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Let A = {Hq,...,Hn} be an affine arrange-
ment of lines in C2, transverse to infinity, with
vertices {v1,...,vs}.

Braid monodromy generators: {aq,...,as}
oL — A?}Z c Pn

° Vk:{il,...,imk} if’l)szilﬂ-"ﬂH'

° Avk is the pure braid in P, which performs
a full twist on the strands corresponding
to Vk

v= HiN HyN Hs Ay € Ps

e 0, is a pure braid determined by a braided
wired diagram, computed directly from a
defining polynomial for A.



The complement of A: M = C?\ U, H;
The group of A: G = w1 (M)

Braid monodromy presentation of G-

G: G(C\fl,...,as)
— <t17° .y tn | Oék(tz) — t’L>

where:=1,.... mp—1and k=1,...,s.

Here, o) € P, acts on F, = (t1,...,tn) Vvia
the Artin representation, by basis-conjugating
automorphisms:

1
o (b)) = 2 - ti - 2y

Remark. The complement M is homotopy
equivalent to K(G), the 2-complex modeled
on the above presentation.



Abelianization ab : mq(M) — H{(M) = 7Z".
Corresponding (maximal abelian) cover:
p: M — M

Alexander module: A = H{(M',p~1(%):2)

Alexander invariant: B = H{(M';7)

e Modules over the group ring ZZ"™, which
may be identified with A = Z[tT1, ... 1]

e Depend only on G (and choice of t;):

A=77"®R7cIG, where IG = ker(ZG = 7)
IS the augmentation ideal

B = G'/G", with action of G/G' = 7"
defined by the (maximal metabelian) ex-
tension 1 - G'/G" - G/G" - G/G" — 1

e Related by Crowell exact sequence
O—+B—A—1-—0, where I =1(Z")



To find presentations for modules A and B,
start with standard free A-resolution of Z,

0= Cn . 020, B0y 5750

where Co = A, C1 = A", C,, = NFCy = AGD.

and dk(ej) — Zle(—l)k_l_r(tjr — 1) "I\ {jr}
where ey =¢€j; N---Nej, it J={J1,---,JL}

1

Let o € Py, with a(t;) = 2;-t; - z; . Consider

the group G = G(a) = {t1,...,tn | [2;,t;] = 1).
Gassner representation: © : P, — Aut(C1)
O (a)(e;) = VP (a(t;))

where V(w) = =1 %ej is the Fox gradient.
J

Define ®(«) : C1 — Co by

() (e;) = V() Aey.



Let X = K(G), and X’ its max abelian cover.
Chain map from Ce(X’) to standard res:

C'1 |d—@(a)> C'1 ﬁ) Ch 7 — 0

o

d d d
03—3>CQ 2, 01—1>OOL>Z—>O

Get presentations for Alexander modules of
G = G(w):

id —0(a)

C1 »(C1 —A— 0

-
(®(e) ds)
Cq1 ¢ C3 »(C> — B — 0

E.g.: V={i1,....0r}; a=Ay € Py,
G(Av) = (t1,...,tn | [tV>ti] =1,:€V)
where ty, =1,
(DV — CD(Av) . Cl — 02
e; > (ej, Ftijei, + -ty - ti _jei) Nej
fori eV

r

so &y (C1(V)) Cc Cx(V),
where Cp(V) =span{e; | J C V}



Now back to A, with complement M = M(A),
vertex sets Lo(A) = {V7,...,Vs}, braid mon-
odromy generators aj = Af};, and group G =
G(aq,...,as). Using above techniques, get
presentation for B = B(A):

((DVl q)(‘sfi d3>T

C{ @ C3 >»Cr» — B — 0,

where
P = P(A) = ©3(8)od,00(57 1) : C1 — C>
©5(0) =) ANO(@0) : Co — Co

Theorem. The Alexander invariant of an ar-
rangement A has presentation

Kiq A) Ko — B(.A) — 0,
where K1 = @221 Cl(Vé) ¢ C3, Kg= 5.

This pres. has (g) generators and bo (M) + (g)
relations. If A is a complexified real arrange-
ment, may further simplify to (g) —by(M) gen-

erators, and (g‘) relations.



We now relate the Alexander invariant, B(A),
to a (coarse) combinatorial Alexander invari-
ant, B¢(A), determined by L(A) (in fact, by
the number and multiplicities of the elements
of LQ(.A))

For V € L>(A), consider the ‘“vertex group”
Gy =G{Av, Aij | {i,7}n V]| <1})

We write down an explicit free resolution of

By = B(Gy),

o= Co(VYNC> 27, Co(VYAC1L 2% Co(V') = By — 0,

and a chain map Wy, : Ce = Co(V') A Ce_2.
Let B*(A) = @y cr,a)Bv-

By taking direct sums, get a free resolution
of B¢, and a chain map from the standard
resolution to this resolution:
D D
---—>L2—2—>L1——1—>L0—>BC—>O

\U. : C. — L._2



Theorem. T here exists a chain map V¢ from
the presentation Ke — B(A) to the resolution
Le — B“(A),

Ki 2 Koy — B — 0

e e

D D
. — Ly =% L; =% Lo — B¢ — 0,

given by To =Wy, Ti(z,y) =T (z)+WV3z(y).
Furthermore, the resulting map N : B — B¢
IS surjective.

Let B =|im B/I*B be the I-adic completion.

Theorem. The chain map Ye : Ke — Le in-
duces an isomorphism B = BC if and only if
the map W3 : C3 — Ly is surjective.



Let G be a finitely presented group. LCS:

GlzG,...,Gk+1: [Gk,G],

The Chen groups of G are the LCS quotients
of the maximal metabelian quotient G/G":

(G/G")y
(G/G") k41
They are finitely generated abelian groups,
of rank 6;. (If ¢, is the rank of the kth LCS

quotient of G itself, then ¢, = 6, for k£ < 3,
and ¢ > 0, for k> 3.)

Assume G/G' is torsion free. The Chen groups
of G are determined by the Alexander invari-
ant B = B(G)—in fact, by the associated
graded module of its completion (Massey):

(G/G”)k B Ik—2p B mk—Qé
(G/GMpy1  ITF-1B  mk-1B

Starting with a presentation for B, and using
a Groebner basis algorithm to find a presen-
tation for gr E, one computes the Chen ranks
0. (G) as the coefficients of the Hilbert series
for gr B.



Given an arrangement A, let 0.(A) = 0,.(G(A))
be its Chen ranks. For k£ > 2, define the
(coarse) combinatorial Chen ranks of A by

0p(A) == > 0,(Gy)
VELQ(.A)
_ (k‘—l)- Zcr(k—l_]:_?))
r>3

where ¢ = #{V € Lo(A) | |V| =r}.

As a corollary to previous theorems, we get a
combinatorial lower bound for Chen ranks:

0 (A) > 0;(A)

Remark. As shown by Falk, the ranks of
the LCS quotients of G(.A) are combinatorial,
and satisfy analogous lower bounds: ¢, (A) >

Qbi(A) — ZV@LQ(A) ?r(Gy).



Let € : A — Z be the augmentation map. If
F = AP is a free module, denote its image
under € by F = 7ZP.

Theorem. T he rank of

Wg, : 63 — fl = @ 62(‘/,) VAN 61
VELQ(.A)
iIs combinatorially determined.

The rank of the third Chen group of A is
given by the combinatorial formula

03(A) = rank(coker W3) + 05(A).

If W3 is surjective, then B = B¢ = &y By,
and the ranks of the Chen groups of A are
given by the combinatorial formula

0, (A) = 05(A).



Example: The Pappus 93 configurations

P1: realization of Pappus configuration (93);
P> realization of Pappus configuration (93)»

The combinatorial distinction between these
two arrangements is detected by the maps
W3 (P) : 284 — 753,

e The map W3(Py) is surjective, and so
the module ]3’(7?2) decomposes as a di-
rect sum. We get:

0,(Ps) = 9(k — 1) for k > 2.

e The map W3(P1) is not surjective, and
B(P1) does not decompose. We get:

0>(P1) =9
0,(P1) = 10(k — 1) for k > 3.



