpha_i (x_i)^{-1}$.

LOWER CENTRAL SERIES

- Let G be a group. The *lower central series* {γ_k(G)}_{k≥1} is defined inductively by γ₁(G) = G and γ_{k+1}(G) = [G, γ_k(G)].
- ▶ Here, if H, K < G, then [H, K] is the subgroup of G generated by $\{[a, b] := aba^{-1}b^{-1} \mid a \in H, b \in K\}.$
- The subgroups γ_k(G) are normal; in fact, they are invariant under any automorphism of G. Moreover, [γ_k(G), γ_ℓ(G)] ⊆ γ_{k+ℓ}(G).
- $\gamma_2(G) = [G, G]$ is the derived subgroup, and so $G/\gamma_2(G) = G_{ab}$.
- ▶ $[\gamma_k(G), \gamma_k(G)] \triangleleft \gamma_{k+1}(G)$, and thus the LCS quotients,

$$\operatorname{gr}_k(G) := \gamma_k(G) / \gamma_{k+1}(G),$$

are abelian.

Associated graded Lie Algebra

Fix a coefficient ring \Bbbk . Given a group *G*, we let

$$\operatorname{gr}(G, \Bbbk) = \bigoplus_{k \ge 1} \operatorname{gr}_k(G) \otimes \Bbbk.$$

► This is a graded Lie algebra over k, with Lie bracket [,]: $gr_k \times gr_\ell \rightarrow gr_{k+\ell}$ induced by the group commutator.

For
$$\Bbbk = \mathbb{Z}$$
, we simply write $gr(G) = gr(G, \mathbb{Z})$.

- ► The construction is functorial.
- If G is finitely generated, so are its associated graded Lie algebras.
- Example: if F_n is the free group of rank n, then

•
$$\operatorname{gr}(F_n)$$
 is the free Lie algebra $\operatorname{Lie}(\mathbb{Z}^n)$.

• $\operatorname{gr}_k(F_n)$ is free abelian, of rank $\phi_k(F_n) = \frac{1}{k} \sum_{d|k} \mu(d) n^{\frac{k}{d}}$.

8/24

CHEN LIE ALGEBRAS

▶ Let $G^{(i)}$ be the *derived series* of *G*, starting at $G^{(1)} = G'$, $G^{(2)} = G''$, and defined inductively by $G^{(i+1)} = [G^{(i)}, G^{(i)}]$.

- ► The quotient groups, $G/G^{(i)}$, are solvable; $G/G' = G_{ab}$, while G/G'' is the maximal metabelian quotient of G.
- ► The *i*-th Chen Lie algebra of G is defined as $gr(G/G^{(i)}, \Bbbk)$. Clearly, this construction is functorial.
- The projection q_i: G → G/G⁽ⁱ⁾, induces a surjection gr_k(G; k) → gr_k(G/G⁽ⁱ⁾; k), which is an iso for k ≤ 2ⁱ − 1.
- ► Assuming *G* is finitely generated, write $\theta_k(G) = \operatorname{rank} \operatorname{gr}_k(G/G'')$ for the *Chen ranks*. We have $\phi_k(G) \ge \theta_k(G)$, with equality for $k \le 3$.
- Example (K.-T. Chen 1951): $\theta_k(F_n) = (k-1)\binom{n+k-2}{k}$, for $k \ge 2$.

HOLONOMY LIE ALGEBRA

► The holonomy Lie algebra of a finitely generated group G over a field k is defined as

$$\mathfrak{h}(G, \Bbbk) := \operatorname{Lie}(H_1(G, \Bbbk)) / \langle \operatorname{im}(\mu_G^{\vee}) \rangle,$$

where

- $\mathbf{L} = \text{Lie}(V)$ the free Lie algebra on the k-vector space $V = H_1(G; k)$, with $\mathbf{L}_1 = V$ and $\mathbf{L}_2 = V \wedge V$.
- μ_G^{\vee} : $H_2(G, \Bbbk) \to V \wedge V$ is the dual of the cup product map μ_G : $H^1(G; \Bbbk) \wedge H^1(G; \Bbbk) \to H^2(G; \Bbbk)$.
- Similarly, $\mathfrak{h}(G) = \operatorname{Lie}(H) / \operatorname{im}(\mu_G^{\vee})$, where $H = H_1(G, \mathbb{Z}) / \operatorname{Tors}$ and μ_G^{\vee} is dual to $\mu_G \colon H^1(G) \wedge H^1(G) \to H^2(G)$.
- By construction, these are (functorially defined) finitely generated graded Lie algebras that admit quadratic presentations.
- For instance, h(F_n) = Lie(n), whereas h(Zⁿ) = Zⁿ, concentrated in degree 1.

If k is a field or k = Z, there is a natural, surjective morphism of graded Lie algebras,

 $\mathfrak{h}(\textit{G},\Bbbk) \longrightarrow \mathsf{gr}(\textit{G};\Bbbk),$

which is an isomorphism in degrees 1 and 2, but not necessarily in higher degrees.

If G is 1-formal (i.e., its Q-pronilpotent completion is quadratic), then the map h(G, Q) → gr(G; Q) is an isomorphism.

THEOREM (RYBNIKOV 1998, PORTER-S. 2020)

Suppose G_{ab} is finitely-generated free abelian, and $\mu_G^{\vee} \colon H_2(G) \to G_{ab} \land G_{ab}$ is injective. Then the map $\mathfrak{h}_3(G) \twoheadrightarrow \mathfrak{gr}_3(G)$ is an isomorphism. HOLONOMY LIE ALGEBRAS OF ARRANGEMENTS

- Let $G = \pi_1(M(A))$ be an arrangement group.
- Recall that *G* admits a finite presentation, with generators $\{x_H\}_{H \in A}$ and commutator-relators.
- The holonomy Lie algebra 𝔥(𝔅) := 𝔥(𝔅) has presentation with generators {𝑥_H}_{H∈𝔅} and relators

$$\left[x_{H}, \sum_{H' \in \mathcal{A}: H' \supset X} x_{H'}\right]$$

for all $X \in L_2(\mathcal{A})$ and all $H \in \mathcal{A}$ with $H \supset X$.

- Clearly, this presentation depends only on $L_{\leq 2}(A)$.
- ▶ $\mathfrak{h}_1(\mathcal{A})$ is free abelian of rank $n = |\mathcal{A}|$, with basis $\{x_H\}_{H \in \mathcal{A}}$.
- ▶ $\mathfrak{h}_2(\mathcal{A})$ is free abelian of rank $\binom{n}{2} \sum_{X \in L_2(\mathcal{A})} \mu(X)$, with basis $\bigcup_{X \in L_2(\mathcal{A})} \{ [x_H, x_{H'}] : H, H' \in X \setminus \{ \max X \} \}.$

LOWER CENTRAL SERIES OF ARRANGEMENT GROUPS

- ▶ M(A) is formal, and so $G = \pi_1(M(A))$ is 1-formal.
- ▶ Hence, the map $\mathfrak{h}(G, \mathbb{Q}) \twoheadrightarrow \mathfrak{gr}(G, \mathbb{Q})$ is an isomorphism.
- ▶ Thus, gr(G, Q) and the LCS ranks $\phi_k(G)$ depend only on $L_{\leq 2}(A)$.
- Explicit combinatorial formulas for the LCS ranks are known in some cases, but not in general.
- ► (Falk–Randell 1985) If \mathcal{A} is *supersolvable*, with exponents d_1, \ldots, d_ℓ , then $G = F_{d_\ell} \rtimes \cdots \rtimes F_{d_2} \rtimes F_{d_1}$ and

$$\phi_k(G) = \sum_{i=1}^{\ell} \phi_k(F_{d_i}).$$

The Chen ranks θ_k(G) := rank gr_k(G/G'') are also combinatorially determined [Papadima−S. 2004]. An explicit formula for k ≫ 0 was conjectured in [S. 2002].

ALEX SUCIU (NORTHEASTERN)

BRAIDS AND LINE ARRANGEMENTS

NOVEMBER 15, 2021 13 / 24

- Let $G/\gamma_k(G)$ be the (k-1)th nilpotent quotient of $G = G(\mathcal{A})$. Then:
 - $G/\gamma_3(G)$ is determined by $L_{\leq 2}(\mathcal{A})$.
 - $G/\gamma_4(G)$ is *not* determined by $L(\mathcal{A})$ (Rybnikov 1994).
- ▶ We have $G_{ab} \cong \mathbb{Z}^{|\mathcal{A}|}$, and μ_G^{\vee} : $H_2(G) \to G_{ab} \land G_{ab}$ is injective.
- Hence, $\mathfrak{h}_3(G) \cong \operatorname{gr}_3(G)$.
- ▶ (S. 2002) The groups $\operatorname{gr}_k(G)$ may have non-zero torsion for $k \ge 5$. E.g., if $G = G(\operatorname{MacLane})$, then $\operatorname{gr}_5(G) = \mathbb{Z}^{87} \oplus \mathbb{Z}_2^4 \oplus \mathbb{Z}_3$.
- Question (S. 2002): Is that torsion combinatorially determined?
- (Artal Bartolo, Guerville-Ballé, and Viu-Sos 2020): Answer: No!
- There are two arrangements of 13 lines, A[±], each one with 11 triple points and 2 quintuple points, such that gr_k(G⁺) ≅ gr_k(G⁻) for k ≤ 3, yet gr₄(G⁺) = Z²¹¹ ⊕ Z₂ and gr₄(G⁻) = Z²¹¹.

DECOMPOSABLE ARRANGEMENTS

- ▶ For each flat $X \in L(A)$, let $A_X := \{H \in A \mid H \supset X\}$.
- ► The inclusions $A_X \subset A$ give rise to maps $M(A) \hookrightarrow M(A_X)$. Restricting to rank 2 flats yields a map

 $j: M(\mathcal{A}) \longrightarrow \prod_{X \in L_2(\mathcal{A})} M(\mathcal{A}_X)$.

► The induced homomorphism on fundamental groups, j[±], defines a morphism of graded Lie algebras,

 $\mathfrak{h}(j_{\sharp}) \colon \mathfrak{h}(\mathcal{A}) \longrightarrow \prod_{X \in L_2(\mathcal{A})} \mathfrak{h}(\mathcal{A}_X).$

THEOREM (PAPADIMA-S. 2006)

The map $\mathfrak{h}_k(j_{\sharp})$ is a surjection for each $k \ge 3$ and an isomorphism for k = 2.

► The arrangement A is *decomposable* if the map h₃(j_#) is an isomorphism.

Alex Suciu (Northeastern)

THEOREM (PAPADIMA-S. 2006)

Let \mathcal{A} be a decomposable arrangement, and let $G = G(\mathcal{A})$. Then

- The map $\mathfrak{h}'(j_{\sharp}): \mathfrak{h}'(\mathcal{A}) \to \prod_{X \in L_2(\mathcal{A})} \mathfrak{h}'(\mathcal{A}_X)$ is an isomorphism of graded Lie algebras.
- The map $\mathfrak{h}(G) \twoheadrightarrow \mathfrak{gr}(G)$ is an isomorphism
- For each $k \ge 2$, the group $\operatorname{gr}_k(G)$ is free abelian of rank $\phi_k(G) = \sum_{X \in L_2(\mathcal{A})} \phi_k(F_{\mu(X)})$.

THEOREM (PORTER-S. 2020)

Let A and B be decomposable arrangements with $L_{\leq 2}(A) \cong L_{\leq 2}(B)$. Then, for each $k \geq 2$,

$$G(\mathcal{A})/\gamma_k(G(\mathcal{A}))\cong G(\mathcal{B})/\gamma_k(G(\mathcal{B})).$$

BRAID-LIKE GROUPS

ARTIN BRAID GROUPS

- Let B_n be the group of braids on *n* strings (under concatenation).
- ▶ $B_n = Mod_{0,n}^1$, the mapping class group of D^2 with *n* marked points.
- ▶ Thus, B_n is a subgroup of Aut(F_n). In fact:

 $B_n = \{\beta \in \operatorname{Aut}(F_n) \mid \beta(x_i) = wx_{\tau(i)}w^{-1}, \beta(x_1 \cdots x_n) = x_1 \cdots x_n\},\$ where x_1, \ldots, x_n is a generating set for F_n . s

- ▶ Let $P_n = \ker(B_n \twoheadrightarrow S_n)$ be the pure braid group on *n* strings.
- ▶ P_n is a subgroup of $IA_n = \{ \varphi \in Aut(F_n) \mid \varphi_* = id \text{ on } H_1(F_n, \mathbb{Z}) \}.$
- $P_n = F_{n-1} \rtimes_{\alpha_{n-1}} P_{n-1} = F_{n-1} \rtimes \cdots \rtimes F_2 \rtimes F_1, \text{ where } \\ \alpha_n \colon P_n \subset B_n \hookrightarrow \operatorname{Aut}(F_n).$
- ► A classifying space for P_n is the ordered configuration space $\operatorname{Conf}_n(\mathbb{C})$. Thus, $B_n = \pi_1(\operatorname{Conf}_n(\mathbb{C})/S_n)$.

ALEX SUCIU (NORTHEASTERN)

BRAIDS AND LINE ARRANGEMENTS

WELDED BRAID GROUPS

- The set of all permutation-conjugacy automorphisms of *F_n* forms a subgroup *wB_n* < Aut(*F_n*), called the welded braid group.
- ▶ Let $wP_n = \ker(wB_n \twoheadrightarrow S_n) = IA_n \cap wB_n$ be the pure welded braid group wP_n .
- ► McCool (1986) gave a finite presentation for wP_n . It is generated by the automorphisms α_{ij} ($1 \le i \ne j \le n$) sending $x_i \mapsto x_j x_i x_j^{-1}$ and $x_k \mapsto x_k$ for $k \ne i$, subject to the relations

 $\begin{aligned} \alpha_{ij}\alpha_{ik}\alpha_{jk} &= \alpha_{jk}\alpha_{ik}\alpha_{ij} & \text{for } i, j, k \text{ distinct,} \\ [\alpha_{ij}, \alpha_{st}] &= 1 & \text{for } i, j, s, t \text{ distinct,} \\ [\alpha_{ik}, \alpha_{jk}] &= 1 & \text{for } i, j, k \text{ distinct.} \end{aligned}$

- ▶ wP_n can be identified with the group of motions of *n* unknotted, unlinked circles in S^3 , and also with the fundamental group of the space of configurations of parallel rings in \mathbb{R}^3 .
- The upper pure welded braid group (or, upper McCool group) is the subgroup wP⁺_n < wP_n generated by α_{ij} for i < j.</p>
- We have: $wP_n^+ \cong F_{n-1} \rtimes \cdots \rtimes F_2 \rtimes F_1$.
- ► (F. Cohen, Pakhianathan, Vershinin, and Wu, 2007): $H^*(wP_n^+, \mathbb{Q}) = \bigwedge_{i < j} (e_{ij}) / \langle e_{ij}(e_{ik} - e_{jk}) \rangle.$
- (D. Cohen and Pruidze, 2008) This is a Koszul algebra for all n.

▶ Jensen, McCammond, and Meier, 2006):

 $H^*(wP_n, \mathbb{Q}) = \bigwedge_{i \neq j} (e_{ij}) / \langle e_{ij} e_{ji}, e_{jk} e_{ik} - e_{ij} (e_{ik} - e_{jk}) \rangle.$

• (Conner and Goetz, 2015) This is not a Koszul algebra for $n \ge 4$.

ALEX SUCIU (NORTHEASTERN)

- ► For each $n \ge 1$, the groups P_n , wP_n^+ , and $\prod_n := \prod_{i=1}^{n-1} F_i$ have the same Betti numbers and LCS ranks.
- Moreover, for each $n \leq 3$, they are pairwise isomorphic.

THEOREM (S.–WANG 2020)

If G_1 and G_2 are 1-formal (or, more generally, filtered formal), and if $\theta_k(G_1) \neq \theta_k(G_2)$ for some $k \ge 1$, then $\operatorname{gr}(G_1, \mathbb{Q}) \ncong \operatorname{gr}(G_2, \mathbb{Q})$, as graded Lie algebras.

COROLLARY

For $n \ge 4$, the graded Lie algebras $gr(P_n, Q)$, $gr(wP_n^+, Q)$, and $gr(\Pi_n, Q)$ are pairwise non-isomorphic.

Indeed, these groups are all 1-formal, and:

- $\theta_k(P_n) = (k-1)\binom{n+1}{4}$ for $k \ge 3$. [Cohen–S. 1995]
- $\theta_k(P\Sigma_n^+) = \binom{n+1}{4} + \sum_{i=3}^k \binom{n+i-2}{i+1}$ for $k \ge 3$.
- $\theta_k(\Pi_n) = (k-1)\binom{k+n-2}{k+1}$ for $k \ge 2$.

21/24

NOVEMBER 15, 2021

[S.–Wang 2019]

VIRTUAL BRAID GROUPS

- ► The virtual braid group *vB_n* is obtained from *wB_n* by omitting certain commutation relations.
- ▶ Let $vP_n = \ker(vB_n \rightarrow S_n)$ be the pure virtual braid group.
- Bardakov (2004) gave a presentation for vP_n, with generators x_{ij} (1 ≤ i ≠ j ≤ n), subject to the relations

 $\begin{aligned} x_{ij} x_{ik} x_{jk} &= x_{jk} x_{ik} x_{ij}, & \text{for } i, j, k \text{ distinct,} \\ [x_{ij}, x_{st}] &= 1, & \text{for } i, j, s, t \text{ distinct.} \end{aligned}$

- Let vP_n⁺ be the subgroup of vP_n generated by x_{ij} for i < j. The inclusion vP_n⁺ → vP_n is a split injection.
- ▶ Bartholdi, Enriquez, Etingof, and Rains (2006) studied vP_n and vP_n^+ as groups arising from the Yang–Baxter equation.
- They constructed classifying spaces by taking quotients of permutahedra by suitable actions of the symmetric groups.

ALEX SUCIU (NORTHEASTERN)

BRAIDS AND LINE ARRANGEMENTS

THEOREM (BARTHOLDI-ENRIQUEZ-ETINGOF-RAINS 2006, LEE 2013)

For the groups $G_n = vP_n$ and vP_n^+ ,

- The cohomology algebra $H^*(G_n, \mathbb{Q})$ is a Koszul algebra.
- ► The maps $\mathfrak{h}(G_n, \mathbb{Q}) \twoheadrightarrow \operatorname{gr}(G_n, \mathbb{Q})$ are isomorphisms, for all n.

THEOREM (S.–WANG 2017)

The LCS ranks of the groups $G_n = vP_n$ and vP_n^+ are given by

$$\phi_k(G_n) = \frac{1}{k} \sum_{d|k} \mu\left(\frac{k}{d}\right) \left[\sum_{m_1+2m_2+\dots+nm_n=d} (-1)^{s_n} d(m!) \prod_{j=1}^n \frac{(b_{n,n-j})^{m_j}}{(m_j)!} \right],$$

where $m_j \ge 0$, $s_n = \sum_{i=1}^{\lfloor n/2 \rfloor} m_{2i}$, $m = \sum_{i=1}^n m_i - 1$, and $b_{n,j}$ are the Lah numbers for $G_n = vP_n$ and the Stirling numbers of the second kind for $G_n = vP_n^+$.

REFERENCES

- Richard D. Porter and Alexander I. Suciu, *Homology, lower central series, and hyperplane arrangements*, Eur. J. Math. 6 (2020), nr. 3, 1039–1072.
- Alexander I. Suciu and He Wang, *Pure virtual braids, resonance, and formality*, Math. Zeit. **286** (2017), no. 3–4, 1495–1524.
- Alexander I. Suciu and He Wang, *The pure braid groups and their relatives*, in: *Perspectives in Lie theory*, 403–426, Springer INdAM series, vol. 19, Springer, Cham, 2017.
- Alexander I. Suciu and He Wang, Chen ranks and resonance varieties of the upper McCool groups, Adv. in Appl. Math. 110 (2019), 197–234.
- Alexander I. Suciu and He Wang, *Taylor expansions of groups and filtered-formality*, Eur. J. Math. **6** (2020), nr. 3, 1073–1096.