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OVERVIEW

OVERVIEW

§ The study of analytic germs of representation varieties and
cohomology jump loci is a basic problem in deformation theory
with homological constraints.

§ Building on work of Goldman–Millson [1988], it was shown by
Dimca–Papadima [2014] that the germs at the origin of those loci
are isomorphic to the germs at the origin of infinitesimal jump loci
of a CDGA that is a finite model for the space in question.

§ Budur and Wang [2015] have extended this result away from the
origin, by developing a theory of differential graded Lie algebra
modules which control the corresponding deformation problem.
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OVERVIEW

§ Work of Papadima–S [2017] reveals a surprising connection
between SL2pCq representation varieties of arrangement groups
and the monodromy action on the homology of Milnor fibers of
hyperplane arrangements.

§ On the other hand, the universality theorem of Kapovich and
Millson [1998] shows that SL2pCq representation varieties of Artin
groups may have arbitrarily bad singularities away from 1.

§ This lead us to focus on germs at the origin of such varieties, and
look for explicit descriptions via infinitesimal CDGA methods.
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REPRESENTATION VARIETIES AND FLAT CONNECTIONS REPRESENTATION VARIETIES

REPRESENTATION VARIETIES

§ Let π be a finitely generated group.

§ G be a k-linear algebraic group.

§ The set Hompπ,Gq has a natural structure of an affine variety,
called the G-representation variety of π.

§ Every homomorphism ϕ : π Ñ π1 induces an algebraic morphism,
ϕ! : Hompπ1,Gq Ñ Hompπ,Gq.

§ Example: HompFn,Gq “ Gn.

§ HompZ2,GLk pCqq is irreducible, but not much else is known about
the varieties of commuting matrices, HompZn,GLk pCqq.

§ The varieties Hompπ1pΣgq,Gq are connected if G “ SLk pCq, and
irreducible if G “ GLk pCq.
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REPRESENTATION VARIETIES AND FLAT CONNECTIONS COHOMOLOGY JUMP LOCI

COHOMOLOGY JUMP LOCI

§ Let pX , xq be a pointed, path-connected space, and assume
π “ π1pX , xq is finitely generated.

§ Hompπ,Gq is a parameter space for finite-dimensional local
systems on X of type G.

§ The characteristic varieties of X with respect to a representation
ι : G Ñ GLpV q are the sets

V i
r pX , ιq “ tρ P Hompπ,Gq | dimC H ipX ,Vι˝ρq ě ru.

§ For all i ě 0, these sets form a descending filtration of Hompπ,Gq.

§ The pairs
`

Hompπ,Gq,V i
r pX , ιq

˘

depend only on the homotopy
type of X and on the representation ι.

§ If X is a finite-type CW-complex, and ι is a rational representation,
then the sets V i

r pX , ιq are closed subvarieties of Hompπ,Gq.
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REPRESENTATION VARIETIES AND FLAT CONNECTIONS FLAT CONNECTIONS

FLAT CONNECTIONS

§ The infinitesimal analogue of the G-representation variety is

F pA, gq,

the set of g-valued flat connections on a commutative, differential
graded C-algebra pA.,dq, where g is a Lie algebra.

§ This set consists of all elements ω P A1 b g which satisfy the
Maurer–Cartan equation,

dω ` 1
2 rω, ωs “ 0.

§ If A1 and g are finite dimensional, then F pA, gq is a Zariski-closed
subset of the affine space A1 b g.
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REPRESENTATION VARIETIES AND FLAT CONNECTIONS INFINITESIMAL COHOMOLOGY JUMP LOCI

INFINITESIMAL COHOMOLOGY JUMP LOCI

§ For each ω P FpA, gq, we turn Ab V into a cochain complex,

pAb V ,dωq : A0 b V dω // A1 b V dω // A2 b V dω // ¨ ¨ ¨ ,

using as differential the covariant derivative dω “ d b idV `adω.
(The flatness condition on ω insures that d2

ω “ 0.)

§ The resonance varieties of the CDGA pA.,dq with respect to a
representation θ : gÑ glpV q are the sets

Ri
r pA, θq “ tω P FpA, gq | dimC H ipAb V ,dωq ě ru.

§ For each i ě 0, these sets form a descending filtration of FpA, gq.
§ If A, g, and V are all finite-dimensional, the sets Ri

r pA, θq are
closed subvarieties of FpA, gq.
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ALGEBRAIC MODELS AND GERMS OF JUMP LOCI ALGEBRAIC MODELS FOR SPACES

ALGEBRAIC MODELS FOR SPACES

§ From now on, X will be a connected space having the homotopy
type of a finite CW-complex.

§ Let APLpX q be the Sullivan CDGA of piecewise polynomial C-forms
on X . Then H.pAPLpX qq – H.pX ,Cq.

§ A CDGA pA,dq is a model for X if it may be connected by a zig-zag
of quasi-isomorphisms to APLpX q.

§ A is a finite model if dimC A ă 8 and A is connected.
§ X is formal if pH.pX ,Cq,d “ 0q is a (finite) model for X .

§ E.g.: Compact Kähler manifolds, complements of hyperplane arrangments.

§ Thus, if X is formal, then H.pX ,Cq is a finite model for X .

§ Converse not true. E.g.: all nilmanifolds, solvmanifolds, Sasakian manifolds, smooth
quasi-projective varieties, etc, admit finite models, but many are non-formal.
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ALGEBRAIC MODELS AND GERMS OF JUMP LOCI GERMS OF JUMP LOCI

GERMS OF JUMP LOCI

THEOREM (DIMCA–PAPADIMA 2014)

Suppose X admits a finite CDGA model A. Let ι : G Ñ GLpV q be a
rational representation, and θ : gÑ glpV q its tangential representation.
There is then an analytic isomorphism of germs,

FpA, gqp0q
»
ÝÑ Hompπ1pX q,Gqp1q,

restricting to isomorphisms Ri
r pA, θqp0q

»
ÝÑ V i

r pX , ιqp1q for all i , r .

Rank 1 case:
§ For G “ C˚, the representation variety Hompπ,C˚q “ H1pX ,C˚q is

the character group of π “ π1pX q.
§ For ι : C˚ »

ÝÑ GL1pCq and V “ C, we get the usual characteristic
varieties, V i

r pX q
§ For g “ C, we have FpA, gq – H1pAq. Also, for θ “ idC, we get the

usual resonance varieties Ri
r pAq.
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ALGEBRAIC MODELS AND GERMS OF JUMP LOCI GERMS OF JUMP LOCI

§ The local analytic isomorphism H1pAqp0q
»
ÝÑ Hompπ1pX q,C˚qp1q is

induced by the exponential map H1pX ,Cq Ñ H1pX ,C˚q.

THEOREM (DIMCA–PAPADIMA 2014, MACINIC–PAPADIMA–POPESCU–S. 2017)

If pA,dq is a finite CDGA such that APLpX q » A, then

TC0pRi
r pAqq Ď Ri

r pH
.
pAqq.

Moreover, if pA,dq is rationally defined, with positive weights, and
APLpX q » A over Q, then each Ri

r pAq is a finite union of rationally
defined linear subspaces of H1pAq, and Ri

r pAq Ď Ri
r pH
.
pAqq.

THEOREM (BUDUR–WANG 2017)

If X admits a finite CDGA model A, then all the components of the
characteristic varieties V i

r pX q passing through 1 are algebraic subtori.
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QUASI-KÄHLER MANIFOLDS AND ADMISSIBLE MAPS

§ Let M be a quasi-Kähler manifold, that is, the complement of a
normal crossing divisor D in a compact, connected Kähler
manifold M.

§ Arapura [1997]: there is a finite set EpMq of equivalence classes of
‘admissible’ maps, up to reparametrization in the target.

§ Each such map, f : M Ñ Mf , is regular and surjective, its generic
fiber is connected, and Mf is a smooth complex curve with
χpMf q ă 0. Let f7 : π Ñ πf be the induced homomorphism on π1.

§ Let f0 : M Ñ K pπabf,1q be a classifying map for the projection
abf : π Ñ πabf onto the maximal, torsion-free abelian quotient.

§ Set EpMq :“ EpMq Y tf0u.
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JUMP LOCI OF SMOOTH QUASI-PROJECTIVE VARIETIES RANK 1 JUMP LOCI OF QUASI-PROJECTIVE MANIFOLDS

RANK 1 JUMP LOCI OF QUASI-PROJ MANIFOLDS

THEOREM (ARAPURA 1997)

The correspondence f  f ˚pH1pMf ,C˚qq gives a bijection between the
set EpMq and the set of positive-dimensional irreducible components of
V1

1 pMq passing through the identity of the character group H1pM,C˚q.

THEOREM (BUDUR–WANG 2015)

If M is a smooth quasi-projective variety, then all components of the
characteristic varieties V i

r pMq are torsion-translated algebraic subtori.

THEOREM (DIMCA–PAPADIMA 2014)

Let A be a finite CDGA model with positive weights for M. Then the set
EpMq is in bijection with the set of positive-dimensional, irreducible
components of R1

1pAq Ď H1pAq “ H1pM,Cq via the correspondence
f  f !pH1pMf ,Cqq.
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ORLIK–SOLOMON MODELS

§ Now let M be a smooth, quasi-projective variety. Then M admits a
‘convenient’ compactification, M “ M Y D, where M is a smooth
projective variety, and D is a union of smooth hypersurfaces,
intersecting locally like hyperplanes.

§ For such a compactification, every element of EpMq is represented
by an admissible map, f : M Ñ Mf , which is induced by a regular
morphism of pairs, f̄ : pM,Dq Ñ pM f ,Df q.

§ Work of Morgan, as recently sharpened by Dupont, associates to
these data a bigraded, rationally defined CDGA, A “ OSpM,Dq,
called the Orlik–Solomon model of M.

§ This CDGA is a finite model of M, which is functorial with respect to
regular morphisms of pairs pM,Dq as above.
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PULLBACKS AND TRANSVERSALITY

§ If f : M Ñ Mf is an admissible map, we let Φf : Af Ñ A be the
induced map between OS models, and Φ!

f : FpAf , gq Ñ FpA, gq the
induced morphism between varieties of flat connections.

THEOREM

Let M be a quasi-Kähler manifold, and let f ,g P EpMq be two distinct
admissible maps.

§ If M is a smooth, quasi-projective variety, then

Φ!
fFpAf , gq X Φ!

gFpAg , gq “ t0u.

§ If M is either a compact, connected Kähler manifold or the
complement of a complex hyperplane arrangement, then

f !
7 Hompπf ,Gqp1q X g!

7Hompπg ,Gqp1q “ t1u.
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JUMP LOCI OF SMOOTH QUASI-PROJECTIVE VARIETIES PULLBACKS AND TRANSVERSALITY

§ Let G be a complex linear algebraic group, let ι : G Ñ GLpV q be a
rational representation, and let θ : gÑ glpV q be its tangential
representation. For all r ě 0, we have inclusions

V1
r pπ, ιq Ě

ď

fPEpMq

f !
7V1

r pπf , ιq,

§ For r “ 0 and 1, these inclusions are equivalent to the two
inclusions

Hompπ,Gq Ě abf! Hompπabf,Gq Y
ď

fPEpMq
f !
7 Hompπf ,Gq, (‹)

V1
1 pπ, ιq Ě abf! V1

1 pπabf, ιq Y
ď

fPEpMq
f !
7 Hompπf ,Gq. (‹‹)
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PULLBACKS AND INCLUSIONS

We also have infinitesimal counterparts of inclusions (‹) and (‹‹):

FpA, gq Ě F1pA, gq Y
ď

fPEpMq
Φ!

fFpAf , gq, (:)

R1
1pA, θq Ě ΠpA, θq Y

ď

fPEpMq
Φ!

fFpAf , gq, (;)

where
F1pA, gq “ tη b g P A1 b g | dη “ 0u,

ΠpA, θq “ tη b g P F1pA, gq | det θpgq “ 0u.
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JUMP LOCI OF SMOOTH QUASI-PROJECTIVE VARIETIES PULLBACKS AND EQUALITIES

PULLBACKS AND EQUALITIES

THEOREM A

Let M be quasi-projective manifold with b1pMq ą 0. For an arbitrary
rational representation of G “ SL2pCq or its standard Borel subgroup
Sol2pCq, the following statements are equivalent.

§ Inclusion (‹) becomes an equality near 1.

§ Both (‹) and (‹‹) become equalities near 1.

§ Inclusion (:) is an equality, for some convenient compactification
of M.

§ Both (:) and (;) are equalities, for any convenient compactification
of M.
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IRREDUCIBLE DECOMPOSITIONS

THEOREM B

Suppose the equivalent properties from Theorem A are satisfied.
§ If b1pMf q ‰ b1pMq for all f P EpMq, then we have the following

decompositions into irreducible components of analytic germs:

Hompπ,Gqp1q “ abf! Hompπabf,Gqp1q Y
ď

fPEpMq
f !
7 Hompπf ,Gqp1q,

V1
1 pπ, ιqp1q “ abf! V1

1 pπabf, ιqp1q Y
ď

fPEpMq
f !
7 Hompπf ,Gqp1q,

FpA, gqp0q “ F1pA, gqp0q Y
ď

fPEpMq
Φ!

fFpAf , gqp0q,

R1
1pA, θqp0q “ ΠpA, θqp0q Y

ď

fPEpMq
Φ!

fFpAf , gqp0q.

ALEX SUCIU (NORTHEASTERN) REPRESENTATION VARIETIES & JUMP LOCI MADISON, MARCH 17, 2017 18 / 24



JUMP LOCI OF SMOOTH QUASI-PROJECTIVE VARIETIES IRREDUCIBLE DECOMPOSITIONS

§ If b1pMf q “ b1pMq for some f P EpMq, then we have the following
equalities of irreducible germs:

Hompπ,Gqp1q “ f !
7 Hompπf ,Gqp1q, V1

1 pπ, ιqp1q “ f !
7 Hompπf ,Gqp1q,

FpA, gqp0q “ Φ!
fFpAf , gqp0q, R1

1pA, θqp0q “ Φ!
fFpAf , gqp0q.

§ For any two distinct admissible maps f ,g P EpMq,

f !
7 Hompπf ,Gqp1q X g!

7Hompπg ,Gqp1q “ t1u.

Under our assumptions, this theorem gives a local, more precise and
simple, classification for representations of π into SLp2,Cq, when
compared to the global, more sophisticated classification obtained by
Corlette–Simpson [2008] and Loray–Pereira–Touzet [2016].
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APPLICATIONS

THEOREM

Suppose M is a smooth, quasi-projective variety satisfying one of the
following hypotheses.

§ M is projective.

§ W1H1pMq “ 0.

§ M “ FΓpΣgq is a graphic configuration space of a smooth curve.

§ R1
1pH
.
pMqq “ t0u.

§ M “ Szt0u, where S is a quasi-homogeneous affine surface
having a normal, isolated singularity at 0.

Then, for G “ SL2pCq or Sol2pCq, the equivalent properties from
Theorem A are satisfied, and thus, the conclusions of Theorem B hold.
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RANK GREATER THAN 2

§ Let M “ Szt0u, where S is a quasi-homogeneous affine surface
having a normal, isolated singularity at 0.

§ There is a positive weight Cˆ-action on M with finite isotropy
groups.

§ M{Cˆ “ Σg , where g “ 1
2b1pMq. We will assume that g ą 0.

§ The canonical projection, f : M Ñ M{Cˆ “ Mf , is an admissible
map. Furthermore, EpMq “ H if g “ 1, and EpMq “ tf u if g ą 1.

THEOREM

If G “ SLnpCq with n ě 3, then

Hompπ,Gqp1q Ś abf! Hompπabf,Gqp1q Y
ď

fPEpMq
f !
7 Hompπf ,Gqp1q.
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DEPTH GREATER THAN 1

THEOREM

Let M be a connected, compact Kähler manifold, or the complement of
a complex hyperplane arrangement, and let ι : G Ñ GLpV q be a
rational representation of G “ SL2pCq or Sol2pCq. Suppose there is an
admissible map f : M Ñ Mf such that b1pMq ą b1pMf q. Then

V1
1 pπ, ιqp1q “

ď

fPEpMq

f !
7V1

1 pπf , ιqp1q,

Nevertheless, if there is 0 ‰ v P V G, there is then an r ą 1 such that

V1
r pπ, ιqp1q Ś

ď

fPEpMq

f !
7V1

r pπf , ιqp1q.
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EXAMPLE

Let M “ Σg ˆN, where Σg is a smooth projective curve of genus g ą 1
and N is a projective manifold with b1pNq ą 0. Then the projection
f : M Ñ Σg defines an element f P EpMq with b1pMq ą b1pΣgq.

EXAMPLE

Let A be an arrangement of lines in CP2, with an intersection point of
multiplicity k ě 3. There is then a pencil f : MpAq Ñ MpBq, where B
consists of k points in CP1. If A is not itself a pencil of lines, then
b1pMpAqq ą b1pMpBqq.
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