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Abstract. The group of basis-conjugating automorphisms of the free group of rank n, also known
as the McCool group or the welded braid group PΣn, contains a much-studied subgroup, called the
upper McCool group PΣ+

n . Starting from the cohomology ring of PΣ+
n , we find, by means of a Gröbner

basis computation, a simple presentation for the infinitesimal Alexander invariant of this group, from
which we determine the resonance varieties and the Chen ranks of the upper McCool groups. These
computations reveal that, unlike for the pure braid group Pn and the full McCool group PΣn, the
Chen ranks conjecture does not hold for PΣ+

n , for any n ≥ 4. Consequently, PΣ+
n is not isomorphic

to Pn in that range, thus answering a question of Cohen, Pakianathan, Vershinin, and Wu. We also
determine the scheme structure of the resonance varieties R1(PΣ+

n ), and show that these schemes are
not reduced for n ≥ 4.
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1. Introduction

1.1. Basis-conjugating groups. An automorphism of the free group Fn = 〈x1, . . . , xn〉 is called a
symmetric automorphism if it sends each generator xi to a conjugate of xσ(i), for some permutation
σ ∈ Σn. The set of all such automorphisms forms a subgroup BΣn of Aut(Fn), known as the braid-
permutation group, [11] or the welded braid group, [2]. The Artin braid group Bn is the subgroup
of BΣn consisting of those symmetric automorphisms which fix the word x1 · · · xn.
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The kernel of the canonical projection BΣn � S n, denoted PΣn, is known as the basis-conjugating
group, or the pure welded braid group. In [23], J. McCool showed that PΣn is generated by the Mag-
nus automorphisms αi j : xi 7→ x jxix−1

j , for all 1 ≤ i , j ≤ n, and gave a presentation of this group;
for that reason, PΣn is also known as the McCool group. Notably, the group PΣn can be realized as
the pure motion group of n unknotted, unlinked circles in S 3. We refer to the recent surveys [12, 33]
for detailed accounts of this subject and further references.

We concentrate in this paper on the subgroup of PΣn generated by the automorphisms αi j with
i > j. This subgroup is called the upper triangular McCool group, and is denoted by PΣ+

n . Both
the pure braid group Pn = ker(Bn � S n) and the upper McCool group PΣ+

n are subgroups of the
full McCool group PΣn. Furthermore, both groups are iterated semidirect products of the form
Fn−1 o · · ·o F2 o F1, with monodromies acting trivially in first homology; thus, they share the same
Betti numbers and the same lower central series quotients, see [1, 17, 20, 11].

In [11], Cohen, Pakianathan, Vershinin, and Wu asked whether or not the groups Pn and PΣ+
n are

isomorphic. For n ≤ 3, it was already known that the answer is yes. In [3], Bardakov and Mikhailov
attempted to prove that P4 is not isomorphic to PΣ+

4 by showing that the two groups have dif-
ferent single-variable Alexander polynomials. However, the single-variable Alexander polynomial
depends on the choice of presentation for a group, and thus it cannot be used as an isomorphism-
type invariant. Moreover, the multi-variable Alexander polynomial (which is an isomorphism-type
invariant), is equal to 1 for both P4 and PΣ+

4 .
Nevertheless, the work that we undertake here allows us to distinguish the groups Pn and PΣ+

n for
all n ≥ 4, by means of both the Chen ranks and the resonance varieties associated to these groups.
Some of these results were announced in [33]; this paper contains full proofs of those results.

1.2. Chen ranks. Given a finitely generated group G, we let {ΓkG}k≥1 be its lower central series,
and we let gr(G) =

⊕
k≥1 ΓkG/Γk+1G be the associated graded Lie ring, with Lie bracket induced

from the group commutator. The LCS ranks of G, then, are the integers φk(G) = rank grk(G).
The Chen ranks of G, introduced by K.-T. Chen in [5], are the LCS ranks of the quotient of G by

its second derived subgroup, G′′:

θk(G) := rank grk(G/G′′).

As such, the Chen ranks provide an approximation from below for the LCS ranks. For a variety of
reasons, though, the Chen ranks θk(G) are invariants worth studying in their own right, oftentimes
providing more refined information about the given group G than the LCS ranks φk(G).

In [21], W. Massey used the Chen ranks to study the fundamental groups of link complements.
In the process, he showed that the Chen ranks of a finitely generated group G can be computed
from the Alexander invariant B(G) := H1(G′;C), which is the first homology of the commutator
subgroup G′ = Γ2G, viewed as a module over the group algebra R = C[H1(G;Z)], as follows:

θk(G) = dimC grk−2(B(G)), for k ≥ 2,

where gr(B(G)) is the associated graded module to B(G) with respect to the filtration by powers of
the augmentation ideal I = ker(ε : R→ C).

A quadratic approximation of the Lie algebra gr(G)⊗C is the holonomy Lie algebra of G defined
by h(G) := lie(H1(G;C))/ im(∂G), where lie(H1(G;C)) the free Lie algebra generated by the first
homology H1(G;C), and ∂G is the dual of the cup product map H1(G;C) ∧ H1(G;C) → H2(G;C).
The infinitesimal Alexander invariant of G is the finitely generated, graded S -module defined by
B(G) := h(G)′/h(G)′′, where S = gr(R) is the symmetric algebra on H1(G;C). If the group G is
1-formal (in the sense of rational homotopy theory), then, as shown by Papadima and Suciu in [24],
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there is an isomorphism of graded S -modules, gr(B(G)) � B(G). Thus, the Chen ranks of such
groups G can be computed from the Hilbert series of B(G).

The class of 1-formal groups to which the above method applies includes all arrangement groups
(such as the pure braid groups Pn), Kähler groups, and right-angled Artin groups, see for instance
[14, 26, 35] and references therein. Of great importance to us is that, as shown by Berceanu and
Papadima in [4], all the McCool groups PΣn and PΣ+

n are 1-formal.
Based on a refinement of the Gröbner basis algorithm from [9] applied to the infinitesimal

Alexander invariant B(PΣ+
n ), we find a closed formula for the Chen ranks of the groups PΣ+

n .

Theorem 1.1 (Theorem 5.2). The Chen ranks of the upper McCool groups, θk = θk(PΣ+
n ), are given

by θ1 =
(
n
2

)
, θ2 =

(
n
3

)
, and

θk =

(
n + 1

4

)
+

k∑
i=3

(
n + i − 2

i + 1

)
for k ≥ 3.

As a quick application of our result, we obtain the following corollary, which answers the afore-
mentioned question of F. Cohen et al. from [11].

Corollary 1.2 (Corollary 5.3). For each n ≥ 4, the pure braid group Pn, the upper McCool group
PΣ+

n , and the direct product Πn :=
∏n−1

i=1 Fi are all pairwise non-isomorphic, although they all do
have the same LCS ranks and the same Betti numbers.

The fact that Pn � Πn for n ≥ 4 was already established by Cohen and Suciu in [9], also using
the Chen ranks. The novelty here is the distinction between PΣ+

n and the other two groups.

1.3. Resonance varieties. Given a finitely generated group G, we let A∗ = H∗(G;C) be its coho-
mology algebra. The resonance varieties of G are the jump loci for the cohomology of the Aomoto
complexes (A, a) parametrized by the vector space A1. We focus here on the first resonance variety,
R1(G), which is defined as

(1) R1(G) =
{
a ∈ A1 | ∃ b ∈ A1 such that b < C · a and ab = 0 ∈ A2}.

In general, these varieties can be arbitrarily complicated homogeneous algebraic subsets of A1.
Nevertheless, if the group G is 1-formal, then the Tangent Cone theorem of [14] insures that R1(G)
is a union of rationally defined linear subspaces of H1(G;C). For instance, the first resonance
variety of the pure braid group Pn, determined in [10], is a union of linear subspaces of H1(Pn;C)
of dimension 2. In [7], D. Cohen computed the first resonance variety of the full McCool group
PΣn, showing that this variety is a union of linear subspaces of H1(PΣn;C) of dimension 2 and 3.

In this paper, we pursue this line of inquiry by determining the resonance varieties of the upper
McCool groups PΣ+

n . To start with, let us identify the ambient space H1(PΣ+
n ;C) with C(n

2), and pick
coordinate functions xi, j with 1 ≤ j < i ≤ n corresponding to the Magnus generators αi j. By [22],
the resonance variety R1(PΣ+

n ) is cut out by the annihilator ideal of the infinitesimal Alexander
invariant Bn = B(PΣ+

n ), viewed as a module over the coordinate ring S = C[xi j]. Using the
aforementioned Gröbner basis forBn, we arrive at the following description of the variety R1(PΣ+

n ).

Theorem 1.3 (Theorems 7.1 and 7.2). For each n ≥ 3, the first resonance variety of the upper
McCool group PΣ+

n decomposes into irreducible components as

R1(PΣ+
n ) =

⋃
2≤ j<i≤n

Li j,
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where Li j is the j-dimensional linear subspace of H1(PΣ+
n ;C) defined by the equations

xi,l + x j,l = 0 for 1 ≤ l ≤ j − 1,
xi,l = 0 for j + 1 ≤ l ≤ i − 1,
xs,t = 0 for s , i, s , j, and 1 ≤ t < s.

Moreover,
(1) All the components are projectively disjoint, i.e., Li j ∩ Lst = {0} if (i, j) , (s, t).
(2) The subspaces Li j are 0-isotropic for j = 2 and

(
j−1
2

)
-isotropic for j ≥ 3, i.e., the restriction

of the cup-product map on H1(PΣ+
n ;C) to Li j has rank

(
j−1
2

)
.

A finitely presented group G is said to be quasi-projective if it can be realized as the fundamental
group of a smooth, complex, quasi-projective variety. A classical problem, formulated by J.-P. Serre,
is to determine which finitely presented groups are quasi-projective. Using the aforementioned
description of the first resonance varieties of PΣ+

n and structural theorems from [13, 14], we obtain
the following result.

Proposition 1.4 (Proposition 7.7). The upper McCool groups PΣ+
n are not quasi-projective groups,

for any n ≥ 4.

Comparing the resonance varieties of PΣ+
n with those of Pn and Πn (already computed in [10]),

we obtain another proof of Corollary 1.2. Furthermore, comparing the resonance varieties of PΣn
with those of PΣ+

n , we obtain the following application.

Proposition 1.5 (Proposition 7.4). There is no epimorphism from PΣn to PΣ+
n for n ≥ 4.

1.4. Resonance scheme structure. As shown by Matei and Suciu in [22], the resonance variety
R1(G) of a commutator-relators group G coincides with the support variety of the annihilator of
B(G). It is natural then to talk about the resonance scheme of G as the scheme defined by the ideal
Ann(B(G)). The primary components of this ideal cut out the primary subschemes; the resonance
scheme consists of isolated components (namely, the irreducible components of R1(G)), together
with embedded components. We say that R1(G) is weakly reduced as a scheme if the only embedded
component of Ann(B(G)) is the point 0 ∈ H1(G;C).

The next theorem describes the resonance scheme structure of the upper McCool groups.

Theorem 1.6 (Theorem 8.6). The resonance scheme of PΣ+
n consists of:

Isolated components: The linear subspaces Li j (2 ≤ j < i ≤ n) listed in Theorem 1.3.
Embedded components: The 1-dimensional linear subspaces L′i j ⊂ Li j (3 ≤ j < i ≤ n)

defined by the equations xst = 0 with 1 ≤ t < s ≤ n and (s, t) , (i, j).

In particular (Corollary 8.7), the resonance variety R1(PΣ+
n ) is not weakly reduced as a scheme

for n ≥ 4.
The scheme structure of R1(G) is crucial for studying the relationship between the first resonance

variety and the Chen ranks of a group G. It was conjectured in [29] that the Chen ranks of an
arrangement group G are given by

(2) θk(G) =
∑
m≥2

hm(G) · θk(Fm), for k � 0,

where hm(G) is the number of m-dimensional components of R1(G). In [8], Cohen and Schenck
proved the conjecture for the wider class of 1-formal groups which have weakly reduced resonance
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schemes, and 0-isotropic, projectively disjoint irreducible components. They also showed that the
first resonance variety of the full McCool group PΣn is weakly reduced. Furthermore, the Chen
ranks formula works for PΣn, from which they deduced that θk(PΣn) = (k − 1)

(
n
2

)
+ (k2 − 1)

(
n
3

)
for

k � 0.
Theorem 1.1 provides a closed formula for the Chen ranks θk(PΣ+

n ) for k ≥ 1. Rather surprisingly,
it turns out that the Chen ranks formula does not apply to PΣ+

n for n ≥ 4. There are two reasons
for that: firstly, the resonance variety R1(PΣ+

n ) contains non-isotropic components, and secondly,
R1(PΣ+

n ) is not weakly reduced as a scheme. The computation of the scheme structure also shows
how the embedded components affect the Chen ranks. This provides us with a benchmark test case
for a generalized Chen ranks formula, which is the subject of ongoing work.

2. Alexander invariant and Chen ranks

We start by reviewing several invariants associated to a finitely generated group, mainly the lower
central series ranks, the Chen ranks, and the Alexander invariant. We then discuss the infinitesimal
version of the Alexander invariant, this time associated to a graded Lie algebra.

2.1. Associated graded Lie ring and Chen ranks. Throughout, G will be a finitely generated
group. The terms of the lower central series (LCS) of G are defined inductively by Γ1G = G and
ΓkG = [G,Γk−1G] for k ≥ 2. It is readily seen that Γk+1G is a normal subgroup of ΓkG, and the
quotient group, grk(G) = ΓkG/Γk+1G, is a finitely generated abelian group. The associated graded
Lie ring of G is the direct sum

(3) gr(G) =
⊕
k≥1

ΓkG/Γk+1G,

with Lie bracket [ , ] : grk(G)×gr`(G)→ grk+`(G) induced by the group commutator. By definition,
the LCS ranks of G are the integers φk(G) := rank grk(G).

Now let G′ = Γ2G be the derived subgroup of G, and let G′′ = [G′,G′] the second derived
subgroup. Then Gab := G/G′ is the maximal abelian quotient of G, whereas G/G′′ is the maximal
metabelian quotient of G. Following [5, 6], let us define the Chen ranks of G as the LCS ranks of
G/G′′:

(4) θk(G) := rank grk(G/G′′).

It is readily seen that θk(G) ≤ φk(G), with equality for k ≤ 3.

2.2. Alexander invariant and Chen ranks. Let Z[G] be the group ring of G, let ε : ZG → Z be the
augmentation homomorphism, defined by ε(g) = 1 for g ∈ G, and let I = ker ε be the augmentation
ideal. The Alexander module, A(G) = I ⊗ZG ZGab, is the ZGab-module induced from I by the
extension of the abelianization map α : G → G/G′ to group rings. The Alexander invariant of G is
the ZGab-module

B(G) = G′/G′′,

with the group Gab acting on the cosets of G′′ via conjugation. Since the group G is finitely gener-
ated, both A(G) and B(G) are finitely generated ZGab-modules.

As shown by W. Massey in [21], the Chen ranks can be computed from the Alexander invariant
using the group extension

(5) 0 // G′/G′′ // G/G′′ // G/G′ // 0 .
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More precisely, let us filter both the group ring ZGab and the module B(G) by the powers of
the augmentation ideal J = ker(εab : ZGab → Z), and let us take the associated graded module,
gr(B(G)) =

⊕
k≥0 JkG/Jk+1G, viewed as a module over the ring gr(ZGab). Identifying this ring

with the symmetric algebra S = Sym(Gab) in a canonical fashion, we may view gr(B(G)) as a
(finitely generated) S -module. The following equality then holds, for all k ≥ 0:

(6) θk+2(G) = rank grk(B(G)) .

2.3. Infinitesimal Alexander invariant of an algebra. Let g =
⊕

k≥1 gk be a finitely generated,
graded Lie algebra over C. We denote by S the universal enveloping algebra of its abelianization,
g/g′. We will identify this algebra with the symmetric algebra S = Sym(g1), with variables in
degree 1.

Following [24], let us define the infinitesimal Alexander invariant of g to be the graded S -module

(7) B(g) := g′/g′′.

The exact sequence of graded Lie algebras

(8) 0 // g′/g′′ // g/g′′ // g/g′ // 0

defines the required graded S -module structure on B(g).
Now let A =

⊕
i≥0 Ai be graded, graded-commutative algebra over C. We shall assume that A

is connected (i.e., A0 = C, generated by the unit 1), and locally finite (i.e., Ai has finite dimension,
for each i ≥ 1). Write V = A1, and let ∂A : (A2)∗ → V∗ ∧ V∗ be the dual of the multiplication map
µA : V∧V → A2, where we identified (V∧V)∗ � V∗∧V∗. The holonomy Lie algebra of A is defined
to be the quotient

(9) h(A) = lie(V∗)/〈im ∂A〉

of the free Lie algebra on V∗ by the ideal generated by the image of ∂A. By construction, h(A) is a
finitely presented, quadratic Lie algebra.

By definition, the infinitesimal Alexander invariant of A is the graded S -module

(10) B(A) := B(h(A)),

where S = Sym(h1(A)) is canonically identified with Sym(V∗). From the exact sequence (8), we
have the equality

(11)
∑
k≥0

θk+2(A) · tk = Hilb(B(A), t),

where θi(A) := dim((h(A)/h(A)′′)i) is the i-th Chen rank of A. It is readily seen that h(A) and B(A)
coincide with the holonomy Lie algebra and the infinitesimal Alexander invariant of the quadratic
closure of A,

(12) Ā = E/〈ker µA〉,

where E =
∧

V and 〈ker µA〉 is the ideal generated by ker µA. We refer to [32, 35, 34] for full details
of this construction, and further references and background.
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2.4. Infinitesimal Alexander invariant of a 1-formal group. Let G be a finitely generated group,
and suppose that H2(G;C) is finite-dimensional. We define then the holonomy Lie algebra of G as
h(G) := h(A), where A = H≤2(G,C) is the degree-2 truncation of the cohomology algebra of G.
The infinitesimal Alexander invariant of G is then the graded S -module B(G) := B(A), where S is
the symmetric algebra on H1(G;C). Note that this module is finitely generated (in degree 0), and
therefore admits a finite presentation of the form S m α

−→ S n → B(G). Choosing bases for S m and
S n, we may view the map α as a matrix with n rows and m columns, having entries in S .

For each nilpotent quotient G/ΓiG, there is a filtered C-Lie algebra m(G/ΓiG), whose construc-
tion goes back to Anatoli Malcev. The Malcev Lie algebra of G is defined to be the inverse limit
m(G) := lim

←−−k
m(G/ΓkG), see for instance [24, 26, 35] for details and references. We say that the

group G is 1-formal if there exists a filtered Lie algebra isomorphism between the Malcev Lie alge-
bra m(G) and the degree completion of h(G).

If G is a 1-formal group, then, as shown in [24] in the commutator-relators case, and in [34] in
general, the following equality holds:

(13)
∑
k≥0

θk+2(G) · tk = Hilb(B(G), t).

2.5. Presentations for B(A). Now suppose g admits a finite, quadratic presentation, that is, g =

lie(H)/〈K〉, where H is a finite-dimensional C-vector space, K is a finite set of degree-two elements
in the free Lie algebra lie(H), and 〈K〉 is the Lie ideal generated by K. Then, by [24], the S -module
B(g) admits a homogeneous, finite presentation of the form

(14)
((∧3 H

)
⊕ K

)
⊗ S

δ3+(id⊗ ι) // ∧2 H ⊗ S // B(g) // 0 ,

where ι is the inclusion of a into lie(H)2 � H ∧ H, and δ3 is the Koszul differential.
As before, let A be a graded, graded-commutative, locally finite, connected algebra. The algebra

A may be viewed as an E-module, where E =
∧

V is the exterior algebra on the vector space V = A1.
Pick a basis {e1, . . . , en} for V and let {x1, . . . , xn} be the dual basis for V∗; then S = Sym(V∗) may be
identified with the polynomial ring C[x1, . . . , xn]. When applied to the E-module A, the Bernstein–
Gelfand–Gelfand correspondence (see e.g. [16, §7B]) yields a cochain complex of free S -modules,

(15) L(A) : A0 ⊗ S d0
// A1 ⊗ S d1

// A2 ⊗ S d2
// · · · ,

with differentials given by

(16) di(u ⊗ s) =

n∑
j=1

e ju ⊗ x js

for u ∈ Ai and s ∈ S . In particular, L(E) is the dual of the Koszul complex.
Let I := 〈ker µA〉 be the (graded) ideal of E generated by ker µA as in (12), and denote ι : I → E

the inclusion map. By construction, I2 = ker µA. Hence, we have a commuting diagram,

(17)

0 // I2 ⊗ S
Φ

%%

ι⊗id //

d2
I
��

E2 ⊗ S

d2
E
��

µA⊗id // Ā2 ⊗ S

d2
Ā ��

// 0

0 // I3 ⊗ S // E3 ⊗ S // Ā3 ⊗ S // 0 ,

where Φ is the composite d2
E ◦ (ι ⊗ id) : I2 ⊗ S → E3 ⊗ S .
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In the next lemma, we obtain another presentation for B(A) which has a minimal generating set.
This result generalizes formula (2.5) from [8], where Cohen and Schenck give a presentation for the
linearized Alexander invariant of a commutator-relators group.

Lemma 2.1. The dual of the S -linear map Φ : I2 ⊗ S → E3 ⊗ S provides a presentation for the
infinitesimal Alexander invariant B(A). In addition, any basis for the vector space dual of I2 gives
a minimal generating set for the S -module B(A).

Proof. By definition, the ideal I of the exterior algebra E =
∧

V is generated by the vector space
I2 = ker µA. Taking the dual spaces, we have an isomorphism (I2)∗ � coker ∂A, where ∂A is the dual
of the multiplication µA. Recall that the map Φ was defined as the composite

(18) I2 ⊗ S

Φ

**
ι⊗id // ∧2 V ⊗ S

d2
E // ∧3 V ⊗ S ,

where d2
E is the dual of the Koszul differential. All S -modules in the above diagram are free mod-

ules. Taking duals, we obtain the diagram

(19) coker(∂A) ⊗ S
∧2 V∗ ⊗ S

(ι⊗id)∗oo ∧3 V∗ ⊗ S

Φ∗

uu (d2
E)∗
oo .

Here, (ι⊗ id)∗ coincides with the projection map and (d2
E)∗ coincides with the Koszul differential δ3

from (14) in the case when g = h(A). It follows that B(A) is isomorphic to coker Φ∗, as claimed.
To prove the last assertion, we may assume without loss of generality that A = Ā = E/〈I2〉. From

(11), we have that dimB(A)0 = θ2(A) = dim h(A)2; in view of (9), then,

(20) dimB(A)0 = dim
(∧2V∗

)
− dim(im ∂A) = dim(coker ∂A) = dim I2.

Since the S -moduleB(A) is generated byB(A)0, we conclude that the generating set forB(A) given
by a basis for the dual of I2 is indeed a minimal generating set. �

3. The infinitesimal Alexander invariant of the upperMcCool groups

In this section, we give a presentation for the infinitesimal Alexander invariant of the upper
McCool groups, and simplify this presentation to a minimal presentation.

3.1. The upper McCool groups. Let Fn be the free group on generators x1, . . . , xn, and let Aut(Fn)
be its automorphism group. Recall that the basis-conjugating group PΣn is the subgroup of Aut(Fn)
consisting of those automorphisms which send each generator xi to a conjugate of itself.

In [23], James McCool gave a presentation for PΣn, a group also known nowadays as the McCool
group, or the pure welded braid group. This presentation has generators αi j (the automorphism
sending xi to x jxix−1

j ) for 1 ≤ i , j ≤ n, and relations

αi jαikα jk = α jkαikαi j

[αik, α jk] = 1 for distinct i, j, k,(21)
[αi j, αst] = 1 if {i, j} ∩ {s, t} = ∅.

It follows at once that PΣ1 = {1} and PΣ2 = F2. Since there is not much else to be said in those
cases, we will usually concentrate on the case when n ≥ 3.

The subgroup of PΣn generated by the elements αi j with i > j is called the upper triangular
McCool group, and is denoted by PΣ+

n . It readily seen that PΣ+
1 = {1}, PΣ+

2 = Z, and PΣ+
3 � F2 × Z.
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Work of Berceanu and Papadima from [4] establishes the 1-formality of all these groups.

Theorem 3.1 ([4]). The McCool groups PΣn, as well as their upper triangular subgroups PΣ+
n are

1-formal, for all n ≥ 1.

In [19], Jensen, McCammond, and Meier computed the cohomology ring of PΣn, thereby verify-
ing a long-standing conjecture of Brownstein and Lee. Shortly after, the integral cohomology ring
of PΣ+

n was computed by F. Cohen et al. [11], as follows.

Theorem 3.2 ([11]). The cohomology algebra A = H∗(PΣ+
n ;Z) is the graded, graded-commutative

(associative) algebra generated by degree 1 elements ui j with 1 ≤ j < i ≤ n, subject to the relations
ui j(uik − u jk) = 0 for k < j < i.

We will use Theorem 3.2 to compute a presentation for the infinitesimal Alexander invariant
Bn := B(PΣ+

n ). We first choose an order for the aforementioned basis of H1(PΣ+
n ;C) by setting

ui j�ukl if either i > k, or i = k and j > l.
Let x = {xi j | 1 ≤ j < i ≤ n} be the dual of the basis {ui j} of H1(PΣ+

n ;Z), and let S = C[x] be the
polynomial ring in those variables. The relators

(22) {r∗i jk := (uik − u jk)ui j | 1 ≤ k < j < i ≤ n}

for the cohomology algebra A = E/I from Theorem 3.2 form a basis for the vector space I2, as well
as for the free S -module I2 ⊗ S . Finally, the set

{
ustulkui j | ui j�ulk�ust

}
forms a basis for E3, and

also a basis for the free S -module E3 ⊗ S .

3.2. The map Φ. Using the aforementioned choices of bases, we now provide an explicit descrip-
tion of the map Φ from diagram (17), in our situation. When identifying the free S -module V ⊗ S
with S k for some k-dimensional C-vector space V , we will write the element v ⊗ s as s · v.

Lemma 3.3. If A is the cohomology algebra of PΣ+
n , then the S -linear map Φ : I2 ⊗ S → E3 ⊗ S is

given by

(23) Φ(r∗i jk) = −(xik + x jk) · u jkuikui j +
∑

s>t,{s,t}*{i, j,k}

xst · ust(u jk − uik)ui j .

Proof. Recall that Φ is the composition of the differential d2 : E2 → E3 from (16) with the inclusion
ι : I2 → E2. Hence,

(24) Φ(r∗i jk) = d2(r∗i jk ⊗ 1) =

n∑
1≤t<s≤n

ustr∗i jk ⊗ xst =

n∑
1≤t<s≤n

ustui j(uik − u jk) ⊗ xst .

Simplifying the last expression using graded-commutativity yields (23). �

From formula (23), we see that each entry of the matrix of Φ is of the form xik + x jk or xst for
{s, t} * {i, j, k}, t < s and k < j < i.

3.3. A reduced presentation forBn. By Lemma 2.1, the S -moduleBn = B(PΣ+
n ) has presentation

(25) (E3)∗ ⊗ S Φ∗ // (I2)∗ ⊗ S // Bn .

Our next objective is to simplify this presentation in order to make it more manageable. Let {ri jk |

1 ≤ k < j < i ≤ n} be the basis of the vector space (I2)∗, dual to the basis of I2 from (22).
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Lemma 3.4. The submodule im Φ∗ of (I2)∗⊗S is generated by the set B =
⋃

Bi jk, where the union
is over all 1 ≤ k < j < i ≤ n, and each subset Bi jk consists of the following elements:

(26)

g1 := (−x jk − xl2k) · ri jl2 + x jl2 · ri jk

g2 := x jk · ri jl2 + xil2 · ri jk

g3 := −x jk · ril3 j + xil3 · ri jk

g4 := x jk · rl4i j + xl4i · ri jk

h1 := (xil1 + x jl1 + xkl1) · ri jk

h2 := (xik + x jk) · ri jk

h3 := xl2k · ri jk

h4 := xl3k · ri jk

h5 := xl3 j · ri jk

h6 := xl4k · ri jk

h7 := xl4 j · ri jk

h8 := xst · ri jk

where 1 ≤ l1 < k < l2 < j < l3 < i < l4 ≤ n and {s, t} ∩ {i, j, k} = ∅.1

Proof. Write Φ∗q for the restriction of Φ∗ to the subspace spanned by the basis vectors of cardinality
q := ]{i, j, k, l, s, t}. The map Φ∗ can then be decomposed as the block-matrix Φ∗3 ⊕ Φ∗4 ⊕ Φ∗5 ⊕ Φ∗6.
We now analyze formula (23) case by case, according to the cardinality q = 3, 4, 5, 6.

When q = 3, we have l = i, s = j, t = k. Then Φ∗3((u jkuikui j)∗) = −(xik + x jk) · ri jk, and so Φ∗3
contributes elements of the form h2 to B.

When q = 4, suppose i > j > k > l. There are then
(
6
3

)
−

(
4
3

)
= 16 possible combinations:

Φ∗4((uklu jluil)∗) = 0
Φ∗4((uklu jluik)∗) = −x jl · rikl
Φ∗4((uklu jlui j)∗) = xkl · ri jl
Φ∗4((uklu jkuil)∗) = xil · r jkl
Φ∗4((uklu jkuik)∗) = −x jk · rikl + xik · r jkl
Φ∗4((uklu jkui j)∗) = xkl · ri jk + xi j · r jkl
Φ∗4((ukluilui j)∗) = −xkl · ri jl
Φ∗4((ukluikui j)∗) = −xkl · ri jk + xi j · rikl

Φ∗4((u jlu jkuil)∗) = −xil · r jkl
Φ∗4((u jlu jkuik)∗) = −xik · r jkl
Φ∗4((u jlu jkui j)∗) = x jl · ri jk − x jk · ri jl − xi j · r jkl
Φ∗4((u jluiluik)∗) = −x jl · rikl
Φ∗4((u jluikui j)∗) = −x jl · ri jk − xik · ri jl
Φ∗4((u jkuiluik)∗) = −x jk · rikl
Φ∗4((u jkuilui j)∗) = −xil · ri jk − x jk · ri jl
Φ∗4((uiluikui j)∗) = −xil · ri jk + xik · ri jl − xi j · rikl

The image of Φ∗4 is generated by (xil + x jl + xkl) · ri jk and the elements
xkl · ri jl

(−x jl − xkl) · ri jk + x jk · ri jl

x jl · ri jk + xik · ri jl


x jl · rikl

x jk · rikl

−xkl · ri jk + xi j · rikl


xil · r jkl

xik · r jkl

xkl · ri jk + xi j · r jkl

Hence, the image of Φ∗4 contributes h1 = (xil1 + x jl1 + xkl1) · ri jk for l1 ≤ k − 1, as well as g1, g2, h3
for k < l2 < j < i, g3, h4, h5 for k < j < l3 < i, and g4, h6, h7 for k < j < i < l4.

When q = 5, the only possible instance for which Φ∗5 , 0 is when l = j, or l = i, or s = k, or
s = l. Suppose ui j > ulk > ust. Using formula (23) again, we find that

Φ∗5((ustulkui j)∗) =


xst · ri jk if l = j
−xst · ri jk if l = i
xi j · rlkt if s = k
−xi j · rlkt if s = l
0 otherwise.

Hence, the map Φ∗5 will contribute h8 = xst · ri jk for {s, t} ∩ {i, j, k} = ∅ to B.

1Here and in the sequel, a symbol such as gm or hm denotes a single polynomial, which depends on m, but also on the
indices i, j, k, and some of l1, l2, l3, l4, s, t. To avoid a plethora of such indices, we will omit them as much possible from
the notation, whenever the context makes it clear what they are.
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When q = 6, we have that Φ∗6((ustulkui j)∗) = 0. This completes the proof. �

Let us denote by mi jk and m the cardinalities of the sets Bi jk and B, respectively. Clearly,
mi jk =

(
n
2

)
− 2k. An elementary computation shows that

m =
∑

n≥i> j>k≥1

mi jk =

n−2∑
k=1

(
n − k

2

)
mi jk =

1
12

n(n4 − 5n3 + 7n2 − n − 2).(27)

Let S m be the free S -module generated by the set B =
⋃

Bi jk, endowed with the subset order
defined by setting Blst�Bi jk if either i > l, or i = l and j > s, or i = l, j = s, and k > t. For elements
in each Bi jk, we use the order defined by the coefficients of ri jk by setting

(28) xst�xkl if either s > k, or s = k and t > l.

Together with Lemmas 2.1 and 3.4, we obtain the desired presentation for the S -module Bn.

Proposition 3.5. The infinitesimal Alexander invariantBn = B(PΣ+
n ) admits a minimal presentation

of the form

(29) S m Ψ // S (n
3) // Bn.

The matrix of Ψ is upper block triangular, with diagonal row vectors ~vi jk (1 ≤ k < j < i ≤ n) given
by

(~vi jk)∗ =


xil + x jl + xkl for 1 ≤ l ≤ k − 1,
xik + x jk for 1 ≤ k < j < i ≤ n,
xst for {s, t} 1 {i, j, k, l} and 1 ≤ l ≤ k − 1.

Proof. From Lemma 2.1, we know that the standard basis for (I2)∗ ⊗ S = S (n
3) gives a minimal

generating set for Bn. From Lemma 3.4, the submodule im Φ∗ ⊂ (I2)∗ ⊗ S is generated by the
independent set B. Hence, the presentation (29) has no redundant relations. �

Example 3.6. The first non-trivial example is the S -module B4 = B(PΣ+
4 ). Applying Proposition

3.5, we find that B4 = coker(Ψ : S 14 → S 4), where the transpose of the matrix of Ψ has the form


~vT

432 0 0 0
∗ ~vT

431 0 0
∗ ∗ ~vT

421 0
∗ ∗ ∗ ~vT

321

 =



x41 + x31 + x21 0 0 0
x42 + x32 0 0 0

0 x21 0 0
−x31 − x21 x32 0 0

0 x41 + x31 0 0
x31 x42 0 0
0 0 x31 0
0 0 x32 0
0 0 x41 + x21 0
−x21 0 x43 0

0 0 0 x31 + x21
0 0 0 x41
0 0 0 x42

x21 0 0 x43



.



12 ALEXANDER I. SUCIU AND HE WANG

4. A Gröbner basis for B(PΣ+
n )

In this section, we determine a Gröbner basis for the infinitesimal Alexander invariant of PΣ+
n ,

which will play a crucial role in computing the Chen ranks and the scheme structure of the first
resonance varieties of the upper McCool groups.

4.1. Gröbner basis for modules. We start by recalling some background material on Gröbner
basis for modules (see [15, §15] for details). Let S = C[x] be a polynomial ring with variables in a
finite set x, and let F be a free S -module with basis {e1, . . . , er}. A monomial in F is an element of
form m = xαei and a term in F is an element of the form c · xαei, where c ∈ C. A monomial order
on F is a total order � on the monomials of F such that if m1 and m2 are monomials in F and s , 1
is a monomial in S , then m1 � m2 implies sm1 � sm2 � m2.

Given a monomial order � on F, the initial term of an element f ∈ F is the largest term of f
with respect to �, denoted by in�( f ). For a submodule I ⊂ F, we let in�(I) denote the submodule
generated by {in�( f ) | f ∈ I}. A set {g1, . . . , gs} is called a Gröbner basis for the module I if the
elements g1, . . . , gs generate I, while at the same time in�(g1), . . . , in�(gs) generate in�(I).

If the initial terms in�(gi) and in�(g j) contain the same basis element ei of F, put

(30) S(gi, g j) :=
in>(g j)

gcd(in�(gi), in�(g j))
· gi −

in�(gi)
gcd(in�(gi), in�(g j))

· g j.

Using the division algorithm, the element S(gi, g j) ∈ F has a standard expression of the form

(31) S(gi, g j) =
∑

pi j
k · gk + hi j,

where pi j
k ∈ S and in�(pi j

k gk) ≺ LCM(in�(gi), in�(g j)). If in�(gi) and in�(g j) contain distinct basis
elements of F, we set hi j = 0. Buchberger’s criterion asserts that the set {g1, . . . , gt} is a Gröbner
basis for the ideal I if and only if all S-polynomials S(gi, g j) vanish, i.e., hi j = 0 for all i and j.

4.2. A Gröbner basis for Bn. Once again, let S = C[x] be the coordinate ring of H1(PΣ+
n ;C) with

variables ordered as in (28). Recall from Proposition 3.5 thatBn = coker(Ψ), where Ψ is an S -linear
map Ψ : S m → (I2)∗ ⊗ S . Let us order the basis of (I2)∗ ⊗ S by setting

(32) rlst�ri jk if either i > l, or i = l and j > s, or i = l, j = s, and k > t.

We use the graded reverse lexicographic order on S defined by xα � xβ if deg(xα) > deg(xβ), or
deg(xα) = deg(xβ) and the right-most entry in α − β is negative. This order on S is extended to a
monomial order on (I2)∗ ⊗ S by declaring xαrlst � xβri jk if rlst�ri jk, or if rlst=ri jk and xα � xβ.

By Lemma 3.4, the module im(Ψ) is generated by the set B =
⋃

1≤k< j<i≤n Bi jk, where Bi jk
consists of the elements from (26).

Theorem 4.1. A Gröbner basis for the S -module im(Ψ) is given by G =
⋃

1≤k< j<i≤n Gi jk, where Gi jk
is the union of Bi jk and

(33) Di jk := {h9 := xklxkp · ri jk, h0 := x jqxkp · ri jk | 1 ≤ p ≤ l < k, 1 ≤ q ≤ k}.

The proof of this theorem is standard but lengthy, as it involves checking that G generates the
S -module im(Ψ) as a submodule of (I2)∗ ⊗ S , and all S-polynomials of elements in G vanish. We
thus relegate the proof to Appendix 9.
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Corollary 4.2. The above Gröbner basis G for im(Ψ) admits an upper block triangular matrix with
diagonal row vectors ~wi jk for 1 ≤ k < j < i ≤ n, where each vector ~wi jk is constructed from the
vector ~vi jk from Proposition 3.5 by adding entries {xklxks, x jt xks | 1 ≤ s ≤ l ≤ k − 1, 1 ≤ t ≤ k}.
Furthermore, the vector ~wi jk has

(
n
2

)
+

(
k
2

)
+ (k − 3)k entries.

Proof. The first assertion is clear. The length of the vector ~wi jk is computed by counting the (linear)
entries in the vector ~vi jk from Proposition 3.5, and adding the number of quadratic entries. �

5. The Chen ranks of the upperMcCool groups

In this section, we compute the Hilbert series of the infinitesimal Alexander invariants of the
upper McCool groups. We then use this information to compute the Chen ranks of PΣ+

n and answer
a question from [11].

5.1. Hilbert series of monomial ideals. We first review some background from [15, §15.1]. Let S
be a polynomial ring. By a standard result in commutative algebra, the computation of the Hilbert
series of any finitely generated, graded S -module M can be reduced to the computation of the
Hilbert series of a monomial module. More precisely, write M = S n/I, where I is a submodule
generated by homogeneous elements in S n; then

(34) Hilb(S n/I, t) = Hilb(S n/ in(I), t) ,

where in(I) is the submodule generated by the initial terms of I. Since the Hilbert function is
additive, we only need to treat the case N = S/I, where I is a monomial ideal of S .

Let {m1, . . . ,mt} be a set of monomials generating I. Choose a monomial p ∈ F, and denote its
degree by d. Let J be the monomial ideal generated by {p,m1, . . . ,mt}, and let I′ be the ideal gen-
erated by {m1/ gcd(m1, p), . . . ,mt/ gcd(mt, p)}. (Certain choices of monomials p can produce ideals
I′ and J generated by fewer monomials, in less variables.) We then have a short exact sequence of
graded S -modules,

(35) 0 // S/I′(−d) // S/I // S/J // 0 .

Taking Hilbert series, the following equality holds:

(36) Hilb(S/I, t) = Hilb(S/J, t) + td Hilb(S/I′, t).

5.2. The Hilbert series of Bn. We are now ready to compute the Hilbert series of the infinitesimal
Alexander invariants Bn of the upper McCool groups PΣ+

n .

Theorem 5.1. The Hilbert series of the S -module Bn is given by

(37) Hilb(Bn, t) =

n−1∑
s=2

(
s
2

)
1

(1 − t)n−s+1 +

(
n
4

)
t

1 − t
.

Proof. This computation is an application of the method from [15, §15.1.1]. Since we already found
a Gröbner basis G for Bn = im(Ψ), formula (34) insures that we only need to compute the Hilbert
series of the resulting monomial ideal, in�(im(Ψ)) = 〈in�(G )〉.

Recall from Theorem 4.1 and Lemma 3.4 that

(38) in�(Gi jk) =

{
xksxkl · ri jk, x jt xkl · ri jk,
xik · ri jk, xil · ri jk, xab · ri jk

∣∣∣∣∣∣ 1 ≤ l ≤ s ≤ k − 1, 1 ≤ t ≤ k,
{a, b} 1 {i, j, k, l}

}
.
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Consider the (reduced) monomial ideal

(39) Ii jk = 〈xksxkl, x jmxkl (1 ≤ l ≤ s ≤ k − 1, 1 ≤ m ≤ k), xik, xil, xab ({a, b} 1 {i, j, k, l})〉.

Using (36), a straightforward computation shows that the Hilbert series of this ideal is given by
Hilb(S/Ii jk, t) = 1/(1 − t)k + kt/(1 − t). Hence, the Hilbert series of Bn is given by

(40) Hilb(Bn, t) =
∑

i> j>k

Hilb(S/Ii jk, t) =

n−2∑
k=1

(
n − k

2

) (
1

(1 − t)k+1 +
kt

1 − t

)
.

Upon setting s = n − k, the claimed formula follows at once. �

5.3. The Chen ranks of PΣ+
n . With Theorem 5.1 at our disposal, we may now compute the Chen

ranks of the upper McCool groups PΣ+
n , for all n ≥ 1.

Theorem 5.2. The Chen ranks θk = θk(PΣ+
n ) are given by θ1 =

(
n
2

)
, θ2 =

(
n
3

)
, θ3 = 2

(
n+1

4

)
, and

θk =

(
n + k − 2

k + 1

)
+ θk−1 =

k∑
i=3

(
n + i − 2

i + 1

)
+

(
n + 1

4

)
for k ≥ 4.

Proof. Clearly, θ1(PΣ+
n ) = b1(PΣ+

n ) =
(
n
2

)
. To compute the other Chen ranks, recall from (13) that∑

k≥0 θk+2(PΣ+
n ) · tk = Hilb(B(PΣ+

n ), t). On the other hand, Theorem 5.1 provides an expression for
the Hilbert series of the infinitesimal Alexander invariantBn = B(PΣ+

n ). Thus, it remains to find the
coefficient of tk on the right-hand side of (37). Let

(41) f (t) =

n−1∑
s=2

(
s
2

)
(1 − t)−n+s−1 +

(
n
4

)
t(1 − t)−1.

Computing derivatives, we find that

(42) f (k)(t) =

n−1∑
s=2

(
s
2

) k∏
i=1

(n − s + i)(1 − t)−n+s−k−1 + k!
(
n
4

)
(1 − t)−k−1.

Hence, the Chen ranks of PΣ+
n are given by

(43) θk+2 =
1
k!

f (k)(0) =

n−1∑
s=2

(
s
2

) k∏
i=1

(n − s + i) + k!
(
n
4

)
.

Simplifying this expression, we obtain the claimed recurrence formula. �

5.4. Distinguishing some related groups. Both the pure braid groups Pn and the upper McCool
groups PΣ+

n are iterated semidirect products of the form Fn−1o· · ·oF2oF1. Clearly, P1 = PΣ+
1 = {1}

and P2 = PΣ+
2 = Z; it is also known that P3 � PΣ+

3 � F2 × F1. Furthermore, both Pn and PΣ+
n share

the same LCS ranks and the same Betti numbers as the corresponding direct product of free groups,
Πn =

∏n−1
i=1 Fi, see [1, 11, 17, 20]. In [11], F. Cohen et al. asked whether the groups Pn and PΣ+

n are
isomorphic, for n ≥ 4. The next corollary answers this question.

Corollary 5.3. For each n ≥ 4, the pure braid group Pn, the upper McCool group PΣ+
n , and the

product group Πn are pairwise non-isomorphic.
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Proof. As shown in [9], the fourth Chen ranks of Pn and Πn are given by θ4(Pn) = 3
(
n+1

4

)
and

θ4(Πn) = 3
(
n+2

5

)
, respectively. On the other hand, from Theorem 5.2, we have that

(44) θ4(PΣ+
n ) = 2

(
n + 1

4

)
+

(
n + 2

5

)
.

Comparing these ranks shows that the groups Pn, Πn, and PΣ+
n have non-isomorphic maximal

metabelian quotients, and thus are pairwise non-isomorphic. �

In [3], Bardakov and Mikhailov attempted to prove that P4 is not isomorphic to PΣ+
4 by showing

that these two groups have different single-variable Alexander polynomials. To explain their ap-
proach (and why it does not work), consider a finitely presented group G, and let H = Gab/torsion
be the maximal torsion-free abelian quotient of G. The group ring R = ZH is a Noetherian, com-
mutative ring and a unique factorization domain. Moreover, the R-module B(G) := B(G) ⊗ZGab ZH
is finitely presented; let E0(B(G)) be the ideal of maximal minors of a presentation matrix for this
module. The Alexander polynomial of G, then, is the greatest common divisor (gcd) of all elements
of E0(B(G)); this polynomial, denoted ∆G, is well-defined up to units in R.

Now let φ : G → Z be a homomorphism, and denote by φ : ZG → ZZ its extension to group rings.
Identifying ZZ = Z[t±1] and letting B(G)φ := B(G)⊗ZH Z[t±1] be the corresponding Z[t±1]-module,
the single-variable Alexander polynomial of G with respect to φ, denoted by ∆

φ
G(t), is the gcd of all

elements of E0(B(G)φ).

Example 5.4. Let P3 = 〈x1, x2, x3 | x1x2x3 central〉 be the pure braid group on 3 strands. Letting
φ : P3 → Z be the homomorphism given by φ(xi) = t, we find that ∆

φ
P3

(t) = (1 − t3)(1 − t). On
the other hand, if we take the presentation P3 = 〈x1, x2, z | z central〉, and let ψ : P3 → Z be the
homomorphism given by ψ(x1) = ψ(x2) = ψ(z) = t, then ∆

ψ
P3

(t) = (1 − t)2.

This example shows that the single-variable Alexander polynomial of a finitely presented group
G depends on a choice of presentation for the group, and thus is not an isomorphism-type invariant.
Hence, the argument from [3] does not rule out the existence of an isomorphism P4 � PΣ+

4 . On
the other hand, the (multi-variable) Alexander polynomial ∆G is an isomorphism-type invariant for
finitely presented groups G. Nevertheless, the groups P4 and PΣ+

4 cannot be distinguished by means
of the multi-variable Alexander polynomial. Indeed, it is known that ∆Pn = 1, for all n ≥ 4 (see [30,
Theorem 9.15]), while direct computation shows that ∆PΣ+

4
= 1, too.

6. Resonance varieties and resonance schemes

We start this section with a quick review of the resonance varieties of a connected, locally fi-
nite, graded, graded-commutative algebra. We then discuss the natural scheme structure of these
varieties, and give a quick introduction to the Chen ranks formula.

6.1. Resonance varieties. Let V be a complex vector space of finite dimension, and let V∗ be its
dual. We write E =

∧
V for the exterior algebra on V , and S = Sym(V∗) for the symmetric algebra

on V∗. Let {e1, . . . , en} and {x1, . . . , xn} be dual bases for V and V∗, respectively, and identify the
symmetric algebra Sym(V∗) with the polynomial ring S = C[x1, . . . , xn].

Now let A be graded, graded-commutative C-algebra; we will assume that A is connected and lo-
cally finite. The (degree i, depth d) resonance varieties of the graded algebra A are the homogeneous
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algebraic subvarieties of the affine space A1 defined as

(45) R i
d(A) =

{
a ∈ A1 | dimC Hi(A, δa) ≥ d

}
.

where (A, δa) is the cochain complex (known as the Aomoto complex) with differentials δi
a : Ai →

Ai+1 given by δi
a(u) = a · u. According to [27, 31], the evaluation of the cochain complex (15) at an

element a ∈ A1 coincides with the Aomoto complex (A, δa).
When A = E is an exterior algebra, the Aomoto complex (E, δa) is acyclic, for each non-zero

element a ∈ E1, and thus R i
d(E) ⊆ {0}, for all i and t. In general, though, the resonance varieties

of a graded algebra A can be arbitrarily complicated. For more details on this subject, we refer to
[10, 22, 29, 25, 14, 30, 31, 28, 8], and references therein.

We will focus in this paper on the degree-1 resonance varieties, Rd(A) := R1
d (A). These varieties

depend only on the multiplication map, µA : A1 ∧ A1 → A2, and thus, only on the quadratic closure
Ā, defined in (12), i.e., Rd(A) = Rd(Ā). Moreover, it is readily seen that

(46) Rd(A) =

{
a ∈ A1

∣∣∣∣∣∣ there is a linear subspace W ⊂ A1 of dimension d
such that a < W and µA(a, b) = 0 for all b ∈ W

}
.

Now let G be a finitely generated group, and suppose the cohomology algebra A = H∗(G;C) is
locally finite. The resonance varieties of G are then defined as R i

d(G) := R i
d(A). Most important to

us is the first (depth-1) resonance variety,

(47) R1(G) = {a ∈ H1(G,C) | ∃b ∈ H1(G,C), b , λa, ab = 0},

in which case no further assumption on G besides finite generation is needed to insure that R1(G) is
a Zariski closed set. The following (easy to prove) naturality property will be useful in the sequel.

Lemma 6.1 ([25]). Let G1 be a finitely generated group, and let α : G1 → G2 be a surjective
homomorphism. Then the induced monomorphism in cohomology, α∗ : H1(G2;C) → H1(G1;C),
takes R1(G2) to R1(G1).

6.2. Resonance schemes. Before proceeding, let us review some basic notions from commuta-
tive algebra and the geometry of schemes, as recounted for instance in [15, 16]. We work over a
polynomial ring S = C[x1, . . . , xn], and denote by V(I) ⊂ Cn the variety defined by an ideal I ⊂ S .

Let M be a finitely generated S -module. Suppose that a minimal primary decomposition of the
annihilator ideal of M is given by

(48) Ann(M) =

p⋂
i=1

Qi.

Let qi =
√

Qi be the corresponding radical ideals (or, associated primes). The varieties V(qi) cut out
by the ideals qi for 1 ≤ i ≤ p form the scheme Spec(S/Ann(M)) associated to M. Geometrically,
this scheme consists of isolated components, which are the irreducible components of the support
variety V(Ann(M)), and of embedded components, which are certain subvarieties of the isolated
components.

We say that the variety V(Ann(M)) is reduced as a scheme if the ideals Qi are radical for 1 ≤
i ≤ p. We also say that V(Ann(M)) is weakly reduced as a scheme if the ideals Qi are radical for
1 ≤ i ≤ k and if qi = m for k + 1 ≤ i ≤ p, where m = 〈x1, . . . , xn〉 is the maximal ideal of S at 0; in
other words, the only possible embedded component is at 0.

Suppose now that A is a connected, locally finite, graded, graded-commutative C-algebra defined
over Q. As shown in [28, Proposition 6.2], there is then a commutator-relators group G such that the



CHEN RANKS AND RESONANCE VARIETIES OF THE UPPER MCCOOL GROUPS 17

algebras H∗(G,C) and A have the same quadratic closure, and hence have the same first resonance
variety.

On the other hand, as proved in [22, Theorem 3.9] (see also [30, 8]), if G is a commutator-relators
group, then R1(G) = V(Ann(B(G))), where recall B(G) := B(h(H∗(G,C))) is the infinitesimal
Alexander invariant of G. Thus, the first resonance variety of the algebra A can be written as

(49) R1(A) = V(Ann(B(A))).

Thus, it is natural to view R1(A) as the set of closed points in the subscheme of Spec(S ) defined
by Ann

(
B(A)), which we call the resonance scheme of A. Moreover, the resonance scheme of A

depends only on the quadratic closure Ā defined in (12), that is, Ann
(
B(A) = Ann

(
B(Ā)).

More generally, for each d ≥ 1, the depth d resonance variety Rd(G) can be viewed as the support
variety of the annihilator of the d-th exterior power of the S -module B(G),

(50) Rd(G) = V
(

Ann
( d∧
B(G)

))
,

see [22, 25]. Hence, we may define the depth d resonance scheme of the graded algebra A as the
scheme defined by the associated primes of the annihilator ideal of

∧d B(G).

6.3. Bounding the resonance variety. The next lemma provides a ‘lower-bound’ for the ideal
Ann(B(A)) and an ‘upper bound’ for the variety R1(A), in the case when the infinitesimal Alexander
invariant of A admits a suitable presentation.

Recall that for a finitely generated S -module M, we let E0(M) be the ideal of maximal minors for
a presentation matrix for M. As is well known, this ideal does not depend on the choice of presenta-
tion S m → S n → M; furthermore, given such a presentation, Ann(M)n ⊆ E0(M) ⊆ Ann(M). In par-
ticular, if M is a cyclic S -module (i.e., it is generated by a single element), then E0(M) = Ann(M).

Lemma 6.2. LetB = B(A) be the infinitesimal Alexander invariant of a graded algebra A as above.
Suppose B admits a block-triangular presentation matrix Ω, with diagonal blocks Ωii for 1 ≤ i ≤ q.
Let Bi denote the S -module with presentation matrix Ωii. Then

(1) E0(B) ⊇
∏q

i=1 E0(Bi).
(2) R1(A) ⊆

⋃q
i=1 V(Ann(Bi)).

(3) Furthermore, if each Bi is a cyclic module, then Ann(B) ⊇
∏q

i=1 Ann(Bi).

Proof. The first claim follows from the standard way of computing determinants of block-triangular
matrices. The second claim follows at once from statement (1) and equation (49). The last claim
follows from statement (1) and the paragraph preceding the lemma. �

6.4. Chen ranks and resonance varieties. Recently, D. Cohen and H. Schenck proved the follow-
ing theorem, which establishes the Chen ranks conjecture from [29] in a wider setting.

A subspace L ⊆ H1(G;C) is said to be p-isotropic (for some p ≥ 0) if the restriction of the
cup product map H1(G;C) ∧ H1(G;C) → H2(G;C) to L ∧ L has rank p. In particular, a subspace
L ⊆ H1(G;C) is 0-isotropic (or simply, isotropic) if the restriction of the cup product map L ∧ L→
H2(G;C) is trivial. Finally, two subspaces U and V of H1(G;C) are said to be projectively disjoint
if U ∩ V = {0}.

Theorem 6.3 ([8]). Let G be a finitely presented, commutator-relators 1-formal group. Assume that
the components of R1(G) are 0-isotropic, projectively disjoint, and weakly reduced as a scheme.
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Then, for all k � 0, the Chen ranks of G are given by

(51) θk(G) =
∑
m≥2

hm(G) · θk(Fm),

where hm(G) is the number of m-dimensional components of R1(G).

In the same paper, Cohen and Schenck showed that the first resonance varieties of the McCool
groups satisfy the hypotheses of Theorem 6.3, and that the Chen ranks of these groups are given by

(52) θk(PΣn) = (k − 1)
(
n
2

)
+ (k2 − 1)

(
n
3

)
, for k � 0.

In the sections that follow, we will compute the first resonance variety R1(PΣ+
n ) and its scheme

structure. Rather surprisingly, the Chen ranks formula (51) does not hold for the groups PΣ+
n with

n ≥ 4. We will show that not all the components of R1(PΣ+
n ) are isotropic, and that R1(PΣ+

n ) is not
weakly reduced as a scheme, as soon as n ≥ 4. Thus, in this range, the upper McCool groups PΣ+

n
do not satisfy all the hypothesis of Theorem 6.3.

7. The first resonance variety of PΣ+
n

In this section, we compute the first resonance varieties of the upper McCool groups and apply
the results to analyze several properties of these groups.

7.1. The first resonance variety of PΣ+
n . We are now ready to describe the first resonance variety

of the upper McCool group PΣ+
n , for all n ≥ 2. Throughout, we will identify H1(PΣ+

n ;C) with the C-
vector space C(n

2), endowed with the basis {ui j | 1 ≤ j < i ≤ n} provided by Theorem 3.2. As before,
xi j will denote the dual coordinate functions. For n = 2, we have that R1(PΣ+

n ) = R1(Z) = {0}.

Theorem 7.1. For each n ≥ 3, the resonance variety R1(PΣ+
n ) decomposes into irreducible compo-

nents as

(53) R1(PΣ+
n ) =

⋃
2≤ j<i≤n

Li j,

where Li j � C
j is the linear subspace of C(n

2) defined by the equations

(54)


xi,l + x j,l = 0, for 1 ≤ l ≤ j − 1;
xi,l = 0 for j + 1 ≤ l ≤ i − 1;
xs,t = 0 for s , i, s , j, and 1 ≤ t < s.

Proof. Fix n ≥ 3, and write L =
⋃

2≤ j<i≤n
Li j. We claim that L = R1(PΣ+

n ). In order to verify the

forward inclusion, we need to check that Li j ⊆ R1(PΣ+
n ) for all i > j. If a ∈ Li j is non-zero, then

the system of linear equations (54) implies that a is of the form

(55) a =

j−1∑
l=1

ail(uil − u jl) + ai jui j.

Using Theorem 3.2, it is easy to check that a · ui j = 0. Hence, from (47), we obtain that Li j ⊆

R1(PΣ+
n ).

For the reverse inclusion, we use the Gröbner basis of the infinitesimal Alexander invariant Bn
provided by Theorem 4.1. For each diagonal vector ~wi jk from Corollary 4.2, the equation ~wi jk = 0
defines a linear space Li jk: the linear entries from~vi jk yield equations of the form xil+x jl+xkl = 0 for



CHEN RANKS AND RESONANCE VARIETIES OF THE UPPER MCCOOL GROUPS 19

1 ≤ l ≤ k − 1, xik + x jk = 0 for 1 ≤ k < j < i ≤ n, and xst = 0 for {s, t} 1 {i, j, k, l} and 1 ≤ l ≤ k − 1,
while the quadratic entries of ~wi jk yield equations of the form xks = 0 for 1 ≤ s ≤ k − 1.

Clearly, Li jk is a subspace of the linear space Li, j, j−1 = Li j defined by equations (54). By Lemma
6.2, we have that R1(PΣ+

n ) ⊆ L, and this establishes the claim that equality (53) holds.
Finally, it is also clear that each linear subspace Li j (2 ≤ j < i ≤ n) is an irreducible variety,

and no Li j is properly included is some distinct Lkl. This shows that (53) is indeed the irreducible
decomposition of R1(PΣ+

n ), thereby completing the proof. �

7.2. Isotropicity. The next theorem lists some of the basic properties of the (first) resonance vari-
eties of the upper McCool groups.

Theorem 7.2. Let Li j (2 ≤ j < i ≤ n) be the irreducible components of R1(PΣ+
n ), the first resonance

variety of the upper McCool group PΣ+
n . Then:

(1) Each Li j is a linear subspace of dimension j, with basis {u jl − uil, ui j | 1 ≤ l ≤ j − 1}.
(2) Li j ∩ Lst = {0} if (i, j) , (s, t).
(3) The subspace Li j is 0-isotropic for j = 2 and

(
j−1
2

)
-isotropic j ≥ 3.

(4) R1(PΣ+
n ) = R1(PΣ+

n+1) ∩ H1(PΣ+
n ;C).

Proof. (1) It follows from (55) that Li j is the linear subspace of C(n
2) with the specified basis.

(2) Using the defining equations (54) for the subspaces Li j and Lst, it is readily seen that these
two subspaces intersect only at {0}.

(3) Consider a subspace Li j as in (1). From Theorem 3.2, we know that (u jl − uil)ui j = 0 and
(u jl − uil)(u jk − uik) , 0 for 1 ≤ l < k ≤ j − 1. If j = 2, the subspace Li2 has basis {u21 − ui1, ui2};
hence, it is 0-isotropic. If j ≥ 3, the image of the cup product map Li j ∧ Li j → H2(PΣ+

n ;C) is a
linear subspace with basis {(u jl − uil)(u jk − uik) | 1 ≤ l < k ≤ j − 1}. Hence, Li j is

(
j−1
2

)
-isotropic.

(4) By Theorem 3.2, we can construct a basis for H1(PΣ+
n+1;C) by taking the union of a basis of

H1(PΣ+
n ;C) with the set {un+1,1, . . . , un+1,n}. By Theorem 7.1, we have that

R1(PΣ+
n ) =

⋃
2≤ j<i≤n

Li j and R1(PΣ+
n+1) =

⋃
2≤ j<i≤n+1

Vi j,

where Li j = Vi j ∩ H1(PΣ+
n ;C) for 2 ≤ j < i ≤ n, and Vn+1, j ∩ H1(PΣ+

n ;C) = {0} for 2 ≤ j ≤ n. The
claim follows. �

7.3. Split monomorphisms. For each n ≥ 1, there is a split injection PΣ+
n → PΣ+

n+1. Furthermore,
the inclusion ι : PΣ+

n ↪→ PΣn is a split monomorphism for n = 3. However, using the first resonance
varieties, we can rule out the existence of a splitting homomorphism for ι when n ≥ 4. We start by
recalling a result of Cohen [7] and Cohen–Schenck [8], based on the computation of the cohomology
ring of PΣn by Jensen–McCammond–Meier from [19].

Theorem 7.3 ([7, 8]). For each n ≥ 2, the first resonance variety of the group PΣn decomposes into
irreducible components as

R1(PΣn) =
⋃

1≤i< j≤n

Ci j ∪
⋃

1≤i< j<k≤n

Ci jk,

where Ci j is the plane defined by the equations xpq = 0 for {p, q} , {i, j} and Ci jk is the 3-
dimensional linear subspace defined by the equations xi j + xk j = x ji + xki = xik + x jk = 0 and
xst = 0 for {s, t} * {i, j, k}. Furthermore, all these components are isotropic.
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We can now answer a question raised by Paolo Bellingeri.

Proposition 7.4. There is no epimorphism from PΣn to PΣ+
n for n ≥ 4. In particular, the inclusion

ι : PΣ+
n → PΣn admits no splitting for n ≥ 4.

Proof. Suppose σ : PΣn � PΣ+
n is an epimorphism. By Lemma 6.1, the epimorphism σ induces a

monomorphism σ∗ : H1(PΣ+
n ;C) ↪→ H1(PΣn;C) which takes R1(PΣ+

n ) to R1(PΣn).
Now, we know from Theorem 7.3 that R1(PΣn) is a union of linear spaces of dimension 2 or 3.

On the other hand, Theorem 7.2 insures that R1(PΣ+
n ) has irreducible components which are linear

spaces of dimension n − 1. Hence, for n ≥ 5, there is no epimorphism from PΣn to PΣ+
n .

For n = 4, Theorem 7.2 also tells us that the irreducible component L43 ⊂ R1(PΣ+
4 ) is not

isotropic. For any a, b ∈ L43 such that a ∪ b , 0, we have that σ∗(a) ∪ σ∗(b) = σ∗(a ∪ b) , 0, by
the injectivity of σ∗. Hence, σ∗ must take the non-isotropic component L43 ⊂ R1(PΣ+

4 ) to a non-
isotropic component of R1(PΣ4). However, all irreducible components of R1(PΣ4) are isotropic
subspaces. This is a contradiction, and so we are done. �

Remark 7.5. The canonical inclusion ι : PΣ+
3 ↪→ PΣ3 does admit a splitting, for instance, the ho-

momorphism σ : PΣ3 ↪→ PΣ+
3 defined by sending {α21, α31, α32, α12, α13, α23} to {α21, α31, α32, α

−1
32 ,

α−1
21 , α

−1
31 }, respectively. The induced homomorphism in first cohomology, σ∗ : H1(PΣ+

3 ,Z) →
H1(PΣ3,Z), sends {u21, u31, u32} to {u21 − u13, u31 − u23, u32 − u12}, respectively; consequently, σ∗

takes R1(PΣ+
3 ) to the linear subspace C123 ⊂ R1(PΣ3).

7.4. Quasi-projectivity. A finitely presented group G is said to be a quasi-projective group if it can
be realized as G = π1(M), where M is a smooth, connected, complex quasi-projective variety. In
1958, J.-P. Serre asked the following question: Which finitely presented groups are quasi-projective?
Combining Theorem B from [14] with Theorem 4.2 from [13], we have the following obstruction
for quasi-projectivity of a 1-formal group.

Theorem 7.6. Let G be a quasi-projective, 1-formal group. Then each positive-dimensional irre-
ducible component of the first resonance variety R1(G) is a linear subspace of H1(G;C) which is
either 0-isotropic and of dimension at least 2, or 1-isotropic and of dimension of at least 4.

For instance, the pure braid groups Pn are both quasi-projective and 1-formal, and all the com-
ponents of R1(Pn) are 0-isotropic, 2-dimensional subspaces, for n ≥ 3. On the other hand, as an
application of this theorem and our own results, we obtain the following corollary.

Proposition 7.7. For each n ≥ 4, the upper McCool groups PΣ+
n is not quasi-projective.

Proof. Since n ≥ 4, Theorem 7.2 implies that R1(PΣ+
n ) contains a component L43 which is a 3-

dimensional, 1-isotropic linear subspace of H1(PΣ+
n ). On the other hand, by Theorem 3.1, all the

upper McCool groups PΣ+
n are 1-formal. Hence, by Theorem 7.6, the group PΣ+

n is not quasi-
projective. �

Remark 7.8. The same yoga as in the previous corollary cannot be applied to the full McCool
groups PΣn, since, as we saw in Theorem 7.3, the components of R1(PΣn) are isotropic and of
dimension 2 and 3. To the best of the authors’ knowledge, it is unknown whether or not the groups
PΣn are quasi-projective for n ≥ 3.

Remark 7.9. Comparing the resonance varieties of PΣ+
n with those of Pn and Πn yields another

proof of Corollary 5.3. Indeed, for n ≥ 4, all irreducible components of R1(Pn) and R1(Πn) are
isotropic linear subspaces (of dimension 2, respectively, 2, . . . , n − 1), whereas R1(PΣ+

n ) has non-
isotropic components.
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8. The scheme structure ofR1(PΣ+
n )

In this last section we determine the scheme structure defined by the ideal Ann(B(PΣ+
n )) on the

resonance variety R1(PΣ+
n ).

8.1. Two S -modules and their Hilbert series. We start with some preparation. Let x = {xi j | 1 ≤
j < i ≤ n} be the dual of the standard basis of H1(PΣ+

n ;C), and let S = C[x] be the polynomial ring in
those variables. Recall from Proposition 3.5 that the infinitesimal Alexander invariantBn = B(PΣ+

n )
has a presentation given by Bn = S (n

3)/ im(Ψ), where im(Ψ) is the submodule of S (n
3) generated by

the set B =
⋃

1≤k< j<i≤n Bi jk from Lemma 3.4.
Let B′n be the quotient of the S -module Bn by the submodule generated by the set of monomials

Ei jk := {f := xkp · ri jk | 1 ≤ p ≤ k − 1}. Then B′n has a presentation

(56) B
′
n = S (n

3)/I,

where I is the submodule of S (n
3) generated by the set B′ =

⋃
1≤k< j<i≤n B′i jk and

(57) B′i jk = Bi jk ∪ Ei jk.

Proposition 8.1. The set B′ forms a Gröbner basis for the submodule I.

Proof. Comparing the set Di jk from (33) with the set Ei jk, we see that each element in Di jk is of
the form xklf or x jqf, for some f ∈ Ei jk. In view of step 2 from the proof of Theorem 4.1 given in
Appendix 9, in order to reach the desired conclusion, we only need to check the vanishing of the
S-polynomials S(g, f ) for all f ∈ Ei jk and g ∈ Gg from (74). We have:

S(g1, f) = xkp(−x jk − xl2k) · ri jl2 = −(x jk + xl2k)h(i jl2)
8 ,

S(g2, f) = xkpx jk · ri jl2 = x jkh(i jl2)
8 ,

S(g3, f) = −xkpx jk · ril3 j = −x jkh(il3 j)
8 ,

S(g4, f) = xkpx jk · rl4i j = x jkh(l4i j)
8 ,

where h(∗∗∗)
8 ∈ B∗∗∗ is the corresponding element from Lemma 3.4. Hence, all theseS-polynomials

vanish, and we are done. �

Now choose a basis {ei jkl | 1 ≤ l < k < j < i ≤ n} for the free module S (n
4), and let J be the

submodule of S (n
4) generated by the monomials xstei jkl, where 1 ≤ t < s ≤ n, and (s, t) , (i, j). We

then define an S -module

(58) Kn := S (n
4)/J.

For 3 ≤ j < i ≤ n, let Ki j = S/Ii j, where Ii j is the ideal of S generated by the variables xst with
1 ≤ t < s ≤ n for which (s, t) , (i, j). The S -module Kn can be decomposed as

(59) Kn �
⊕

3≤ j<i≤n

( j−1
2 )⊕
1

Ki j .

Proposition 8.2. For each n ≥ 4, the following equalities hold:

Hilb(Kn, t) =

(
n
4

)
1

1 − t
and Hilb(B′n, t) =

n−1∑
s=2

(
s
2

)
1

(1 − t)n−s+1 .
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Proof. The S -module Kn decomposes as the direct sum of
(

j−1
2

)
copies of sub-modules Ki j = S/Ii j

for 3 ≤ j < i ≤ n, where Ii j is the ideal generated by the variables xst with 1 ≤ t < s ≤ n and
(s, t) , (i, j). Since Hilb(Ki j, t) = 1/(1 − t), the first equality readily follows.

To prove the second equality, recall first that B′n = S (n
3)/I, with I the ideal with Gröbner basis

B′ =
⋃

1≤k< j<i≤n B′i jk, where the set B′i jk is given in (57). It is readily seen that

(60) in�(B′i jk) =
{
xkl · ri jk, xik · ri jk, xil · ri jk, xab · ri jk, {a, b} 1 {i, j, k, l}, 1 ≤ l ≤ k − 1

}
.

The claimed expression for the Hilbert series ofB′n now follows as in the proof of Theorem 5.1. �

8.2. A short exact sequence of S -modules. In order to understand the annihilator ideal of the
infinitesimal Alexander invariant Bn, we approximate it by a simpler quotient module, B′n, and then
study the kernel of the projection map, Kn.

Theorem 8.3. For each n ≥ 4, there is a short exact sequence of graded S -modules,

0 // Kn // Bn
p // B′n

// 0 ,

Proof. From the definition of the modules B′n and Bn, there is a canonical projection p : Bn � B
′
n.

Let us verify the claim that ker(p) = Kn. Consider the sequence

(61) S (n
4) φ // Bn

p // B′n
// 0 .

Choose a basis {ei jkl | 1 ≤ l < k < j < i ≤ n} for the free module S (n
4), and let the morphism φ

be defined by φ(ei jkl) = xklri jk. We then have ker(p) = im(φ), so the above sequence is exact in the
middle. Hence we have a short exact sequence of S -modules,

(62) 0 // S (n
4)/ ker(φ)

φ̄ // Bn
p // B′n

// 0 .

In view of the Hilbert series computations from Proposition 8.2 and Theorem 5.1, we infer that
Hilb(S (n

4)/ ker(φ), t) = Hilb(Kn, t).
Using the Gröbner basis G for im(Ψ) from Theorem 4.1, it is easy to check that φ(J) is included

in the submodule of S (n
3) generated by G . Hence, we have that J ⊆ ker(φ) and there is a canonical

surjection Kn � S (n
4)/ ker(φ). Since both S -modules have the same Hilbert series, we conclude that

Kn � S (n
4)/ ker(φ). This completes the proof. �

The next following proposition details the relationship between the supports of the S -modules
Kn, Bn, and B′n.

Proposition 8.4. For each n ≥ 4, we have that V(Ann(Kn)) ⊆ V(Ann(Bn)) = V(Ann(B′n)).

Proof. Let us start by noting that

(63) Ann(Kn) = Ann
( ⊕

3≤ j<i≤n

( j−1
2 )⊕
1

Ki j

)
=

⋂
3≤ j<i≤n

Ann(Kkl) =
⋂

3≤ j<i≤n

Ii j .

Hence, V(Ann(Kn)) is a union of lines V(Ii j) defined by equations xst = 0 for 1 ≤ t < s ≤ n and
(s, t) , (i, j).

Now let B′n(i jk) be the quotient of B′n by the ideal generated by {rstl | (s, t, l) , (i, j, k)}. We then
have V(Ann(B′n(i jk))) ⊆ V(Ann(B′n)). With the help of Lemma 3.3, direct computation shows that
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the variety V(Ann(B′n(i jk))) is the 2-plane Pi jk defined by the equations xik + x jk = 0 and xst = 0
for {s, t} < {i, j, k}.

The short exact sequence from Theorem 8.3 implies that

(64) V(Ann(Bn)) = V(Ann(B′n)) ∪ V(Ann(Kn)).

Using (63), we see that V(Ann(Kn)) ⊆ V(Ann(Bn)) and

V(Ann(Kn)) ⊆
⋃

1≤k< j<i≤n

V(Ann(B′n(i jk))) ⊆ V(Ann(B′n)).

Therefore, V(Ann(Bn)) = V(Ann(B′n)), thereby completing the proof. �

8.3. Resonance scheme structure. We now analyze the scheme structure of the annihilator ideals
of the modules Kn and B′n defined above.

Theorem 8.5. The resonance schemes defined by Ann(Kn) and Ann(B′n) are reduced.

Proof. From (63), it is clear that Ann(Kn) is reduced. So we are left with proving the second
assertion. Let Qi j be the ideal generated by the linear forms xil + x jl, xir, and xst, where 1 ≤ l ≤ j−1,
j + 1 ≤ r ≤ i − 1, s , i, and s , j, 1 ≤ t < s. Clearly, each Qi j is a prime ideal. From (49) and
Theorem 7.1, we infer that the set of minimal primes of Bn is {Qi j | 2 ≤ j < i ≤ n}.

By Proposition 8.4, we have that V(Ann(Bn)) = V(Ann(B′n)). Therefore, the set of minimal
primes of B′n coincides with the set of minimal primes of Bn, and so

(65) Ann(B′n) ⊆
⋂

2≤ j<i≤n

Qi j.

Applying Lemma 6.2 to the S -module B′n, we infer that the product of the ideals Qi j from above
is contained in Ann(B′n). Since the sum of those ideals is S , we conclude that

(66)
⋂

2≤ j<i≤n

Qi j =
∏

2≤ j<i≤n

Qi j ⊆ Ann(B′n).

Hence, the annihilator of B′n has primary decomposition

(67) Ann(B′n) =
⋂

2≤ j<i≤n

Qi j,

with each Qi j a prime ideal. This completes the claim that Ann(B′n) is reduced. �

We are now ready to describe the scheme structure of the first resonance variety R1(PΣ+
n ).

Theorem 8.6. The resonance scheme of the upper McCool group PΣ+
n defined by the ideal Ann(Bn)

consists of the isolated components Li j with 2 ≤ j < i ≤ n listed in Theorem 7.2, together with 1-
dimensional, embedded components L′i j ⊂ Li j defined by the equations xst = 0 for 1 ≤ t < s ≤ n
and (s, t) , (i, j), for all 3 ≤ j < i ≤ n.

Proof. Recall from Theorem 8.3 that we have a short exact sequence 0 → Kn → Bn → B
′
n → 0.

As a consequence, we have inclusions of sets of associated primes,

(68) Ass(Kn) ⊆ Ass(Bn) ⊆ Ass(B′n) ∪ Ass(Kn).

On the other hand, Theorems 7.1 and 8.5 imply that Ass(B′n) ⊆ Ass(Bn). Combining this inclu-
sion with (68), we find that

(69) Ass(Bn) = Ass(B′n) ∪ Ass(Kn).
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Hence, the isolated components of the resonance scheme are the varieties associated to the asso-
ciated primes of B′n, while the embedded components are the varieties associated to the associated
primes of Kn, i.e., the set of primes Ii j (with duplicates removed). This completes the proof. �

As a quick application of this theorem, we obtain the following corollary.

Corollary 8.7. For each n ≥ 4, the first resonance variety R1(PΣ+
n ) is not weakly reduced as a

scheme.

Example 8.8. By Theorem 8.6, the resonance scheme of PΣ+
4 contains the isolated components L32,

L42 and L43, and the embedded component L′43. Moreover, from the presentation of B4 = B(PΣ+
4 )

given in (29), we find that a primary ideal corresponding to L′43 in the primary decomposition of
Ann(B4) is

J43 = ideal(x41 + x31 + x21, x31x21, x32x21, x42x21, x42x31 + x32x31, x42x32, x2
21, x

2
31, x

2
32, x

2
42),

with radical ideal
√

J43 = ideal(x21, x31, x32, x41, x42).

8.4. Higher depth resonance. Recall from Theorem 7.2 that each isolated component of the scheme
defined by Ann(Bn) is a linear subspace Li j spanned by the set {u jl−uil, ui j | 1 ≤ l ≤ j−1}. By The-
orem 8.6, if j ≥ 3, this linear space contains an embedded component, which is the 1-dimensional
linear subspace L′i j spanned by the vector ui j. The relationship between the isolated components
and the embedded components of the resonance scheme Ann(Bn) can then be described as

(70) L′i j =
{
a ∈ Li j | a ∪ b = 0, for all b ∈ Li j

}
.

In other words, L′i j is the maximal subspace of Li j which is perpendicular to Li j, with respect to the
cup-product map on H1(PΣ+

n ,C).
As another application, we obtain some partial information on the higher-depth resonance vari-

eties of the upper McCool groups PΣ+
n .

Proposition 8.9. For all d ≥ 2, the following inclusion holds:

(71) Rd(PΣ+
n ) ⊇

⋃
d+1≤ j<i≤n

L′i j .

Proof. Let W ⊂ H1(PΣ+
n ,C) be the ( j − 1)-dimensional linear subspace spanned by {uik − u jk | 1 ≤

k < j < i ≤ n}. By Theorem 3.2, we have that ui j(uik − u jk) = 0. Therefore, by (46), ui j ∈ Rd(PΣ+
n )

for d ≤ j − 1. Hence, L′i j = span{ui j} is included in Rd(PΣ+
n ) for d + 1 ≤ j < i ≤ n. �

Remark 8.10. It seems reasonable to expect that the depth-d resonance varieties of PΣ+
n have a

similar decomposition into irreducible components as those in depth-1. More precisely, we conjec-
ture that inclusion (71) holds as equality for d ≥ 2, and gives the decomposition into irreducible
components of the resonance varieties Rd(PΣ+

n ). Furthermore, we expect that these varieties are
reduced as schemes for all d ≥ 2. We have verified that this conjecture holds for n ≤ 5, as well as
for n = 6 and d = 2.

9. Appendix: Proof of Theorem 4.1

Let Ψ : S m → S (n
3) be the S -linear map from Proposition 3.5. We know from Lemma 3.4 that the

S -module im(Ψ) is generated by the set B =
⋃

1≤k< j<i≤n Bi jk, where Bi jk consists of the elements
from (26). Let G =

⋃
1≤k< j<i≤n(Bi jk ∪ Di jk), where Di jk is given in (33). Our task is to show that

the set G is a Gröbner basis for im(Ψ). We do this in two steps.
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Step 1. We first show that each set Di jk is included in im(Ψ). Using the description of the sets Bi jl
and Bikp from Lemma 3.4, we see that for 1 ≤ p ≤ l < k and 1 ≤ q ≤ k, the elementsf1 := (−x jl − xkl) · ri jk + x jk · ri jl

f2 := x jl · ri jk + xik · ri jl
f3 := −xkp · ri jk + xi j · rikp

f4 := xkp · ri jl

f5 := x jq · rikp .

are in B ⊂ im(Ψ). Direct computation shows that

(72)

xklxkp · ri jk = (xik + x jk)f4 − xkp(f1 + f2)
x jqxkp · ri jk = xi jf5 − x jpf3 ,

from which we conclude that indeed Di jk ⊂ im(Ψ).

Step 2. We now show that all S-polynomials between pairs of elements of G vanish. Clearly, S-
polynomials of elements whose initial terms contain distinct basis elements of (I2)∗ ⊗ S vanish;
thus, we only need to calculate the S-polynomials of pairs of elements from Gi jk = Bi jk ∪Di jk, for
1 ≤ k < j < i ≤ n. To start with, note that the subset

(73) Gh := {h1,h2,h3,h4,h5,h6,h7,h8,h9,h0} ⊂ Gi jk

only contains elements of the form p · ri jk, where p ∈ S . Thus, it is easy to check the vanishing of
all S-polynomials of pairs of elements from this subset. Next, we consider the subset

(74) Gg := {g1, g2, g3, g4} ⊂ Gi jk,

and check the vanishing of the polynomials S(g, h) for all g ∈ Gg and h ∈ Gh. To make this process
easier to follow, we set up some notation. In each S-polynomial S(g, h), an item will be underlined
if it can be written as p · b where p ∈ S , b ∈ G , and in�(p · b) ≺ LCM(in�(g), in�(h)). We use ‘· · · ’
to replace the underlined items in the previous step.

S(g1,h1) = −xkl1(x jk + xl2k) · ri jl2 − x jl2(xil1 + x jl1) · ri jk

= · · · − (xil1 + x jl1)g1 − (xil1 + x jl1)(x jk + xl2k) · ri jl2

= · · · − (xil1 + x jl1)g1 − (x jk + xl2k)h(i jl2)
1 + x jkxl2l1 · ri jl2 + xl2kxl2l1 · ri jl2

S(g1,h2) = −x2
jk · ri jl2 − x jkxl2k · ri jl2 − x jl2 xik · ri jk

= · · · − x2
jk · ri jl2 − xikg1 − xik(x jk + xl2k) · ri jl2

= · · · − xikg1 − (x jk + xl2k)h(i jl2)
1 + 2x jkxl2k · ri jl2 + x2

l2k · ri jl2

S(g1,h3) = −xl2kx jk · ri jl2 − xl2kxl2k · ri jl2

S(g1,h4) = −xl3k(x jk + xl2k) · ri jl2

S(g1,h5) = −xl3 j(x jk + xl2k) · ri jl2

S(g1,h6) = −xl4k(x jk + xl2k) · ri jl2

S(g1,h7) = −xl4 j(x jk + xl2k) · ri jl2

S(g1,h8) = −xst(x jk + xl2k) · ri jl2

S(g1,h9) = −xklxkp(x jk + xl2k) · ri jl2

S(g1,h0) = −x jqxkp(x jk + xl2k) · ri jl2
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S(g2,h1) = xkl1 x jk · ri jl2 − xil2(xil1 + x jl1) · ri jk = · · · − (xil1 + x jl1)(g2 − x jk · ri jl2)

= · · · − (xil1 + x jl1)g2 + x jkh(i jl2)
1 − x jkxl2l1 · ri jl2

S(g2,h2) = x jkx jk · ri jl2 − xil2 xik · ri jk = x jkx jk · ri jl2 − (xikg2 − xikx jk · ri jl2)

= x jkh(i jl2)
1 − x jkxl2k · ri jl2 − xikg2

S(g2,h3) = xl2kx jk · ri jl2

S(g2,h4) = xl3kx jk · ri jl2

S(g2,h5) = xl3 jx jk · ri jl2

S(g2,h6) = xl4kx jk · ri jl2

S(g2,h7) = xl4 jx jk · ri jl2

S(g2,h8) = xst x jk · ri jl2

S(g2,h9) = xklxkpx jk · ri jl2

S(g2,h0) = x jqxkpx jk · ri jl2

S(g3,h1) = −xkl1 x jk · ril3 j − xil3(xil1 + x jl1) · ri jk = · · · − (xil1 + x jl1)(g3 + x jk · ril3 j)

= · · · − (xil1 + x jl1)g3 − x jkh(il3 j)
1 + x jkxl3l1 · ril3 j

S(g3,h2) = −x2
jk · ril3 j − xil3 xik · ri jk = · · · − xik(g3 + x jk · ril3 j)

= · · · − xikg3 − x jkh(il3 j)
1 + xl3kx jk · ril3 j + x2

jk · ril3 j

S(g3,h3) = −xl2kx jk · ril3 j

S(g3,h4) = −xl3kx jk · ril3 j

S(g3,h5) = −xl3 jx jk · ril3 j

S(g3,h6) = −xl4kx jk · ril3 j

S(g3,h7) = −xl4 jx jk · ril3 j

S(g3,h8) = −xst x jk · ril3 j

S(g3,h9) = −xklxkpx jk · ril3 j

S(g3,h0) = −x jqxkpx jk · ril3 j

S(g4,h1) = xkl1 x jk · rl4i j − xl4i(xil1 + x jl1) · ri jk

= · · · − (xil1 + x jl1)g4 + xil1 x jk · rl4i j + x jl1 x jk · rl4i j

S(g4,h2) = x2
jk · rl4i j − xl4ixik · ri jk = · · · − xikg4 + xikx jk · rl4i j

S(g4,h3) = xl2kx jk · rl4i j

S(g4,h4) = xl3kx jk · rl4i j

S(g4,h5) = xl3 jx jk · rl4i j

S(g4,h6) = xl4kx jk · rl4i j = x jkh(l4i j)
1 − x jkxik · rl4i j − x jkx jk · rl4i j
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S(g4,h7) = xl4 jx jk · rl4i j = x jkh(l4i j)
2 − xi jx jk · rl4i j

S(g4,h8) = xst x jk · rl4i j =


x jkh(l4i j)

1 − x jkxit · rl4i j − x jkx jt · rl4i j, for s = l4
x jkg(l4i j)

4 − x jkxi j · rsl4i for t = l4
xst x jk · rl4i j otherwise

S(g4,h9) = xklxkpx jk · rl4i j

S(g4,h0) = x jqxkpx jk · rl4i j

Next, we check the vanishing of the S-polynomials of pairs of elements in Gg.

S(g1, g2) = −xil2(x jk + xl2k) · ri jl2 − x jl2 x jk · ri jl2

= −(x jk + xl2k)h(i jl2)
2 + x jl2 xl2k · ri jl2

S(g1, g3) = −xil3(x jk + xl2k) · ri jl2 + x jl2 x jk · ril3 j

= −(x jk + xl2k)g(i jl2)
3 − xl2kx jl2 · ril3 j

S(g1, g4) = −xl4i(x jk + xl2k) · ri jl2 − x jl2 x jk · rl4i j

= −(x jk + xl2k)g(i jl2)
4 + xl2kx jl2 · rl4i j

S(g2, g3) = xil3 x jk · ri jl2 + xil2 x jk · ril3 j

= x jkg(i jl2)
3 + x jk(xil2 + x jl2) · ril3 j

= x jkg(i jl2)
3 + x jkh(il3 j)

1 − xl3l2 x jk · ril3 j

S(g2, g4) = xl4ix jk · ri jl2 − xil2 x jk · rl4i j

= x jkg(i jl2)
4 − x jkx jl2 · rl4i j − xil2 x jk · rl4i j

S(g3, g4) = −xl4ix jk · ril3 j − xil3 x jk · rl4i j

= −x jkg(il3 j)
4 + x jkxl3 j · rl4il3 − xil3 x jk · rl4i j

Finally, suppose that 1 ≤ v1 < k < v2 < j < v3 < i < v4 ≤ n and v∗ < l∗ for ∗ = 1, 2, 3, 4. We
check the vanishing of the remaining S-polynomials between elements in Gg.

S(g1, g̃1) = −x jv2 x jk · ri jl2 − x jv2 xl2k · ri jl2 + x jl2 x jk · ri jv2 + x jl2 xv2k · ri jv2

= · · · − x jv2 x jk · ri jl2 + x jk(g(i jv2)
1 + x jv2 · ri jl2 + xl2v2 · ri jl2)

= · · · + x jkg(i jv2)
1 + x jkxl2v2 · ri jl2

S(g2, g̃2) = xiv2 x jk · ri jl2 − xil2 x jk · ri jv2

= x jk(xiv2 + x jv2) · ri jl2 − x jkg(i jv2)
2

= x jkh(i jl2)
1 − x jkxl2v2 · ri jl2 − x jkg(i jv2)

2

S(g3, g̃3) = −xiv3 x jk · ril3 j + xil3 x jk · riv3 j

= −x jk(g(il3 j)
2 − xl3 j · ril3v3) + x jk(g(iv3 j)

3 + xv3 j · ril3v3)

= −x jkg(il3 j)
2 + x jkxl3 j · ril3v3 + x jkg(iv3 j)

3 + x jkxv3 j · ril3v3
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S(g4, g̃4) = xv4ix jk · rl4i j − xl4ix jk · rv4i j

Therefore, all the S-polynomials from G vanish, and so G is a Gröbner basis for im(Ψ). This
completes the proof of Theorem 4.1. �
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