BRAIDS AND LINE ARRANGEMENTS
 Old and NEW

Alex Suciu

Northeastern University
Conference on Braids, Links, and Applications Institute of the Mathematical Sciences of the Americas

University of Miami
November 15, 2021

(1) HYperplane arrangements

- Complement and intersection lattice
- Cohomology rings of arrangements
- Fundamental groups of arrangements
(2) LIE ALGEBRAS ATTACHED TO GROUPS
- Lower central series
- Associated graded Lie algebra
- Chen Lie algebras
- Holonomy Lie algebra
(3) Arrangement groups and Lie algebras
- Holonomy Lie algebras of arrangements
- Lower central series of arrangement groups
- Decomposable arrangements
(4) BRAID-LIKE GROUPS
- Artin braid groups
- Welded braid groups
- Virtual braid groups

Hyperplane arrangements

- An arrangement of hyperplanes is a finite collection \mathcal{A} of codimension 1 linear (or affine) subspaces in \mathbb{C}^{ℓ}.
- Intersection lattice $L(\mathcal{A})$: poset of all intersections of \mathcal{A}, ordered by reverse inclusion, and ranked by codimension.

- Complement: $M(\mathcal{A})=\mathbb{C}^{\ell} \backslash \cup_{H \in \mathcal{A}} H$. It is a smooth, quasiprojective variety and also a Stein manifold. It has the homotopy type of a finite, connected, ℓ-dimensional CW-complex.

Example (The Boolean arrangement)

- \mathcal{B}_{n} : all coordinate hyperplanes $z_{i}=0$ in \mathbb{C}^{n}.
$-L\left(\mathcal{B}_{n}\right)$: Boolean lattice of subsets of $\{0,1\}^{n}$.
- $M\left(\mathcal{B}_{n}\right)$: complex algebraic torus $\left(\mathbb{C}^{*}\right)^{n} \simeq K\left(\mathbb{Z}^{n}, 1\right)$.

EXAMPLE (THE BRAID ARRANGEMENT)
$-\mathcal{A}_{n}$: all diagonal hyperplanes $z_{i}-z_{j}=0$ in \mathbb{C}^{n}.

- $L\left(\mathcal{A}_{n}\right)$: lattice of partitions of $[n]:=\{1, \ldots, n\}$, ordered by refinement.
- $M\left(\mathcal{A}_{n}\right)$: the (ordered) configuration space of n distinct points in \mathbb{C}; it is a classifying space $K\left(P_{n}, 1\right)$ for the pure braid group on n strands, P_{n}.

COHOMOLOGY RINGS OF ARRANGEMENTS

- The homology groups $H_{q}(M(\mathcal{A}), \mathbb{Z})$ are finitely generated and torsion-free, with ranks given by

$$
\sum_{q=0}^{\ell} b_{q}(M(\mathcal{A})) t^{q}=\sum_{X \in L(\mathcal{A})} \mu(X)(-t)^{\operatorname{rank}(X)}
$$

where $\mu: L(\mathcal{A}) \rightarrow \mathbb{Z}$ is the Möbius function, defined by $\mu\left(\mathbb{C}^{\ell}\right)=1$ and $\mu(X)=-\sum_{Y \not{ }_{\nexists}} \mu(Y)$.

- Let E be the \mathbb{Z}-exterior algebra on degree 1 classes e_{H} dual to the meridians around the hyperplanes $H \in \mathcal{A}$.
- Let $\partial: E^{*} \rightarrow E^{*-1}$ be the differential given by $\partial\left(e_{H}\right)=1$, and set $e_{\mathcal{B}}=\prod_{H \in \mathcal{B}} e_{H}$ for each $\mathcal{B} \subset \mathcal{A}$.
- Building on work of Arnold \& Brieskorn, Orlik and Solomon described the cohomology ring of $M(\mathcal{A})$ solely in terms of $L(\mathcal{A})$:

$$
\left.H^{*}(M(\mathcal{A}), \mathbb{Z}) \cong E /\left\langle\partial e_{\mathcal{B}}\right| \operatorname{codim}\left(\bigcap_{H \in \mathcal{B}} H\right)<|\mathcal{B}|\right\rangle
$$

Fundamental groups of arrangements

- Let $\mathcal{A}^{\prime}=\left\{H \cap \mathbb{C}^{2}\right\}_{H \in \mathcal{A}}$ be a generic planar section of \mathcal{A}. Then the arrangement group, $G(\mathcal{A})=\pi_{1}(M(\mathcal{A}))$, is isomorphic to $\pi_{1}\left(M\left(\mathcal{A}^{\prime}\right)\right)$.
- So let \mathcal{A} be an arrangement of n affine lines in \mathbb{C}^{2}. Taking a generic projection $\mathbb{C}^{2} \rightarrow \mathbb{C}$ yields the braid monodromy $\alpha=\left(\alpha_{1}, \ldots, \alpha_{s}\right)$, where $s=\#\{$ multiple points $\}$ and the braids $\alpha_{r} \in P_{n}$ can be read off an associated braided wiring diagram,

- The group $G(\mathcal{A})$ has a presentation with meridional generators x_{1}, \ldots, x_{n} and commutator relators $x_{i} \alpha_{j}\left(x_{i}\right)^{-1}$.

LOWER CENTRAL SERIES

- Let G be a group. The lower central series $\left\{\gamma_{k}(G)\right\}_{k \geq 1}$ is defined inductively by $\gamma_{1}(G)=G$ and $\gamma_{k+1}(G)=\left[G, \gamma_{k}(G)\right]$.
- Here, if $H, K<G$, then $[H, K]$ is the subgroup of G generated by $\left\{[a, b]:=a b a^{-1} b^{-1} \mid a \in H, b \in K\right\}$.
- The subgroups $\gamma_{k}(G)$ are normal; in fact, they are invariant under any automorphism of G. Moreover, $\left[\gamma_{k}(G), \gamma_{\ell}(G)\right] \subseteq \gamma_{k+\ell}(G)$.
- $\gamma_{2}(G)=[G, G]$ is the derived subgroup, and so $G / \gamma_{2}(G)=G_{\mathrm{ab}}$.
- $\left[\gamma_{k}(G), \gamma_{k}(G)\right] \triangleleft \gamma_{k+1}(G)$, and thus the LCS quotients,

$$
\operatorname{gr}_{k}(G):=\gamma_{k}(G) / \gamma_{k+1}(G),
$$

are abelian.

- If G is finitely generated, then so are its LCS quotients. Set $\phi_{k}(G):=\operatorname{rankgr}_{k}(G)$.

Associated graded Lie algebra

- Fix a coefficient ring \mathbb{k}. Given a group G, we let

$$
\operatorname{gr}(G, \mathbb{k})=\bigoplus_{k \geq 1} \operatorname{gr}_{k}(G) \otimes \mathbb{k}
$$

- This is a graded Lie algebra over \mathbb{k}, with Lie bracket $[]:, \mathrm{gr}_{k} \times \mathrm{gr}_{\ell} \rightarrow \mathrm{gr}_{k+\ell}$ induced by the group commutator.
- For $\mathbb{k}=\mathbb{Z}$, we simply write $\operatorname{gr}(G)=\operatorname{gr}(G, \mathbb{Z})$.
- The construction is functorial.
- If G is finitely generated, so are its associated graded Lie algebras.
- Example: if F_{n} is the free group of rank n, then
- $\operatorname{gr}\left(F_{n}\right)$ is the free Lie algebra $\operatorname{Lie}\left(\mathbb{Z}^{n}\right)$.
- $\operatorname{gr}_{k}\left(F_{n}\right)$ is free abelian, of rank $\phi_{k}\left(F_{n}\right)=\frac{1}{k} \sum_{d \mid k} \mu(d) n^{\frac{k}{d}}$.

Chen Lie algebras

- Let $G^{(i)}$ be the derived series of G, starting at $G^{(1)}=G^{\prime}$, $G^{(2)}=G^{\prime \prime}$, and defined inductively by $G^{(i+1)}=\left[G^{(i)}, G^{(i)}\right]$.
- The quotient groups, $G / G^{(i)}$, are solvable; $G / G^{\prime}=G_{\mathrm{ab}}$, while $G / G^{\prime \prime}$ is the maximal metabelian quotient of G.
- The i-th Chen Lie algebra of G is defined as $\operatorname{gr}\left(G / G^{(i)}, \mathbb{k}\right)$. Clearly, this construction is functorial.
- The projection $q_{i}: G \rightarrow G / G^{(i)}$, induces a surjection $\operatorname{gr}_{k}(G ; \mathbb{k}) \rightarrow \operatorname{gr}_{k}\left(G / G^{(i)} ; \mathbb{k}\right)$, which is an iso for $k \leq 2^{i}-1$.
- Assuming G is finitely generated, write $\theta_{k}(G)=$ rank $\mathrm{gr}_{k}\left(G / G^{\prime \prime}\right)$ for the Chen ranks. We have $\phi_{k}(G) \geq \theta_{k}(G)$, with equality for $k \leq 3$.
- Example (K.-T. Chen 1951): $\theta_{k}\left(F_{n}\right)=(k-1)\binom{n+k-2}{k}$, for $k \geq 2$.

Holonomy Lie algebra

- The holonomy Lie algebra of a finitely generated group G over a field \mathbb{k} is defined as

$$
\mathfrak{h}(G, \mathbb{k}):=\operatorname{Lie}\left(H_{1}(G, \mathbb{k})\right) /\left\langle\operatorname{im}\left(\mu_{G}^{\vee}\right)\right\rangle,
$$

where

- $\mathbf{L}=\operatorname{Lie}(V)$ the free Lie algebra on the \mathbb{k}-vector space $V=H_{1}(G ; \mathbb{k})$, with $L_{1}=V$ and $L_{2}=V \wedge V$.
- $\mu_{G}^{\vee}: H_{2}(G, \mathbb{k}) \rightarrow V \wedge V$ is the dual of the cup product $\operatorname{map} \mu_{G}: H^{1}(G ; \mathbb{k}) \wedge H^{1}(G ; \mathbb{k}) \rightarrow H^{2}(G ; \mathbb{k})$.
- Similarly, $\mathfrak{h}(G)=\operatorname{Lie}(H) / \operatorname{im}\left(\mu_{G}^{\vee}\right)$, where $H=H_{1}(G, \mathbb{Z}) /$ Tors and μ_{G}^{v} is dual to $\mu_{G}: H^{1}(G) \wedge H^{1}(G) \rightarrow H^{2}(G)$.
- By construction, these are (functorially defined) finitely generated graded Lie algebras that admit quadratic presentations.
- For instance, $\mathfrak{h}\left(F_{n}\right)=\operatorname{Lie}(n)$, whereas $\mathfrak{h}\left(\mathbb{Z}^{n}\right)=\mathbb{Z}^{n}$, concentrated in degree 1.
- If \mathbb{k} is a field or $\mathbb{k}=\mathbb{Z}$, there is a natural, surjective morphism of graded Lie algebras,

$$
\mathfrak{h}(G, \mathbb{k}) \longrightarrow \operatorname{gr}(G ; \mathbb{k})
$$

which is an isomorphism in degrees 1 and 2, but not necessarily in higher degrees.

- If G is 1 -formal (i.e., its Q-pronilpotent completion is quadratic), then the $\operatorname{map} \mathfrak{h}(G, \mathbb{Q}) \rightarrow \operatorname{gr}(G ; \mathbb{Q})$ is an isomorphism.

THEOREM (RYBNIKOV 1998, PORTER-S. 2020)

Suppose G_{ab} is finitely-generated free abelian, and $\mu_{G}^{\vee}: H_{2}(G) \rightarrow G_{a b} \wedge G_{a b}$ is injective. Then the map $\mathfrak{h}_{3}(G) \rightarrow \mathrm{gr}_{3}(G)$ is an isomorphism.

Holonomy Lie algebras of arrangements

- Let $G=\pi_{1}(M(\mathcal{A}))$ be an arrangement group.
- Recall that G admits a finite presentation, with generators $\left\{x_{H}\right\}_{H \in \mathcal{A}}$ and commutator-relators.
- The holonomy Lie algebra $\mathfrak{h}(\mathcal{A}):=\mathfrak{h}(G)$ has presentation with generators $\left\{x_{H}\right\}_{H \in \mathcal{A}}$ and relators

$$
\left[x_{H}, \sum_{H^{\prime} \in \mathcal{A}: H^{\prime} \supset X} x_{H^{\prime}}\right]
$$

for all $X \in L_{2}(\mathcal{A})$ and all $H \in \mathcal{A}$ with $H \supset X$.

- Clearly, this presentation depends only on $L_{\leq 2}(\mathcal{A})$.
- $\mathfrak{h}_{1}(\mathcal{A})$ is free abelian of rank $n=|\mathcal{A}|$, with basis $\left\{x_{H}\right\}_{H \in \mathcal{A}}$.
- $\mathfrak{h}_{2}(\mathcal{A})$ is free abelian of rank $\binom{n}{2}-\sum_{X \in L_{2}(\mathcal{A})} \mu(X)$, with basis

$$
\bigcup_{X \in L_{2}(\mathcal{A})}\left\{\left[x_{H}, x_{H^{\prime}}\right]: H, H^{\prime} \in X \backslash\{\max X\}\right\}
$$

Lower central series of arrangement groups

- $M(\mathcal{A})$ is formal, and so $G=\pi_{1}(M(\mathcal{A}))$ is 1 -formal.
- Hence, the map $\mathfrak{h}(G, Q) \rightarrow \operatorname{gr}(G, Q)$ is an isomorphism.
- Thus, $\operatorname{gr}(G, Q)$ and the LCS ranks $\phi_{k}(G)$ depend only on $L_{\leq 2}(\mathcal{A})$.
- Explicit combinatorial formulas for the LCS ranks are known in some cases, but not in general.
- (Falk-Randell 1985) If \mathcal{A} is supersolvable, with exponents d_{1}, \ldots, d_{ℓ}, then $G=F_{d_{\ell}} \rtimes \cdots \rtimes F_{d_{2}} \rtimes F_{d_{1}}$ and

$$
\phi_{k}(G)=\sum_{i=1}^{\ell} \phi_{k}\left(F_{d_{i}}\right) .
$$

- The Chen ranks $\theta_{k}(G):=\operatorname{rank}^{\operatorname{gr}} r_{k}\left(G / G^{\prime \prime}\right)$ are also combinatorially determined [Papadima-S. 2004]. An explicit formula for $k \gg 0$ was conjectured in [S. 2002].
- Let $G / \gamma_{k}(G)$ be the $(k-1)^{\text {th }}$ nilpotent quotient of $G=G(\mathcal{A})$. Then:
- $G / \gamma_{3}(G)$ is determined by $L_{\leq 2}(\mathcal{A})$.
- $G / \gamma_{4}(G)$ is not determined by $L(\mathcal{A})$ (Rybnikov 1994).
- We have $G_{\mathrm{ab}} \cong \mathbb{Z}^{|\mathcal{A |}|}$, and $\mu_{G}^{\vee}: H_{2}(G) \rightarrow G_{\mathrm{ab}} \wedge G_{\mathrm{ab}}$ is injective.
- Hence, $\mathfrak{h}_{3}(G) \cong \operatorname{gr}_{3}(G)$.
- (S. 2002) The groups $\operatorname{gr}_{k}(G)$ may have non-zero torsion for $k \geq 5$. E.g., if $G=G($ MacLane $)$, then $\operatorname{gr}_{5}(G)=\mathbb{Z}^{87} \oplus \mathbb{Z}_{2}^{4} \oplus \mathbb{Z}_{3}$.
- Question (S. 2002): Is that torsion combinatorially determined?
- (Artal Bartolo, Guerville-Ballé, and Viu-Sos 2020): Answer: No!
- There are two arrangements of 13 lines, $\mathcal{A}^{ \pm}$, each one with 11 triple points and 2 quintuple points, such that $\mathrm{gr}_{k}\left(G^{+}\right) \cong \mathrm{gr}_{k}\left(G^{-}\right)$ for $k \leq 3$, yet $\operatorname{gr}_{4}\left(G^{+}\right)=\mathbb{Z}^{211} \oplus \mathbb{Z}_{2}$ and $\operatorname{gr}_{4}\left(G^{-}\right)=\mathbb{Z}^{211}$.

DECOMPOSABLE ARRANGEMENTS

- For each flat $X \in L(\mathcal{A})$, let $\mathcal{A}_{X}:=\{H \in \mathcal{A} \mid H \supset X\}$.
- The inclusions $\mathcal{A}_{X} \subset \mathcal{A}$ give rise to maps $M(\mathcal{A}) \hookrightarrow M\left(\mathcal{A}_{X}\right)$. Restricting to rank 2 flats yields a map

$$
j: M(\mathcal{A}) \longrightarrow \prod_{x \in L_{2}(\mathcal{A})} M\left(\mathcal{A}_{X}\right)
$$

- The induced homomorphism on fundamental groups, j_{\sharp}, defines a morphism of graded Lie algebras,

$$
\mathfrak{h}\left(j_{\sharp}\right): \mathfrak{h}(\mathcal{A}) \longrightarrow \prod_{x \in L_{2}(\mathcal{A})} \mathfrak{h}\left(\mathcal{A}_{X}\right) .
$$

THEOREM (PAPADIMA-S. 2006)

The map $\mathfrak{h}_{k}\left(j_{\sharp}\right)$ is a surjection for each $k \geq 3$ and an isomorphism for $k=2$.

- The arrangement \mathcal{A} is decomposable if the map $\mathfrak{h}_{3}\left(j_{\sharp}\right)$ is an isomorphism.

Theorem (Papadima-S. 2006)

Let \mathcal{A} be a decomposable arrangement, and let $G=G(\mathcal{A})$. Then

- The map $\mathfrak{h}^{\prime}\left(\mathfrak{j}_{\sharp}\right): \mathfrak{h}^{\prime}(\mathcal{A}) \rightarrow \prod_{x \in L_{2}(\mathcal{A})} \mathfrak{h}^{\prime}\left(\mathcal{A}_{X}\right)$ is an isomorphism of graded Lie algebras.
- The map $\mathfrak{h}(G) \rightarrow \operatorname{gr}(G)$ is an isomorphism
- For each $k \geq 2$, the $\operatorname{group} \mathrm{gr}_{k}(G)$ is free abelian of rank $\phi_{k}(G)=\sum_{x \in L_{2}(\mathcal{A})} \phi_{k}\left(F_{\mu(X)}\right)$.

ThEOREM (PORTER-S. 2020)

Let \mathcal{A} and \mathcal{B} be decomposable arrangements with $L_{\leq 2}(\mathcal{A}) \cong L_{\leq 2}(\mathcal{B})$.
Then, for each $k \geq 2$,

$$
G(\mathcal{A}) / \gamma_{k}(G(\mathcal{A})) \cong G(\mathcal{B}) / \gamma_{k}(G(\mathcal{B})) .
$$

BRaid-LIKe groups

Artin braid groups

Let B_{n} be the group of braids on n strings (under concatenation).
$-B_{n}=\operatorname{Mod}_{0, n}^{1}$, the mapping class group of D^{2} with n marked points.

- Thus, B_{n} is a subgroup of $\operatorname{Aut}\left(F_{n}\right)$. In fact:

$$
B_{n}=\left\{\beta \in \operatorname{Aut}\left(F_{n}\right) \mid \beta\left(x_{i}\right)=w x_{\tau(i)} w^{-1}, \beta\left(x_{1} \cdots x_{n}\right)=x_{1} \cdots x_{n}\right\}
$$ where x_{1}, \ldots, x_{n} is a generating set for F_{n}. s

Let $P_{n}=\operatorname{ker}\left(B_{n} \rightarrow S_{n}\right)$ be the pure braid group on n strings.

- P_{n} is a subgroup of $\mathrm{IA}_{n}=\left\{\varphi \in \operatorname{Aut}\left(F_{n}\right) \mid \varphi_{*}=\right.$ id on $\left.H_{1}\left(F_{n}, \mathbb{Z}\right)\right\}$.
$\Rightarrow P_{n}=F_{n-1} \rtimes_{\alpha_{n-1}} P_{n-1}=F_{n-1} \rtimes \cdots \rtimes F_{2} \rtimes F_{1}$, where $\alpha_{n}: P_{n} \subset B_{n} \hookrightarrow \operatorname{Aut}\left(F_{n}\right)$.
- A classifying space for P_{n} is the ordered configuration space $\operatorname{Conf}_{n}(\mathbb{C})$. Thus, $B_{n}=\pi_{1}\left(\operatorname{Conf}_{n}(\mathbb{C}) / S_{n}\right)$.

Welded braid groups

- The set of all permutation-conjugacy automorphisms of F_{n} forms a subgroup $w B_{n}<\operatorname{Aut}\left(F_{n}\right)$, called the welded braid group.
- Let $w P_{n}=\operatorname{ker}\left(w B_{n} \rightarrow S_{n}\right)=I \mathrm{~A}_{n} \cap w B_{n}$ be the pure welded braid group $w P_{n}$.
-McCool (1986) gave a finite presentation for $w P_{n}$. It is generated by the automorphisms $\alpha_{i j}(1 \leq i \neq j \leq n)$ sending $x_{i} \mapsto x_{j} x_{i} x_{j}^{-1}$ and $x_{k} \mapsto x_{k}$ for $k \neq i$, subject to the relations

$$
\begin{array}{ll}
\alpha_{i j} \alpha_{i k} \alpha_{j k}=\alpha_{j k} \alpha_{i k} \alpha_{i j} & \text { for } i, j, k \text { distinct } \\
{\left[\alpha_{i j}, \alpha_{s t}\right]=1} & \text { for } i, j, s, t \text { distinct } \\
{\left[\alpha_{i k}, \alpha_{j k}\right]=1} & \text { for } i, j, k \text { distinct }
\end{array}
$$

- $w P_{n}$ can be identified with the group of motions of n unknotted, unlinked circles in S^{3}, and also with the fundamental group of the space of configurations of parallel rings in \mathbb{R}^{3}.
- The upper pure welded braid group (or, upper McCool group) is the subgroup $w P_{n}^{+}<w P_{n}$ generated by $\alpha_{i j}$ for $i<j$.
- We have: $w P_{n}^{+} \cong F_{n-1} \rtimes \cdots \rtimes F_{2} \rtimes F_{1}$.
- (F. Cohen, Pakhianathan, Vershinin, and Wu, 2007):

$$
H^{*}\left(w P_{n}^{+}, \mathrm{Q}\right)=\bigwedge_{i<j}\left(e_{i j}\right) /\left\langle e_{i j}\left(e_{i k}-e_{j k}\right)\right\rangle .
$$

- (D. Cohen and Pruidze, 2008) This is a Koszul algebra for all n.
- Jensen, McCammond, and Meier, 2006):

$$
H^{*}\left(w P_{n}, Q\right)=\bigwedge_{i \neq j}\left(e_{i j}\right) /\left\langle e_{i j} e_{j j}, e_{j k} e_{i k}-e_{i j}\left(e_{i k}-e_{j k}\right)\right\rangle .
$$

- (Conner and Goetz, 2015) This is not a Koszul algebra for $n \geq 4$.
\checkmark For each $n \geq 1$, the groups $P_{n}, w P_{n}^{+}$, and $\Pi_{n}:=\prod_{i=1}^{n-1} F_{i}$ have the same Betti numbers and LCS ranks.
- Moreover, for each $n \leq 3$, they are pairwise isomorphic.

Theorem (S.-WANG 2020)

If G_{1} and G_{2} are 1-formal (or, more generally, filtered formal), and if $\theta_{k}\left(G_{1}\right) \neq \theta_{k}\left(G_{2}\right)$ for some $k \geq 1$, then $\operatorname{gr}\left(G_{1}, \mathbb{Q}\right) \not \equiv \operatorname{gr}\left(G_{2}, \mathbb{Q}\right)$, as graded Lie algebras.

COROLLARY

For $n \geq 4$, the graded Lie algebras $\operatorname{gr}\left(P_{n}, \mathbb{Q}\right), \operatorname{gr}\left(w P_{n}^{+}, \mathbb{Q}\right)$, and $\operatorname{gr}\left(\Pi_{n}, \mathbb{Q}\right)$ are pairwise non-isomorphic.

Indeed, these groups are all 1-formal, and:

$$
\begin{aligned}
& >\theta_{k}\left(P_{n}\right)=(k-1)\binom{n+1}{4} \text { for } k \geq 3 . \\
& >\theta_{k}\left(P \sum_{n}^{+}\right)=\binom{n+1}{4}+\sum_{i=3}^{k}\binom{n+i-2}{i+1} \text { for } k \geq 3 . \\
& >\theta_{k}\left(\Pi_{n}\right)=(k-1)\binom{k+n-2}{k+1} \text { for } k \geq 2 .
\end{aligned}
$$

[Cohen-S. 1995]
[S.-Wang 2019]
[Chen, Cohen-S.]

Virtual braid groups

- The virtual braid group $v B_{n}$ is obtained from $w B_{n}$ by omitting certain commutation relations.
- Let $v P_{n}=\operatorname{ker}\left(v B_{n} \rightarrow S_{n}\right)$ be the pure virtual braid group.
- Bardakov (2004) gave a presentation for $v P_{n}$, with generators $x_{i j}$ ($1 \leq i \neq j \leq n$), subject to the relations

$$
\begin{array}{lr}
x_{i j} x_{i k} x_{j k}=x_{j k} x_{i k} x_{i j}, & \text { for } i, j, k \text { distinct, }, \\
{\left[x_{i j}, x_{s t}\right]=1,} & \text { for } i, j, s, t \text { distinct. }
\end{array}
$$

- Let $v P_{n}^{+}$be the subgroup of $v P_{n}$ generated by $x_{i j}$ for $i<j$. The inclusion $v P_{n}^{+} \hookrightarrow v P_{n}$ is a split injection.
- Bartholdi, Enriquez, Etingof, and Rains (2006) studied $v P_{n}$ and $v P_{n}^{+}$as groups arising from the Yang-Baxter equation.
- They constructed classifying spaces by taking quotients of permutahedra by suitable actions of the symmetric groups.

THEOREM (BARTHOLDI-EnRIQUEZ-Etingof-RAINS 2006, Lee 2013)

For the groups $G_{n}=v P_{n}$ and $v P_{n}^{+}$,

- The cohomology algebra $H^{*}\left(G_{n}, Q\right)$ is a Koszul algebra.
- The maps $\mathfrak{h}\left(G_{n}, \mathbb{Q}\right) \rightarrow \operatorname{gr}\left(G_{n}, \mathbb{Q}\right)$ are isomorphisms, for all n.

THEOREM (S.-WANG 2017)

The LCS ranks of the groups $G_{n}=v P_{n}$ and $v P_{n}^{+}$are given by
$\phi_{k}\left(G_{n}\right)=\frac{1}{k} \sum_{d \mid k} \mu\left(\frac{k}{d}\right)\left[\sum_{m_{1}+2 m_{2}+\cdots+n m_{n}=d}(-1)^{s_{n}} d(m!) \prod_{j=1}^{n} \frac{\left(b_{n, n-j}\right)^{m_{j}}}{\left(m_{j}\right)!}\right]$,
where $m_{j} \geq 0, s_{n}=\sum_{i=1}^{[n / 2]} m_{2 i}, m=\sum_{i=1}^{n} m_{i}-1$, and $b_{n, j}$ are the Lah numbers for $G_{n}=v P_{n}$ and the Stirling numbers of the second kind for $G_{n}=v P_{n}^{+}$.

REFERENCES

Richard D．Porter and Alexander I．Suciu，Homology，lower central series，and hyperplane arrangements，Eur．J．Math． 6 （2020），nr．3， 1039－1072．

目 Alexander I．Suciu and He Wang，Pure virtual braids，resonance， and formality，Math．Zeit． 286 （2017），no．3－4，1495－1524．

囯 Alexander I．Suciu and He Wang，The pure braid groups and their relatives，in：Perspectives in Lie theory，403－426，Springer INdAM series，vol．19，Springer，Cham， 2017.

雷 Alexander I．Suciu and He Wang，Chen ranks and resonance varieties of the upper McCool groups，Adv．in Appl．Math． 110 （2019），197－234．

E－Alexander I．Suciu and He Wang，Taylor expansions of groups and filtered－formality，Eur．J．Math． 6 （2020），nr．3，1073－1096．

