Betti numbers of abelian covers

Alex Suciu
Northeastern University
Geometry and Topology Seminar
University of Wisconsin
May 6, 2011

(9) Abelian covers

- A parameter set for abelian covers
- Free abelian covers
- The Dwyer-Fried sets
(2) Characteristic arrangements and Schubert varieties
- Characteristic varieties
- Computing the Ω-invariants
- Characteristic subspace arrangements
- Special Schubert varieties
(3) Resonance varieties and straight spaces
- The Aomoto complex
- Resonance varieties
- Straight spaces
- Ω-invariants of straight spaces

References

囯 S. Papadima and A. Suciu, Bieri-Neumann-Strebel-Renz invariants and homology jumping loci, Proc. London Math. Soc. 100 (2010), no. 3, 795-834.
A. Suciu, Resonance varieties and Dwyer-Fried invariants, to appear in Advanced Studies Pure Math., Kinokuniya, Tokyo, 2011.
A. Suciu, Characteristic varieties and Betti numbers of free abelian covers, preprint 2011.
囯 A. Suciu, Y. Yang, and G. Zhao, Homological finiteness of abelian covers, preprint 2011.

Abelian covers

- Let X be a connected, finite-type CW-complex. We may assume X has a single 0 -cell, call it x_{0}. Set
- $G=\pi_{1}\left(X, x_{0}\right)$.
- $H=G_{\mathrm{ab}}=H_{1}(X, \mathbb{Z})$.
- Let A be a finitely generated abelian group.
- Any epimorphism $\nu: G \rightarrow A$ gives rise to a connected, regular cover, $X^{\nu} \rightarrow X$, with group of deck transformations A.
- Conversely, any conn., regular A-cover $p:\left(Y, y_{0}\right) \rightarrow\left(X, x_{0}\right)$ yields

$$
1 \longrightarrow \pi_{1}\left(Y, y_{0}\right) \xrightarrow{p_{\sharp}} \pi_{1}\left(X, x_{0}\right) \xrightarrow{\nu} A \longrightarrow 1
$$

so that there is an A-equivariant homeomorphism $Y \cong X^{\nu}$.

- Thus, the set of conn., regular A-covers of X can be identified with

$$
\operatorname{Epi}(G, A) / \operatorname{Aut}(A)=\operatorname{Epi}(H, A) / \operatorname{Aut}(A)
$$

Theorem (S.-Yang-Zhao 2011)

There is a bijection

$$
\mathrm{Epi}(H, A) / \operatorname{Aut}(A) \longleftrightarrow \mathrm{GL}_{n}(\mathbb{Z}) \times p \Gamma
$$

where $n=\operatorname{rank} H, r=\operatorname{rank} A$, and

- P is a parabolic subgroup of $\mathrm{GL}_{n}(\mathbb{Z})$.
- $\mathrm{GL}_{n}(\mathbb{Z}) / \mathrm{P}=\mathrm{Gr}_{n-r}\left(\mathbb{Z}^{n}\right)$.
- $\Gamma=\mathrm{Epi}\left(\mathbb{Z}^{n-r} \oplus \operatorname{Tors}(H)\right.$, $\left.\operatorname{Tors}(A)\right) / \operatorname{Aut}(\operatorname{Tors}(A))$ is a finite set.
- $\mathrm{GL}_{n}(\mathbb{Z}) \times_{\mathrm{P}} \Gamma$ is the twisted product under the diagonal P -action.

This bijection depends on a choice of splitting $H \cong \bar{H} \oplus \operatorname{Tors}(H)$, and a choice of basis for $\bar{H}=H / \operatorname{Tors}(H)$.

- Simplest situation is when $A=\mathbb{Z}^{r}$.
- Basic example: the universal cover of the r-torus, $\mathbb{Z}^{r} \rightarrow \mathbb{R}^{r} \rightarrow T^{r}$.
- All conn., regular \mathbb{Z}^{r}-covers of X arise as pull-backs of this cover:

where $f_{\sharp}: \pi_{1}(X) \rightarrow \pi_{1}\left(T^{r}\right)$ realizes the epimorphism $\nu: G \rightarrow \mathbb{Z}^{r}$.
(Note: X^{ν} is the homotopy fiber of f).
- Let $\nu^{*}: \mathbb{Q}^{r} \rightarrow H^{1}(X, \mathbb{Q})=\mathbb{Q}^{n}$. We get:

$$
\left\{\mathbb{Z}^{r} \text {-covers } X^{\nu} \rightarrow X\right\} \longleftrightarrow\left\{r \text {-planes } P_{\nu}:=\operatorname{im}\left(\nu^{*}\right) \text { in } H^{1}(X, \mathbb{Q})\right\}
$$ and so

$$
\operatorname{Epi}\left(H, \mathbb{Z}^{r}\right) / \operatorname{Aut}\left(\mathbb{Z}^{r}\right) \cong \operatorname{Gr}_{n-r}\left(\mathbb{Z}^{n}\right) \cong \operatorname{Gr}_{r}\left(\mathbb{Q}^{n}\right)
$$

The Dwyer-Fried sets

Moving about the parameter space for A-covers, and recording how the Betti numbers of those covers vary leads to:

Definition

The Dwyer-Fried invariants of X are the subsets

$$
\Omega_{A}^{i}(X)=\left\{[\nu] \in \operatorname{Epi}(H, A) / \operatorname{Aut}(A) \mid b_{j}\left(X^{\nu}\right)<\infty, \text { for } j \leq i\right\} .
$$

where, $X^{\nu} \rightarrow X$ is the cover corresponding to $\nu: H \rightarrow A$.
In particular, when $A=\mathbb{Z}^{r}$,

$$
\Omega_{r}^{i}(X)=\left\{P_{\nu} \in \operatorname{Gr}_{r}\left(H^{1}(X, \mathbb{Q})\right) \mid b_{j}\left(X^{\nu}\right)<\infty \text { for } j \leq i\right\},
$$

with the convention that $\Omega_{r}^{i}(X)=\emptyset$ if $r>n=b_{1}(X)$. For a fixed $r>0$, get filtration

$$
\operatorname{Gr}_{r}\left(\mathbb{Q}^{n}\right)=\Omega_{r}^{0}(X) \supseteq \Omega_{r}^{1}(X) \supseteq \Omega_{r}^{2}(X) \supseteq \cdots .
$$

The Ω-sets are homotopy-type invariants of X :

Lemma

Suppose $X \simeq Y$. For each $r>0$, there is an isomorphism $\operatorname{Gr}_{r}\left(H^{1}(Y, \mathbb{Q})\right) \cong \operatorname{Gr}_{r}\left(H^{1}(X, \mathbb{Q})\right)$ sending each subset $\Omega_{r}^{i}(Y)$ bijectively onto $\Omega_{r}^{i}(X)$.

Thus, we may extend the definition of the Ω-sets from spaces to groups, by setting

$$
\Omega_{r}^{i}(G)=\Omega_{r}^{i}(K(G, 1))
$$

Similarly for the sets $\Omega_{A}^{i}(X)$.

- Especially manageable situation: $r=n$, where $n=b_{1}(X)>0$.
- In this case, $\operatorname{Gr}_{n}\left(H^{1}(X, \mathbb{Q})\right)=\{p t\}$.
- This single point corresponds to the maximal free abelian cover, $X^{\alpha} \rightarrow X$, where $\alpha: G \rightarrow \overline{G_{a b}}=\mathbb{Z}^{n}$.
- The sets $\Omega_{n}^{i}(X)$ are then given by

$$
\Omega_{n}^{i}(X)= \begin{cases}\{\text { pt }\} & \text { if } b_{j}\left(X^{\alpha}\right)<\infty \text { for } j \leq i, \\ \emptyset & \text { otherwise } .\end{cases}
$$

Example

Let $X=S^{1} \vee S^{k}$, for some $k>1$. Then $X^{\alpha} \simeq \bigvee_{j \in \mathbb{Z}} S_{j}^{k}$. Thus,

$$
\Omega_{n}^{i}(X)= \begin{cases}\{\mathrm{pt}\} & \text { for } i<k, \\ \emptyset & \text { for } i \geq k .\end{cases}
$$

Comparison diagram

- There is an commutative diagram,

- If $\Omega_{r}^{i}(X)=\emptyset$, then $\Omega_{A}^{i}(X)=\emptyset$.
- The above is a pull-back diagram if and only if:

If X^{ν} is a \mathbb{Z}^{r}-cover with finite Betti numbers up to degree i, then any regular $\operatorname{Tors}(A)$-cover of X^{ν} has the same finiteness property.

Example

Let $X=S^{1} \vee \mathbb{R}^{2}$. Then $G=\mathbb{Z} * \mathbb{Z}_{2}, G_{\mathrm{ab}}=\mathbb{Z} \oplus \mathbb{Z}_{2}$, and

$$
\begin{aligned}
X^{\alpha} & \simeq \bigvee_{j \in \mathbb{Z}} \mathbb{R} \mathbb{P}_{j}^{2} \\
X^{\mathrm{ab}} & \simeq \bigvee_{j \in \mathbb{Z}} S_{j}^{1} \vee \bigvee_{j \in \mathbb{Z}} S_{j}^{2} .
\end{aligned}
$$

Thus, $b_{1}\left(X^{\alpha}\right)=0$, yet $b_{1}\left(X^{\mathrm{ab}}\right)=\infty$. Hence, $\Omega_{1}^{1}(X) \neq \emptyset$, but $\Omega_{\mathbb{Z} \oplus \mathbb{Z}_{2}}^{1}(X)=\emptyset$.

Remark

Finiteness of the Betti numbers of a free abelian cover X^{ν} does not imply finite-generation of the integral homology groups of X^{ν}.
E.g., let K be a knot in S^{3}, with complement $X=S^{3} \backslash K$, infinite cyclic cover X^{ab}, and Alexander polynomial $\Delta_{K} \in \mathbb{Z}\left[t^{ \pm 1}\right]$. Then

$$
H_{1}\left(X^{\mathrm{ab}}, \mathbb{Z}\right)=\mathbb{Z}\left[t^{ \pm 1}\right] /\left(\Delta_{K}\right) .
$$

Hence, $H_{1}\left(X^{\mathrm{ab}}, \mathbb{Q}\right)=\mathbb{Q}^{d}$, where $d=\operatorname{deg} \Delta_{K}$. Thus,

$$
\Omega_{1}^{1}(X)=\{p t\} .
$$

But, if Δ_{K} is not monic, $H_{1}\left(X^{\mathrm{ab}}, \mathbb{Z}\right)$ need not be finitely generated.

Example (Milnor 1968)

Let K be the 5_{2} knot, with Alex polynomial $\Delta_{K}=2 t^{2}-3 t+2$. Then $H_{1}\left(X^{\mathrm{ab}}, \mathbb{Z}\right)=\mathbb{Z}[1 / 2] \oplus \mathbb{Z}[1 / 2]$ is not f .g., though $H_{1}\left(X^{\mathrm{ab}}, \mathbb{Q}\right)=\mathbb{Q} \oplus \mathbb{Q}$.

Characteristic varieties

- Consider the group of complex-valued characters of G,

$$
\widehat{G}=\operatorname{Hom}\left(G, \mathbb{C}^{\times}\right)=H^{1}\left(X, \mathbb{C}^{\times}\right)
$$

- Let $G_{\mathrm{ab}}=G / G^{\prime} \cong H_{1}(X, \mathbb{Z})$ be the abelianization of G. The projection $\mathrm{ab}: G \rightarrow G_{\mathrm{ab}}$ induces an isomorphism $\widehat{G}_{\mathrm{ab}} \xrightarrow{\simeq} \widehat{G}$.
- The identity component, \widehat{G}^{0}, is isomorphic to a complex algebraic torus of dimension $n=\operatorname{rank} G_{a b}$.
- The other connected components are all isomorphic to $\widehat{G}^{0}=\left(\mathbb{C}^{\times}\right)^{n}$, and are indexed by the finite abelian group $\operatorname{Tors}\left(G_{a b}\right)$.
- \widehat{G} parametrizes rank 1 local systems on X :

$$
\rho: G \rightarrow \mathbb{C}^{\times} \quad \rightsquigarrow \quad \mathcal{L}_{\rho}
$$

the complex vector space \mathbb{C}, viewed as a right module over the group ring $\mathbb{Z} G$ via $a \cdot g=\rho(g) a$, for $g \in G$ and $a \in \mathbb{C}$.

The homology groups of X with coefficients in \mathcal{L}_{ρ} are defined as

$$
H_{*}\left(X, \mathcal{L}_{\rho}\right)=H_{*}\left(\mathcal{L}_{\rho} \otimes_{\mathbb{Z} G} C_{\bullet}(\widetilde{X}, \mathbb{Z})\right)
$$

where $C_{\bullet}(\widetilde{X}, \mathbb{Z})$ is the equivariant chain complex of the universal cover of X.

Definition

The characteristic varieties of X are the sets

$$
\mathcal{V}^{i}(X)=\left\{\rho \in \widehat{G} \mid H_{j}\left(X, \mathcal{L}_{\rho}\right) \neq 0, \text { for some } j \leq i\right\}
$$

- Get filtration $\{1\}=\mathcal{V}^{0}(X) \subseteq \mathcal{V}^{1}(X) \subseteq \cdots \subseteq \widehat{G}$.
- Each $\mathcal{V}^{i}(X)$ is a Zariski closed subset of the algebraic group \widehat{G}.
- The characteristic varieties are homotopy-type invariants:

Suppose $X \simeq X^{\prime}$. There is then an isomorphism $\widehat{G^{\prime}} \cong \widehat{G}$, which restricts to isomorphisms $\mathcal{V}^{i}\left(X^{\prime}\right) \cong \mathcal{V}^{i}(X)$.

The characteristic varieties may be reinterpreted as the support varieties for the Alexander invariants of X.

- Let $X^{\mathrm{ab}} \rightarrow X$ be the maximal abelian cover. View $H_{*}\left(X^{\mathrm{ab}}, \mathbb{C}\right)$ as a module over $\mathbb{C}\left[G_{a b}\right]$. Then (Papadima-S. 2010),

$$
\mathcal{V}^{i}(X)=V\left(\operatorname{ann}\left(\bigoplus_{j \leq i} H_{j}\left(X^{\mathrm{ab}}, \mathbb{C}\right)\right)\right)
$$

- Set $\mathcal{W}^{i}(X)=\mathcal{V}^{i}(X) \cap \widehat{G}^{0}$. View $H_{*}\left(X^{\alpha}, \mathbb{C}\right)$ as a module over $\mathbb{C}\left[G_{\alpha}\right] \cong \mathbb{Z}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$, where $n=b_{1}(G)$. Then

$$
\mathcal{W}^{i}(X)=V\left(\operatorname{ann}\left(\bigoplus_{j \leq i} H_{j}\left(X^{\alpha}, \mathbb{C}\right)\right)\right)
$$

Example

Let $L=\left(L_{1}, \ldots, L_{n}\right)$ be a link in S^{3}, with complement $X=S^{3} \backslash \bigcup_{i=1}^{n} L_{i}$ and Alexander polynomial $\Delta_{L}=\Delta_{L}\left(t_{1}, \ldots, t_{n}\right)$. Then

$$
\mathcal{V}^{1}(X)=\left\{z \in\left(\mathbb{C}^{\times}\right)^{n} \mid \Delta_{L}(z)=0\right\} \cup\{1\}
$$

Computing the Ω-invariants

- Given an epimorphism $\nu: G \rightarrow \mathbb{Z}^{r}$, let

$$
\hat{\nu}: \widehat{\mathbb{Z}^{r}} \hookrightarrow \widehat{G}, \quad \hat{\nu}(\rho)(g)=\nu(\rho(g))
$$

be the induced monomorphism between character groups.

- Its image, $\mathbb{T}_{\nu}=\hat{\nu}\left(\widehat{\mathbb{Z}^{r}}\right)$, is a complex algebraic subtorus of \widehat{G}, isomorphic to $\left(\mathbb{C}^{\times}\right)^{r}$.

Theorem (Dwyer-Fried 1987, Papadima-S. 2010)

Let X be a connected $C W$-complex with finite k-skeleton, $G=\pi_{1}(X)$. For an epimorphism $\nu: G \rightarrow \mathbb{Z}^{r}$, the following are equivalent:
(1) The vector space $\bigoplus_{i=0}^{k} H_{i}\left(X^{\nu}, \mathbb{C}\right)$ is finite-dimensional.
(2) The algebraic torus \mathbb{T}_{ν} intersects the variety $\mathcal{W}^{k}(X)$ in only finitely many points.

Let exp: $H^{1}(X, \mathbb{C}) \rightarrow H^{1}\left(X, \mathbb{C}^{\times}\right)$be the coefficient homomorphism induced by the homomorphism $\mathbb{C} \rightarrow \mathbb{C}^{\times}, z \mapsto e^{z}$.

Lemma

Let $\nu: G \rightarrow \mathbb{Z}^{r}$ be an epimorphism. Under the universal coefficient isomorphism $H^{1}\left(X, \mathbb{C}^{\times}\right) \cong \operatorname{Hom}\left(G, \mathbb{C}^{\times}\right)$, the complex r-torus $\exp \left(P_{\nu} \otimes \mathbb{C}\right)$ corresponds to $\mathbb{T}_{\nu}=\hat{\nu}\left(\mathbb{Z}^{r}\right)$.

Thus, we may reinterpret the Ω-invariants, as follows:

Theorem

$$
\Omega_{r}^{i}(X)=\left\{P \in \operatorname{Gr}_{r}\left(H^{1}(X, \mathbb{Q})\right) \mid \operatorname{dim}\left(\exp (P \otimes \mathbb{C}) \cap \mathcal{W}^{i}(X)\right)=0\right\} .
$$

More generally,

Theorem (S.-Yang-Zhao 2011)

$$
\Omega_{A}^{i}(X)=\left\{[\nu] \in \operatorname{Epi}(H, A) / \operatorname{Aut}(A) \mid \operatorname{im}(\hat{\nu}) \cap \mathcal{V}^{i}(X) \text { is finite }\right\} .
$$

Corollary

Suppose $\mathcal{W}^{i}(X)$ is finite. Then $\Omega_{r}^{i}(X)=\operatorname{Gr}_{r}\left(H^{1}(X, \mathbb{Q})\right), \quad \forall r \leq b_{1}(X)$.

Example

Let M be a nilmanifold. By (Macinic-Papadima 2009): $\mathcal{W}^{i}(M)=\{1\}$, for all $i \geq 0$. Hence,

$$
\Omega_{r}^{i}(M)=\operatorname{Gr}_{r}\left(\mathbb{Q}^{n}\right), \quad \forall i \geq 0, r \leq n=b_{1}(M) .
$$

Example

Let X be the complement of a knot in $S^{m}, m \geq 3$. Then

$$
\Omega_{1}^{i}(X)=\{\mathrm{pt}\}, \quad \forall i \geq 0 .
$$

Corollary

Let $n=b_{1}(X)$. Suppose $\mathcal{W}^{i}(X)$ is infinite, for some $i>0$. Then $\Omega_{n}^{q}(X)=\emptyset$, for all $q \geq i$.

Example

Let S_{g} be a Riemann surface of genus $g>1$. Then

$$
\begin{array}{ll}
\Omega_{r}^{i}\left(S_{g}\right)=\emptyset, & \text { for all } i, r \geq 1 \\
\Omega_{r}^{n}\left(S_{g_{1}} \times \cdots \times S_{g_{n}}\right)=\emptyset, & \text { for all } r \geq 1
\end{array}
$$

Example

Let $Y_{m}=\bigvee^{m} S^{1}$ be a wedge of m circles, $m>1$. Then

$$
\begin{array}{ll}
\Omega_{r}^{i}\left(Y_{m}\right)=\emptyset, & \text { for all } i, r \geq \\
\Omega_{r}^{n}\left(Y_{m_{1}} \times \cdots \times Y_{m_{n}}\right)=\emptyset, & \text { for all } r \geq 1
\end{array}
$$

Tangent cones

Let $W=V(I)$ be a Zariski closed subset in $\left(\mathbb{C}^{\times}\right)^{n}$.

Definition

- The tangent cone at 1 to W :

$$
\mathrm{TC}_{1}(W)=V(\mathrm{in}(I))
$$

- The exponential tangent cone at 1 to W :

$$
\tau_{1}(W)=\left\{z \in \mathbb{C}^{n} \mid \exp (\lambda z) \in W, \forall \lambda \in \mathbb{C}\right\}
$$

Both types of tangent cones

- are homogeneous subvarieties of \mathbb{C}^{n};
- are non-empty iff $1 \in W$;
- depend only on the analytic germ of W at 1 ;
- commute with finite unions.

Moreover,

- τ_{1} commutes with (arbitrary) intersections;
- $\tau_{1}(W) \subseteq \mathrm{TC}_{1}(W)$
- = if all irred components of W are subtori
- \neq in general
- (Dimca-Papadima-S. 2009) $\tau_{1}(W)$ is a finite union of rationally defined linear subspaces of \mathbb{C}^{n}.

Characteristic subspace arrangements

Set $n=b_{1}(X)$, and identify $H^{1}(X, \mathbb{C})=\mathbb{C}^{n}$ and $H^{1}\left(X, \mathbb{C}^{\times}\right)^{0}=\left(\mathbb{C}^{\times}\right)^{n}$.

Definition

The i-th characteristic arrangement of X, denoted $\mathcal{C}_{i}(X)$, is the subspace arrangement in $H^{1}(X, \mathbb{Q})$ whose complexified union is the exponential tangent cone to $\mathcal{W}^{i}(X)$:

$$
\tau_{1}\left(\mathcal{W}^{i}(X)\right)=\bigcup_{L \in \mathcal{C}_{i}(X)} L \otimes \mathbb{C} .
$$

- We get a sequence $\mathcal{C}_{0}(X), \mathcal{C}_{1}(X), \ldots$ of rational subspace arrangements, all lying in $H^{1}(X, \mathbb{Q})=\mathbb{Q}^{n}$.
- The arrangements $\mathcal{C}_{i}(X)$ depend only on the homotopy type of X.

Theorem

$$
\Omega_{r}^{i}(X) \subseteq\left(\bigcup_{L \in \mathcal{C}_{i}(X)}\left\{P \in \operatorname{Gr}_{r}\left(H^{1}(X, \mathbb{Q})\right) \mid P \cap L \neq\{0\}\right\}\right)^{c} .
$$

Proof.

Fix an r-plane $P \in \operatorname{Gr}_{r}\left(H^{1}(X, \mathbb{Q})\right)$, and let $T=\exp (P \otimes \mathbb{C})$. Then:

$$
\begin{aligned}
P \in \Omega_{r}^{i}(X) & \Longleftrightarrow T \cap \mathcal{W}^{i}(X) \text { is finite } \\
& \Longleftrightarrow \tau_{1}\left(T \cap \mathcal{W}^{i}(X)\right)=\{0\} \\
& \Longleftrightarrow(P \otimes \mathbb{C}) \cap \tau_{1}\left(\mathcal{W}^{i}(X)\right)=\{0\} \\
& \Longleftrightarrow P \cap L=\{0\}, \text { for each } L \in \mathcal{C}_{i}(X),
\end{aligned}
$$

- For "straight" spaces, the inclusion holds as an equality.
- If $r=1$, the inclusion always holds as an equality.
- In general, though, the inclusion is strict. E.g., there exist finitely presented groups G for which $\Omega_{2}^{1}(G)$ is not open.

Example

Let $G=\left\langle x_{1}, x_{2}, x_{3} \mid\left[x_{1}^{2}, x_{2}\right],\left[x_{1}, x_{3}\right], x_{1}\left[x_{2}, x_{3}\right] x_{1}^{-1}\left[x_{2}, x_{3}\right]\right\rangle$. Then $G_{a b}=\mathbb{Z}^{3}$, and

$$
\mathcal{V}^{1}(G)=\{1\} \cup\left\{t \in\left(\mathbb{C}^{\times}\right)^{3} \mid t_{1}=-1\right\}
$$

Let $T=\left(\mathbb{C}^{\times}\right)^{2}$ be an algebraic 2-torus in $\left(\mathbb{C}^{\times}\right)^{3}$. Then

$$
T \cap \mathcal{V}^{1}(G)= \begin{cases}\{1\} & \text { if } T=\left\{t_{1}=1\right\} \\ \mathbb{C}^{\times} & \text {otherwise }\end{cases}
$$

Thus, $\Omega_{2}^{1}(G)$ consists of a single point in $\operatorname{Gr}_{2}\left(H^{1}(G, \mathbb{Q})\right)=\mathbb{Q} \mathbb{P}^{2}$, and so it's not open.

Example

- Let C_{1} be a curve of genus 2 with an elliptic involution σ_{1}.
- Let C_{2} be a curve of genus 3 with a free involution σ_{2}.

Then

- $\Sigma_{1}=C_{1} / \sigma_{1}$ is a curve of genus 1 .
- $\Sigma_{2}=C_{2} / \sigma_{2}$ is a curve of genus 2 .

We let \mathbb{Z}_{2} act freely on the product $C_{1} \times C_{2}$ via the involution $\sigma_{1} \times \sigma_{2}$. The quotient space,

$$
M=\left(C_{1} \times C_{2}\right) / \mathbb{Z}_{2},
$$

is a smooth, minimal, complex projective surface of general type with $p_{g}(M)=q(M)=3$, and $K_{M}^{2}=8$. The projection $\mathrm{pr}_{2}: C_{1} \times C_{2} \rightarrow C_{2}$ induces a smooth fibration,

$$
C_{1} \rightarrow M \rightarrow \Sigma_{2} .
$$

Example (Continued)

Let $\pi=\pi_{1}(M)$. Then $\pi_{\mathrm{ab}}=\mathbb{Z}^{6}, \widehat{\pi}=\left(\mathbb{C}^{\times}\right)^{6}$, and

$$
\mathcal{V}^{1}(\pi)=\left\{t \mid t_{1}=t_{2}=1\right\} \cup\left\{t_{4}=t_{5}=t_{6}=1, t_{3}=-1\right\} .
$$

It follows that $\Omega_{2}^{1}(\pi)$ consists of a single point in $\mathrm{Gr}_{2}\left(\mathbb{Q}^{6}\right)$, corresponding to the plane spanned by the vectors e_{1} and e_{2}. In particular, $\Omega_{2}^{1}(\pi)$ is not open.

Special Schubert varieties

- Let V be a homogeneous variety in \mathbb{k}^{n}. The set

$$
\sigma_{r}(V)=\left\{P \in \operatorname{Gr}_{r}\left(\mathbb{k}^{n}\right) \mid P \cap V \neq\{0\}\right\}
$$

is a Zariski closed subset of $\operatorname{Gr}_{r}\left(\mathbb{K}^{n}\right)$, called the variety of incident r-planes to V.

- When V is a a linear subspace $L \subset \mathbb{k}^{n}$, the variety $\sigma_{r}(L)$ is called the special Schubert variety defined by L.
- If L has codimension d in \mathbb{k}^{n}, then $\sigma_{r}(L)$ has codimension $d-r+1$ in $\operatorname{Gr}_{r}\left(\mathbb{k}^{n}\right)$.

Example

The Grassmannian $\mathrm{Gr}_{2}\left(\mathbb{k}^{4}\right)$ is the hypersurface in $\mathbb{P}\left(\mathbb{k}^{6}\right)$ with equation $p_{12} p_{34}-p_{13} p_{24}+p_{23} p_{14}=0$. Let L be a plane in \mathbb{k}^{4}, represented as the row space of a 2×4 matrix. Then $\sigma_{2}(L)$ is the 3 -fold in $\operatorname{Gr}_{2}\left(\mathbb{k}^{4}\right)$ cut out by the hyperplane

$$
p_{12} L_{34}-p_{13} L_{24}-p_{23} L_{14}+p_{14} L_{23}-p_{24} L_{13}+p_{34} L_{12}=0 .
$$

Theorem

$$
\Omega_{r}^{i}(X) \subseteq \operatorname{Gr}_{r}\left(H^{1}(X, \mathbb{Q})\right) \backslash\left(\bigcup_{L \in \mathcal{C}_{i}(X)} \sigma_{r}(L)\right)
$$

Thus, each set $\Omega_{r}^{i}(X)$ is contained in the complement of a Zariski closed subset of $\operatorname{Gr}_{r}\left(H^{1}(X, \mathbb{Q})\right)$: the union of the special Schubert varieties corresponding to the subspaces comprising $\mathcal{C}_{i}(X)$.

Corollary

Suppose $^{\mathcal{C}_{i}}(X)$ contains a subspace of codimension d. Then $\Omega_{r}^{i}(X)=\emptyset$, for all $r \geq d+1$.

Corollary

Let X^{α} be the maximal free abelian cover of X. If $\tau_{1}\left(\mathcal{W}^{1}(X)\right) \neq\{0\}$, then $b_{1}\left(X^{\alpha}\right)=\infty$.

The Aomoto complex

Consider the cohomology algebra $A=H^{*}(X, \mathbb{C})$, with product operation given by the cup product of cohomology classes.

For each $a \in A^{1}$, we have $a^{2}=0$, by graded-commutativity of the cup product.

Definition

The Aomoto complex of A (with respect to $a \in A^{1}$) is the cochain complex of finite-dimensional, complex vector spaces,

$$
(A, a): A^{0} \xrightarrow{a} A^{1} \xrightarrow{a} A^{2} \xrightarrow{a} \cdots \xrightarrow{a} A^{k},
$$

with differentials given by left-multiplication by a.

Alternative interpretation: Pick a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ for $A^{1}=H^{1}(X, \mathbb{C})$, and let $\left\{x_{1}, \ldots, x_{n}\right\}$ be the Kronecker dual basis for $A_{1}=H_{1}(X, \mathbb{C})$. Identify $\operatorname{Sym}\left(A_{1}\right)$ with $S=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.

Definition

The universal Aomoto complex of A is the cochain complex of free S-modules,

$$
: \cdots \longrightarrow A^{i} \otimes_{\mathbb{C}} S \xrightarrow{d^{i}} A^{i+1} \otimes_{\mathbb{C}} S \xrightarrow{d^{i+1}} A^{i+2} \otimes_{\mathbb{C}} S \longrightarrow \cdots,
$$

where the differentials are defined by $d^{i}(u \otimes 1)=\sum_{j=1}^{n} e_{j} u \otimes x_{j}$ for $u \in A^{i}$, and then extended by S-linearity.

Lemma

The evaluation of the universal Aomoto complex at an element $a \in A^{1}$ coincides with the Aomoto complex (A, a).

Let X be a connected, finite-type CW-complex.
The CW-structure on X is minimal if the number of i-cells of X equals the Betti number $b_{i}(X)$, for every $i \geq 0$.

Equivalently, all boundary maps in $C_{\bullet}(X, \mathbb{Z})$ are zero.

Theorem (Papadima-S. 2010)

If X is a minimal CW-complex, the linearization of the cochain complex $C^{\bullet}\left(X^{\mathrm{ab}}, \mathbb{C}\right)$ coincides with the universal Aomoto complex of $H^{*}(X, \mathbb{C})$.

Resonance varieties

Definition

The resonance varieties of X are the sets

$$
\mathcal{R}^{i}(X)=\left\{a \in A^{1} \mid H^{j}(A, \cdot a) \neq 0, \text { for some } j \leq i\right\},
$$

defined for all integers $0 \leq i \leq k$.

- Get filtration

$$
\{0\}=\mathcal{R}^{0}(X) \subseteq \mathcal{R}^{1}(X) \subseteq \cdots \subseteq \mathcal{R}^{k}(X) \subseteq H^{1}(X, \mathbb{C})=\mathbb{C}^{n}
$$

- Each $\mathcal{R}^{i}(X)$ is a homogeneous algebraic subvariety of \mathbb{C}^{n}.
- These varieties are homotopy-type invariants of X : If $X \simeq Y$, there is an isomorphism $H^{1}(Y, \mathbb{C}) \cong H^{1}(X, \mathbb{C})$ which restricts to isomorphisms $\mathcal{R}^{i}(Y) \cong \mathcal{R}^{i}(X)$, for all $i \geq 0$.
- (Libgober 2002) $\mathrm{TC}_{1}\left(\mathcal{W}^{i}(X)\right) \subseteq \mathcal{R}^{i}(X)$.

Straight spaces

Let X be a connected CW-complex with finite k-skeleton.

Definition

We say X is k-straight if the following conditions hold, for each $i \leq k$:
(1) All positive-dimensional components of $\mathcal{W}^{i}(X)$ are algebraic subtori.
(2) $\mathrm{TC}_{1}\left(\mathcal{W}^{i}(X)\right)=\mathcal{R}^{i}(X)$.

If X is k-straight for all $k \geq 1$, we say X is a straight space.

- The k-straightness property depends only on the homotopy type of a space.
- Hence, we may declare a group G to be k-straight if there is a $K(G, 1)$ which is k-straight; in particular, G must be of type F_{k}.
- X is 1 -straight if and only if $\pi_{1}(X)$ is 1 -straight.

Example

- Let $f \in \mathbb{Z}[t]$ with $f(1)=0$. Then $X_{f}=\left(S^{1} \vee S^{2}\right) \cup_{f} e^{3}$ is minimal.
- $\mathcal{W}^{1}\left(X_{f}\right)=\{1\}, \mathcal{W}^{2}\left(X_{f}\right)=V(f)$: finite subsets of $H^{1}\left(X, \mathbb{C}^{\times}\right)=\mathbb{C}^{\times}$.
- $\mathcal{R}^{1}\left(X_{f}\right)=\{0\}$, and

$$
\mathcal{R}^{2}\left(X_{f}\right)= \begin{cases}\{0\}, & \text { if } f^{\prime}(1) \neq 0, \\ \mathbb{C}, & \text { otherwise } .\end{cases}
$$

- Therefore, X_{f} is always 1 -straight, but

$$
X_{f} \text { is 2-straight } \Longleftrightarrow f^{\prime}(1) \neq 0 .
$$

Proposition

For each $k \geq 2$, there is a minimal CW-complex which has the integral homology of $S^{1} \times S^{k}$ and which is $(k-1)$-straight, but not k-straight.

Alternate description of straightness:

Proposition

The space X is k-straight if and only if the following equalities hold, for all $i \leq k$:

$$
\begin{aligned}
\mathcal{W}^{i}(X) & =\left(\bigcup_{L \in \mathcal{C}_{i}(X)} \exp (L \otimes \mathbb{C})\right) \cup Z_{i} \\
\mathcal{R}^{i}(X) & =\bigcup_{L \in \mathcal{C}_{i}(X)} L \otimes \mathbb{C}
\end{aligned}
$$

for some finite (algebraic) subsets $Z_{i} \subset H^{1}\left(X, \mathbb{C}^{\times}\right)^{0}$.

Corollary

Let X be a k-straight space. Then, for all $i \leq k$,
(1) $\tau_{1}\left(\mathcal{W}^{i}(X)\right)=\mathrm{TC}_{1}\left(\mathcal{W}^{i}(X)\right)=\mathcal{R}^{i}(X)$.
(2) $\mathcal{R}^{i}(X, \mathbb{Q})=\bigcup_{L \in \mathcal{C}_{i}(X)} L$.

In particular, the resonance varieties $\mathcal{R}^{i}(X)$ are unions of rationally defined subspaces.

Example

Let G be the group with generators $x_{1}, x_{2}, x_{3}, x_{4}$ and relators $r_{1}=\left[x_{1}, x_{2}\right], r_{2}=\left[x_{1}, x_{4}\right]\left[x_{2}^{-2}, x_{3}\right], r_{3}=\left[x_{1}^{-1}, x_{3}\right]\left[x_{2}, x_{4}\right]$. Then

$$
\mathcal{R}^{1}(G)=\left\{z \in \mathbb{C}^{4} \mid z_{1}^{2}-2 z_{2}^{2}=0\right\},
$$

which splits into two linear subspaces defined over \mathbb{R}, but not over \mathbb{Q}. Thus, G is not 1 -straight.

Ω-invariants of straight spaces

Theorem

Suppose X is k-straight. Then, for all $i \leq k$ and $r \geq 1$,

$$
\Omega_{r}^{i}(X)=\operatorname{Gr}_{r}\left(H^{1}(X, \mathbb{Q})\right) \backslash \sigma_{r}\left(\mathcal{R}^{i}(X, \mathbb{Q})\right)
$$

In particular, if all components of $\mathcal{R}^{i}(X)$ have the same codimension r, then $\Omega_{r}^{i}(X)$ is the complement of the Chow divisor of $\mathcal{R}^{i}(X, \mathbb{Q})$.

Corollary

Let X be k-straight space, with $b_{1}(X)=n$. Then each set $\Omega_{r}^{i}(X)$ is the complement of a finite union of special Schubert varieties in $\operatorname{Gr}_{r}\left(\mathbb{Q}^{n}\right)$. In particular, $\Omega_{r}^{i}(X)$ is a Zariski open set in $\operatorname{Gr}_{r}\left(\mathbb{Q}^{n}\right)$.

Example

- Let $L=\left(L_{1}, L_{2}\right)$ be a 2-component link in S^{3}, with $\operatorname{lk}\left(L_{1}, L_{2}\right)=1$, and Alexander polynomial $\Delta_{L}\left(t_{1}, t_{2}\right)=t_{1}+t_{1}^{-1}-1$.
- Let X be the complement of L. Then $\mathcal{W}^{1}(X) \subset\left(\mathbb{C}^{\times}\right)^{2}$ is given by

$$
\mathcal{W}^{1}(X)=\{1\} \cup\left\{t \mid t_{1}=e^{\pi i / 3}\right\} \cup\left\{t \mid t_{1}=e^{-\pi i / 3}\right\}
$$

Hence, X is not 1 -straight.

- Since $\mathcal{W}^{1}(X)$ is infinite, we have

$$
\Omega_{2}^{1}(X)=\emptyset .
$$

- On the other hand, \cup_{X} is non-trivial, and so $\mathcal{R}^{1}(X, \mathbb{Q})=\{0\}$. Hence,

$$
\sigma_{2}\left(\mathcal{R}^{1}(X, \mathbb{Q})\right)^{\mathrm{C}}=\{\mathrm{pt}\} .
$$

