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HYPERPLANE ARRANGEMENTS

I An arrangement of hyperplanes is a finite collection A of
codimension 1 linear (or affine) subspaces in C`.

I Intersection lattice L(A): poset of all intersections of A, ordered
by reverse inclusion, and ranked by codimension.
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X1 X2 X3 X4

L1(A)

L2(A)

I Complement: M(A) = C` \⋃H∈A H. It is a smooth, quasi-
projective variety and also a Stein manifold. It has the homotopy
type of a finite, connected, `-dimensional CW-complex.

ALEX SUCIU (NORTHEASTERN) BRAIDS AND LINE ARRANGEMENTS NOVEMBER 15, 2021 3 / 24



EXAMPLE (THE BOOLEAN ARRANGEMENT)
I Bn: all coordinate hyperplanes zi = 0 in Cn.

I L(Bn): Boolean lattice of subsets of {0,1}n.

I M(Bn): complex algebraic torus (C∗)n ' K (Zn,1).

EXAMPLE (THE BRAID ARRANGEMENT)
I An: all diagonal hyperplanes zi − zj = 0 in Cn.

I L(An): lattice of partitions of [n] := {1, . . . ,n}, ordered by
refinement.

I M(An): the (ordered) configuration space of n distinct points in C;
it is a classifying space K (Pn,1) for the pure braid group on n
strands, Pn.
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COHOMOLOGY RINGS OF ARRANGEMENTS

I The homology groups Hq(M(A),Z) are finitely generated and
torsion-free, with ranks given by

∑`

q=0 bq(M(A))tq = ∑X∈L(A) µ(X )(−t)rank(X ),

where µ : L(A)→ Z is the Möbius function, defined by µ(C`) = 1
and µ(X ) = −∑Y%X µ(Y ).

I Let E be the Z-exterior algebra on degree 1 classes eH dual to
the meridians around the hyperplanes H ∈ A.

I Let ∂ : E∗ → E∗−1 be the differential given by ∂(eH) = 1, and set
eB = ∏H∈B eH for each B ⊂ A.

I Building on work of Arnold & Brieskorn, Orlik and Solomon
described the cohomology ring of M(A) solely in terms of L(A):

H∗(M(A),Z) ∼= E/
〈
∂eB

∣∣ codim(⋂
H∈B H

)
< |B|

〉
.

ALEX SUCIU (NORTHEASTERN) BRAIDS AND LINE ARRANGEMENTS NOVEMBER 15, 2021 5 / 24



FUNDAMENTAL GROUPS OF ARRANGEMENTS

I Let A′ = {H ∩C2}H∈A be a generic planar section of A. Then the
arrangement group, G(A) = π1(M(A)), is isomorphic to
π1(M(A′)).

I So let A be an arrangement of n affine lines in C2. Taking a
generic projection C2 → C yields the braid monodromy
α = (α1, . . . , αs), where s = #{multiple points} and the braids
αr ∈ Pn can be read off an associated braided wiring diagram,

•
• •

•
4
3
2
1

I The group G(A) has a presentation with meridional generators
x1, . . . , xn and commutator relators xi αj(xi)

−1.
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LOWER CENTRAL SERIES

I Let G be a group. The lower central series {γk (G)}k≥1 is defined
inductively by γ1(G) = G and γk+1(G) = [G,γk (G)].

I Here, if H,K < G, then [H,K ] is the subgroup of G generated by
{[a,b] := aba−1b−1 | a ∈ H,b ∈ K}.

I The subgroups γk (G) are normal; in fact, they are invariant under
any automorphism of G. Moreover, [γk (G),γ`(G)] ⊆ γk+`(G).

I γ2(G) = [G,G] is the derived subgroup, and so G/γ2(G) = Gab.

I [γk (G),γk (G)] / γk+1(G), and thus the LCS quotients,

grk (G) := γk (G)/γk+1(G),

are abelian.

I If G is finitely generated, then so are its LCS quotients. Set
φk (G) := rank grk (G).
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ASSOCIATED GRADED LIE ALGEBRA

I Fix a coefficient ring k. Given a group G, we let

gr(G,k) =
⊕
k≥1

grk (G)⊗ k.

I This is a graded Lie algebra over k, with Lie bracket
[ , ] : grk × gr` → grk+` induced by the group commutator.

I For k = Z, we simply write gr(G) = gr(G,Z).

I The construction is functorial.

I If G is finitely generated, so are its associated graded Lie
algebras.

I Example: if Fn is the free group of rank n, then

• gr(Fn) is the free Lie algebra Lie(Zn).

• grk (Fn) is free abelian, of rank φk (Fn) =
1
k ∑d |k µ(d)n

k
d .
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CHEN LIE ALGEBRAS

I Let G(i) be the derived series of G, starting at G(1) = G′,
G(2) = G′′, and defined inductively by G(i+1) = [G(i),G(i)].

I The quotient groups, G/G(i), are solvable; G/G′ = Gab, while
G/G′′ is the maximal metabelian quotient of G.

I The i -th Chen Lie algebra of G is defined as gr(G/G(i),k).
Clearly, this construction is functorial.

I The projection qi : G� G/G(i), induces a surjection
grk (G;k)� grk (G/G(i);k), which is an iso for k ≤ 2i − 1.

I Assuming G is finitely generated, write θk (G) = rank grk (G/G′′)
for the Chen ranks. We have φk (G) ≥ θk (G), with equality for
k ≤ 3.

I Example (K.-T. Chen 1951): θk (Fn) = (k − 1)(n+k−2
k ), for k ≥ 2.
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HOLONOMY LIE ALGEBRA

I The holonomy Lie algebra of a finitely generated group G over a
field k is defined as

h(G, k) := Lie(H1(G, k))/〈im(µ∨G)〉,
where
• L = Lie(V ) the free Lie algebra on the k-vector space

V = H1(G;k), with L1 = V and L2 = V ∧ V .

• µ∨G : H2(G,k)→ V ∧ V is the dual of the cup product
map µG : H1(G;k) ∧H1(G;k)→ H2(G;k).

I Similarly, h(G) = Lie(H)/ im(µ∨G), where H = H1(G,Z)/Tors and
µ∨G is dual to µG : H1(G) ∧H1(G)→ H2(G).

I By construction, these are (functorially defined) finitely generated
graded Lie algebras that admit quadratic presentations.

I For instance, h(Fn) = Lie(n), whereas h(Zn) = Zn, concentrated
in degree 1.
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I If k is a field or k = Z, there is a natural, surjective morphism of
graded Lie algebras,

h(G,k) gr(G;k),

which is an isomorphism in degrees 1 and 2, but not necessarily
in higher degrees.

I If G is 1-formal (i.e., its Q-pronilpotent completion is quadratic),
then the map h(G,Q)� gr(G;Q) is an isomorphism.

THEOREM (RYBNIKOV 1998, PORTER–S. 2020)
Suppose Gab is finitely-generated free abelian, and
µ∨G : H2(G)→ Gab ∧Gab is injective. Then the map h3(G)� gr3(G) is
an isomorphism.
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HOLONOMY LIE ALGEBRAS OF ARRANGEMENTS

I Let G = π1(M(A)) be an arrangement group.

I Recall that G admits a finite presentation, with generators
{xH}H∈A and commutator-relators.

I The holonomy Lie algebra h(A) := h(G) has presentation with
generators {xH}H∈A and relators[

xH , ∑
H ′∈A : H ′⊃X

xH ′

]
for all X ∈ L2(A) and all H ∈ A with H ⊃ X .

I Clearly, this presentation depends only on L≤2(A).

I h1(A) is free abelian of rank n = |A|, with basis {xH}H∈A.

I h2(A) is free abelian of rank (n
2)−∑X∈L2(A) µ(X ), with basis⋃

X∈L2(A)
{[xH , xH ′ ] : H,H ′ ∈ X \ {maxX}}.
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LOWER CENTRAL SERIES OF ARRANGEMENT GROUPS

I M(A) is formal, and so G = π1(M(A)) is 1-formal.

I Hence, the map h(G,Q)� gr(G,Q) is an isomorphism.

I Thus, gr(G,Q) and the LCS ranks φk (G) depend only on L≤2(A).

I Explicit combinatorial formulas for the LCS ranks are known in
some cases, but not in general.

I (Falk–Randell 1985) If A is supersolvable, with exponents
d1, . . . ,d`, then G = Fd`

o · · ·o Fd2 o Fd1 and

φk (G) =
`

∑
i=1

φk (Fdi ).

I The Chen ranks θk (G) := rank grk (G/G′′) are also combinatorially
determined [Papadima–S. 2004]. An explicit formula for k � 0
was conjectured in [S. 2002].
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I Let G/γk (G) be the (k − 1)th nilpotent quotient of G = G(A).
Then:
• G/γ3(G) is determined by L≤2(A).
• G/γ4(G) is not determined by L(A) (Rybnikov 1994).

I We have Gab
∼= Z|A|, and µ∨G : H2(G)→ Gab ∧Gab is injective.

I Hence, h3(G) ∼= gr3(G).

I (S. 2002) The groups grk (G) may have non-zero torsion for k ≥ 5.
E.g., if G = G(MacLane), then gr5(G) = Z87 ⊕Z4

2 ⊕Z3.

I Question (S. 2002): Is that torsion combinatorially determined?

I (Artal Bartolo, Guerville-Ballé, and Viu-Sos 2020): Answer: No!

I There are two arrangements of 13 lines, A±, each one with 11
triple points and 2 quintuple points, such that grk (G+) ∼= grk (G−)
for k ≤ 3, yet gr4(G+) = Z211 ⊕Z2 and gr4(G−) = Z211.
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DECOMPOSABLE ARRANGEMENTS

I For each flat X ∈ L(A), let AX := {H ∈ A | H ⊃ X}.

I The inclusions AX ⊂ A give rise to maps M(A) ↪→ M(AX ).
Restricting to rank 2 flats yields a map

j : M(A) ∏X∈L2(A) M(AX ) .

I The induced homomorphism on fundamental groups, j], defines a
morphism of graded Lie algebras,

h(j]) : h(A) ∏X∈L2(A) h(AX ) .

THEOREM (PAPADIMA–S. 2006)
The map hk (j]) is a surjection for each k ≥ 3 and an isomorphism for
k = 2.

I The arrangement A is decomposable if the map h3(j]) is an
isomorphism.
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THEOREM (PAPADIMA–S. 2006)
Let A be a decomposable arrangement, and let G = G(A). Then
I The map h′(j]) : h′(A)→ ∏X∈L2(A) h

′(AX ) is an isomorphism of
graded Lie algebras.

I The map h(G)� gr(G) is an isomorphism

I For each k ≥ 2, the group grk (G) is free abelian of rank
φk (G) = ∑X∈L2(A) φk (Fµ(X )).

THEOREM (PORTER–S. 2020)
Let A and B be decomposable arrangements with L≤2(A) ∼= L≤2(B).
Then, for each k ≥ 2,

G(A)/γk (G(A)) ∼= G(B)/γk (G(B)).
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BRAID-LIKE GROUPS
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ARTIN BRAID GROUPS

I Let Bn be the group of braids on n strings (under concatenation).

I Bn = Mod1
0,n, the mapping class group of D2 with n marked points.

I Thus, Bn is a subgroup of Aut(Fn). In fact:

Bn = {β ∈ Aut(Fn) | β(xi) = wxτ(i)w
−1, β(x1 · · · xn) = x1 · · · xn},

where x1, . . . , xn is a generating set for Fn. s

I Let Pn = ker(Bn � Sn) be the pure braid group on n strings.

I Pn is a subgroup of IAn = {ϕ ∈ Aut(Fn) | ϕ∗ = id on H1(Fn,Z)}.

I Pn = Fn−1 oαn−1 Pn−1 = Fn−1 o · · ·o F2 o F1, where
αn : Pn ⊂ Bn ↪→ Aut(Fn).

I A classifying space for Pn is the ordered configuration space
Confn(C). Thus, Bn = π1(Confn(C)/Sn).
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WELDED BRAID GROUPS

I The set of all permutation-conjugacy automorphisms of Fn forms a
subgroup wBn < Aut(Fn), called the welded braid group.

I Let wPn = ker(wBn � Sn) = IAn ∩wBn be the pure welded braid
group wPn.

I McCool (1986) gave a finite presentation for wPn. It is generated
by the automorphisms αij (1 ≤ i 6= j ≤ n) sending xi 7→ xjxix−1

j
and xk 7→ xk for k 6= i , subject to the relations

αij αik αjk = αjk αik αij for i , j , k distinct,
[αij , αst ] = 1 for i , j , s, t distinct,
[αik , αjk ] = 1 for i , j , k distinct.
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I wPn can be identified with the group of motions of n unknotted,
unlinked circles in S3, and also with the fundamental group of the
space of configurations of parallel rings in R3.

I The upper pure welded braid group (or, upper McCool group) is
the subgroup wP+

n < wPn generated by αij for i < j .

I We have: wP+
n
∼= Fn−1 o · · ·o F2 o F1.

I (F. Cohen, Pakhianathan, Vershinin, and Wu, 2007):

H∗(wP+
n ,Q) =

∧
i<j

(eij)/〈eij(eik − ejk )〉.

I (D. Cohen and Pruidze, 2008) This is a Koszul algebra for all n.

I Jensen, McCammond, and Meier, 2006):

H∗(wPn,Q) =
∧

i 6=j
(eij)/〈eijeji ,ejkeik − eij(eik − ejk )〉.

I (Conner and Goetz, 2015) This is not a Koszul algebra for n ≥ 4.
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I For each n ≥ 1, the groups Pn, wP+
n , and Πn := ∏n−1

i=1 Fi have the
same Betti numbers and LCS ranks.

I Moreover, for each n ≤ 3, they are pairwise isomorphic.

THEOREM (S.–WANG 2020)
If G1 and G2 are 1-formal (or, more generally, filtered formal ), and if
θk (G1) 6= θk (G2) for some k ≥ 1, then gr(G1,Q) 6∼= gr(G2,Q), as
graded Lie algebras.

COROLLARY

For n ≥ 4, the graded Lie algebras gr(Pn,Q), gr(wP+
n ,Q), and

gr(Πn,Q) are pairwise non-isomorphic.

Indeed, these groups are all 1-formal, and:

I θk (Pn) = (k − 1)(n+1
4 ) for k ≥ 3. [Cohen–S. 1995]

I θk (PΣ+
n ) = (n+1

4 ) + ∑k
i=3 (

n+i−2
i+1 ) for k ≥ 3. [S.–Wang 2019]

I θk (Πn) = (k − 1)(k+n−2
k+1 ) for k ≥ 2. [Chen, Cohen–S.]
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VIRTUAL BRAID GROUPS

I The virtual braid group vBn is obtained from wBn by omitting
certain commutation relations.

I Let vPn = ker(vBn → Sn) be the pure virtual braid group.

I Bardakov (2004) gave a presentation for vPn, with generators xij
(1 ≤ i 6= j ≤ n), subject to the relations

xijxikxjk = xjkxikxij , for i , j , k distinct,
[xij , xst ] = 1, for i , j , s, t distinct.

I Let vP+
n be the subgroup of vPn generated by xij for i < j . The

inclusion vP+
n ↪→ vPn is a split injection.

I Bartholdi, Enriquez, Etingof, and Rains (2006) studied vPn and
vP+

n as groups arising from the Yang–Baxter equation.

I They constructed classifying spaces by taking quotients of
permutahedra by suitable actions of the symmetric groups.
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THEOREM (BARTHOLDI–ENRIQUEZ–ETINGOF–RAINS 2006, LEE 2013)

For the groups Gn = vPn and vP+
n ,

I The cohomology algebra H∗(Gn,Q) is a Koszul algebra.

I The maps h(Gn,Q)� gr(Gn,Q) are isomorphisms, for all n.

THEOREM (S.–WANG 2017)

The LCS ranks of the groups Gn = vPn and vP+
n are given by

φk (Gn) =
1
k ∑

d |k
µ

(
k
d

)[
∑

m1+2m2+···+nmn=d
(−1)snd(m!)

n

∏
j=1

(bn,n−j)
mj

(mj)!

]
,

where mj ≥ 0, sn = ∑[n/2]
i=1 m2i , m = ∑n

i=1 mi − 1, and bn,j are the Lah
numbers for Gn = vPn and the Stirling numbers of the second kind for
Gn = vP+

n .
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