Alexander Invariants of Complex Hyperplane Arrangements

with Dan Cohen
May 20, 1997

Let $\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\}$ be an affine arrangement of lines in \mathbb{C}^{2}, transverse to infinity, with vertices $\left\{v_{1}, \ldots, v_{s}\right\}$.

Braid monodromy generators: $\left\{\alpha_{1}, \ldots, \alpha_{s}\right\}$

$$
\alpha_{k}=A_{V_{k}}^{\delta_{k}} \in P_{n}
$$

- $V_{k}=\left\{i_{1}, \ldots, i_{m_{k}}\right\}$ if $v_{k}=H_{i_{1}} \cap \cdots \cap H_{i_{m_{k}}}$
- $A_{V_{k}}$ is the pure braid in P_{n} which performs a full twist on the strands corresponding to V_{k}

$$
v=H_{1} \cap H_{2} \cap H_{3}
$$

$A_{V} \in P_{3}$

- δ_{k} is a pure braid determined by a braided wired diagram, computed directly from a defining polynomial for \mathcal{A}.

The complement of $\mathcal{A}: M=\mathbb{C}^{2} \backslash \cup_{i=1}^{n} H_{i}$
The group of $\mathcal{A}: G=\pi_{1}(M)$

Braid monodromy presentation of G :

$$
\begin{aligned}
G & =G\left(\alpha_{1}, \ldots, \alpha_{s}\right) \\
& =\left\langle t_{1}, \ldots, t_{n} \mid \alpha_{k}\left(t_{i}\right)=t_{i}\right\rangle
\end{aligned}
$$

where $i=1, \ldots, m_{k}-1$ and $k=1, \ldots, s$.

Here, $\alpha_{k} \in P_{n}$ acts on $F_{n}=\left\langle t_{1}, \ldots, t_{n}\right\rangle$ via the Artin representation, by basis-conjugating automorphisms:

$$
\alpha_{k}\left(t_{i}\right)=z_{k, i} \cdot t_{i} \cdot z_{k, i}^{-1}
$$

Remark. The complement M is homotopy equivalent to $K(G)$, the 2-complex modeled on the above presentation.

Abelianization ab $: \pi_{1}(M) \rightarrow H_{1}(M)=\mathbb{Z}^{n}$. Corresponding (maximal abelian) cover:

$$
p: M^{\prime} \rightarrow M
$$

Alexander module: $A=H_{1}\left(M^{\prime}, p^{-1}(*) ; \mathbb{Z}\right)$

Alexander invariant: $B=H_{1}\left(M^{\prime} ; \mathbb{Z}\right)$

- Modules over the group ring $\mathbb{Z} \mathbb{Z}^{n}$, which may be identified with $\Lambda=\mathbb{Z}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$
- Depend only on G (and choice of t_{i}):
$A=\mathbb{Z} \mathbb{Z}^{n} \otimes_{\mathbb{Z} G} I G$, where $I G=\operatorname{ker}(\mathbb{Z} G \xrightarrow{\epsilon} \mathbb{Z})$ is the augmentation ideal
$B=G^{\prime} / G^{\prime \prime}$, with action of $G / G^{\prime}=\mathbb{Z}^{n}$ defined by the (maximal metabelian) extension $1 \rightarrow G^{\prime} / G^{\prime \prime} \rightarrow G / G^{\prime \prime} \rightarrow G / G^{\prime} \rightarrow 1$
- Related by Crowell exact sequence $0 \rightarrow B \rightarrow A \rightarrow I \rightarrow 0$, where $I=I\left(\mathbb{Z}^{n}\right)$

To find presentations for modules A and B, start with standard free Λ-resolution of \mathbb{Z},
$0 \rightarrow C_{n} \xrightarrow{d_{n}} \cdots \rightarrow C_{2} \xrightarrow{d_{2}} C_{1} \xrightarrow{d_{1}} C_{0} \xrightarrow{\epsilon} \mathbb{Z} \rightarrow 0$ where $C_{0}=\wedge, C_{1}=\wedge^{n}, C_{k}=\wedge^{k} C_{1}=\wedge^{\binom{n}{k} \text {, }, ~ \text {, }}$ and $d_{k}\left(e_{J}\right)=\sum_{r=1}^{k}(-1)^{k+r}\left(t_{j_{r}}-1\right) \cdot e_{J \backslash\left\{j_{r}\right\}}$, where $e_{J}=e_{j_{1}} \wedge \cdots \wedge e_{j_{k}}$ if $J=\left\{j_{1}, \ldots, j_{k}\right\}$.

Let $\alpha \in P_{n}$, with $\alpha\left(t_{i}\right)=z_{i} \cdot t_{i} \cdot z_{i}^{-1}$. Consider the group $G=G(\alpha)=\left\langle t_{1}, \ldots, t_{n} \mid\left[z_{i}, t_{i}\right]=1\right\rangle$.

Gassner representation: $\Theta: P_{n} \rightarrow \operatorname{Aut}\left(C_{1}\right)$

$$
\Theta(\alpha)\left(e_{i}\right)=\nabla^{\mathrm{ab}}\left(\alpha\left(t_{i}\right)\right)
$$

where $\nabla(w)=\sum_{j=1}^{n} \frac{\partial w}{\partial t_{j}} e_{j}$ is the Fox gradient.
Define $\Phi(\alpha): C_{1} \rightarrow C_{2}$ by

$$
\Phi(\alpha)\left(e_{i}\right)=\nabla^{\mathrm{ab}}\left(z_{i}\right) \wedge e_{i}
$$

Let $X=K(G)$, and X^{\prime} its max abelian cover. Chain map from $C \bullet\left(X^{\prime}\right)$ to standard res:

$$
\begin{gathered}
C_{1} \xrightarrow{\mathrm{id}-\Theta(\alpha)} C_{1} \xrightarrow{d_{1}} C_{0} \xrightarrow{\epsilon} \mathbb{Z} \longrightarrow 0 \\
\mid \Phi(\alpha) \\
\mid= \\
\hline
\end{gathered}
$$

$C_{3} \xrightarrow{d_{3}} C_{2} \quad \xrightarrow{d_{2}} \quad C_{1} \xrightarrow{d_{1}} C_{0} \xrightarrow{\epsilon} \mathbb{Z} \longrightarrow 0$
Get presentations for Alexander modules of $G=G(\alpha)$:

$$
\begin{gathered}
C_{1} \xrightarrow{\text { id }-\Theta(\alpha)} C_{1} \rightarrow A \rightarrow 0 \\
\left.C_{1} \oplus C_{3} \xrightarrow{(\Phi(\alpha)} d_{3}\right)^{\top} \\
C_{2} \rightarrow B \rightarrow 0
\end{gathered}
$$

E.g.: $V=\left\{i_{1}, \ldots, i_{r}\right\} ; \quad \alpha=A_{V} \in P_{n}$ $G\left(A_{V}\right)=\left\langle t_{1}, \ldots, t_{n} \mid\left[t_{V}, t_{i}\right]=1, i \in V\right\rangle$ where $t_{V}=t_{i_{1}} \cdots t_{i_{r}}$
$\Phi_{V}=\Phi\left(A_{V}\right): C_{1} \rightarrow C_{2}$
$e_{i} \mapsto\left(e_{i_{1}}+t_{i_{1}} e_{i_{2}}+\cdots+t_{i_{1}} \cdots t_{i_{r-1}} e_{i_{r}}\right) \wedge e_{i}$
for $i \in V$
so $\Phi_{V}\left(C_{1}(V)\right) \subset C_{2}(V)$,
where $C_{k}(V)=\operatorname{span}\left\{e_{J} \mid J \subset V\right\}$

Now back to \mathcal{A}, with complement $M=M(\mathcal{A})$, vertex sets $L_{2}(\mathcal{A})=\left\{V_{1}, \ldots, V_{s}\right\}$, braid monodromy generators $\alpha_{k}=A_{V_{k}}^{\delta_{k}}$, and group $G=$ $G\left(\alpha_{1}, \ldots, \alpha_{s}\right)$. Using above techniques, get presentation for $B=B(\mathcal{A})$:

$$
C_{1}^{s} \oplus C_{3} \xrightarrow{\left(\begin{array}{llll}
\Phi_{V_{1}}^{\delta_{1}} & \cdots & \Phi_{V_{s}}^{\delta_{s}} & d_{3}
\end{array}\right)^{\top}} C_{2} \rightarrow B \rightarrow 0
$$

where

$$
\begin{aligned}
& \Phi_{V}^{\delta}=\Phi\left(A_{V}^{\delta}\right)=\Theta_{2}(\delta) \circ \Phi_{V} \circ \Theta\left(\delta^{-1}\right): C_{1} \rightarrow C_{2} \\
& \Theta_{2}(\delta)=\Theta(\delta) \wedge \Theta(\delta): C_{2} \rightarrow C_{2}
\end{aligned}
$$

Theorem. The Alexander invariant of an arrangement \mathcal{A} has presentation

$$
K_{1} \xrightarrow{\Delta} K_{0} \rightarrow B(\mathcal{A}) \rightarrow 0,
$$

where $K_{1}=\oplus_{k=1}^{s} C_{1}\left(V_{k}^{\prime}\right) \oplus C_{3}, K_{0}=C_{2}$.
This pres. has $\binom{n}{2}$ generators and $b_{2}(M)+\binom{n}{3}$ relations. If \mathcal{A} is a complexified real arrangement, may further simplify to $\binom{n}{2}-b_{2}(M)$ generators, and $\binom{n}{3}$ relations.

We now relate the Alexander invariant, $B(\mathcal{A})$, to a (coarse) combinatorial Alexander invariant, $B^{\mathrm{C}}(\mathcal{A})$, determined by $L(\mathcal{A})$ (in fact, by the number and multiplicities of the elements of $L_{2}(\mathcal{A})$).

For $V \in L_{2}(\mathcal{A})$, consider the "vertex group"

$$
\begin{aligned}
G_{V} & =G\left(\left\{A_{V}, A_{i, j}| |\{i, j\} \cap V \mid \leq 1\right\}\right) \\
& \left.=\left\langle t_{i}\right|\left[t_{V}, t_{i}\right]=1 \text { if } i \in V,\left[t_{j}, t_{i}\right]=1 \text { if }\{i, j\} \not \subset V\right\rangle
\end{aligned}
$$

We write down an explicit free resolution of $B_{V}=B\left(G_{V}\right)$,
$\cdots \rightarrow C_{2}\left(V^{\prime}\right) \wedge C_{2} \xrightarrow{\Delta_{i}^{2}} C_{2}\left(V^{\prime}\right) \wedge C_{1} \xrightarrow{\Delta_{V}} C_{2}\left(V^{\prime}\right) \rightarrow B_{V} \rightarrow 0$,
and a chain map $\Psi_{V, \bullet}: C_{\bullet} \rightarrow C_{2}\left(V^{\prime}\right) \wedge C_{\bullet}-2$.
Let $B^{\complement}(\mathcal{A})=\oplus_{V \in L_{2}(\mathcal{A})} B_{V}$.
By taking direct sums, get a free resolution of $B^{\text {c }}$, and a chain map from the standard resolution to this resolution:

$$
\begin{gathered}
\cdots \rightarrow L_{2} \xrightarrow{D_{2}} L_{1} \xrightarrow{D_{1}} L_{0} \rightarrow B^{\text {C }} \rightarrow 0 \\
\psi_{\bullet}: C \bullet \rightarrow L_{\bullet}-2
\end{gathered}
$$

Theorem. There exists a chain map Υ_{\bullet} from the presentation $K_{\bullet} \rightarrow B(\mathcal{A})$ to the resolution $L \bullet \rightarrow B^{\text {С }}(\mathcal{A})$,

$\ldots \rightarrow L_{2} \xrightarrow{D_{2}} L_{1} \xrightarrow{D_{1}} L_{0} \longrightarrow B^{\mathrm{c}} \longrightarrow 0$, given by $\Upsilon_{0}=\Psi_{2}, \quad \Upsilon_{1}(x, y)=\Gamma(x)+\Psi_{3}(y)$. Furthermore, the resulting map $\Pi: B \rightarrow B^{C}$ is surjective.

Let $\widehat{B}=\lim _{\leftrightarrows} B / I^{k} B$ be the I-adic completion.
Theorem. The chain map $\widehat{\gamma}_{\bullet}: \widehat{K}_{\bullet} \rightarrow \widehat{L}_{\bullet}$ induces an isomorphism $\widehat{B} \xrightarrow{\sim} \widehat{B}^{\text {C }}$ if and only if the map $\widehat{\Psi}_{3}: \widehat{C}_{3} \rightarrow \widehat{L}_{1}$ is surjective.

Let G be a finitely presented group. LCS:

$$
G_{1}=G, \ldots, G_{k+1}=\left[G_{k}, G\right], \ldots
$$

The Chen groups of G are the LCS quotients of the maximal metabelian quotient $G / G^{\prime \prime}$:

$$
\frac{\left(G / G^{\prime \prime}\right)_{k}}{\left(G / G^{\prime \prime}\right)_{k+1}}
$$

They are finitely generated abelian groups, of rank θ_{k}. (If ϕ_{k} is the rank of the $k^{\text {th }}$ LCS quotient of G itself, then $\phi_{k}=\theta_{k}$ for $k \leq 3$, and $\phi_{k} \geq \theta_{k}$ for $k>3$.)

Assume G / G^{\prime} is torsion free. The Chen groups of G are determined by the Alexander invariant $B=B(G)$-in fact, by the associated graded module of its completion (Massey):

$$
\frac{\left(G / G^{\prime \prime}\right)_{k}}{\left(G / G^{\prime \prime}\right)_{k+1}}=\frac{I^{k-2} B}{I^{k-1} B}=\frac{\mathfrak{m}^{k-2} \widehat{B}}{\mathfrak{m}^{k-1} \widehat{B}}
$$

Starting with a presentation for B, and using a Groebner basis algorithm to find a presentation for gr \widehat{B}, one computes the Chen ranks $\theta_{k}(G)$ as the coefficients of the Hilbert series for $\operatorname{gr} \widehat{B}$.

Given an arrangement \mathcal{A}, let $\theta_{k}(\mathcal{A})=\theta_{k}(G(\mathcal{A}))$ be its Chen ranks. For $k \geq 2$, define the (coarse) combinatorial Chen ranks of \mathcal{A} by

$$
\begin{aligned}
\theta_{k}^{\subset}(\mathcal{A}) & :=\sum_{V \in L_{2}(\mathcal{A})} \theta_{k}\left(G_{V}\right) \\
& =(k-1) \cdot \sum_{r \geq 3} c_{r}\binom{k+r-3}{k} \\
\text { where } c_{r}= & \#\left\{V \in L_{2}(\mathcal{A})| | V \mid=r\right\} .
\end{aligned}
$$

As a corollary to previous theorems, we get a combinatorial lower bound for Chen ranks:

$$
\theta_{k}(\mathcal{A}) \geq \theta_{k}^{\subset}(\mathcal{A})
$$

Remark. As shown by Falk, the ranks of the LCS quotients of $G(\mathcal{A})$ are combinatorial, and satisfy analogous lower bounds: $\phi_{k}(\mathcal{A}) \geq$ $\phi_{k}^{\subset}(\mathcal{A})=\sum_{V \in L_{2}(\mathcal{A})} \phi_{k}\left(G_{V}\right)$.

Let $\hat{\epsilon}: \hat{\Lambda} \rightarrow \mathbb{Z}$ be the augmentation map. If $\widehat{F}=\widehat{\wedge}^{p}$ is a free module, denote its image under $\hat{\epsilon}$ by $\bar{F}=\mathbb{Z}^{p}$.

Theorem. The rank of

$$
\bar{\Psi}_{3}: \bar{C}_{3} \rightarrow \bar{L}_{1}=\bigoplus_{V \in L_{2}(\mathcal{A})} \bar{C}_{2}\left(V^{\prime}\right) \wedge \bar{C}_{1}
$$

is combinatorially determined.

The rank of the third Chen group of \mathcal{A} is given by the combinatorial formula

$$
\theta_{3}(\mathcal{A})=\operatorname{rank}\left(\operatorname{coker} \bar{\Psi}_{3}\right)+\theta_{3}^{\mathrm{C}}(\mathcal{A})
$$

If $\bar{\Psi}_{3}$ is surjective, then $\widehat{B} \cong \widehat{B}^{c}=\oplus_{V} \widehat{B}_{V}$, and the ranks of the Chen groups of \mathcal{A} are given by the combinatorial formula

$$
\theta_{k}(\mathcal{A})=\theta_{k}^{\subset}(\mathcal{A})
$$

Example: The Pappus 9_{3} configurations
\mathcal{P}_{1} : realization of Pappus configuration $\left(9_{3}\right)_{1}$ \mathcal{P}_{2} : realization of Pappus configuration $\left(9_{3}\right)_{2}$

The combinatorial distinction between these two arrangements is detected by the maps $\bar{\Psi}_{3}\left(\mathcal{P}_{k}\right): \mathbb{Z}^{84} \rightarrow \mathbb{Z}^{63}$.

- The map $\bar{\Psi}_{3}\left(\mathcal{P}_{2}\right)$ is surjective, and so the module $\widehat{B}\left(\mathcal{P}_{2}\right)$ decomposes as a direct sum. We get:

$$
\theta_{k}\left(\mathcal{P}_{2}\right)=9(k-1) \text { for } k \geq 2
$$

- The map $\bar{\Psi}_{3}\left(\mathcal{P}_{1}\right)$ is not surjective, and $\widehat{B}\left(\mathcal{P}_{1}\right)$ does not decompose. We get:

$$
\begin{aligned}
& \theta_{2}\left(\mathcal{P}_{1}\right)=9 \\
& \theta_{k}\left(\mathcal{P}_{1}\right)=10(k-1) \text { for } k \geq 3 .
\end{aligned}
$$

