REPRESENTATION VARIETIES AND COHOMOLOGY JUMP LOCI

Alex Suciu

Northeastern University

Joint work with Stefan Papadima (IMAR) arxiv:1511.08948, 1609.02768, 1702.05661

Singularities in the Midwest, IV University of Wisconsin–Madison March 17, 2017

OVERVIEW

- The study of analytic germs of representation varieties and cohomology jump loci is a basic problem in deformation theory with homological constraints.
- Building on work of Goldman–Millson [1988], it was shown by Dimca–Papadima [2014] that the germs at the origin of those loci are isomorphic to the germs at the origin of infinitesimal jump loci of a CDGA that is a finite model for the space in question.
- Budur and Wang [2015] have extended this result away from the origin, by developing a theory of differential graded Lie algebra modules which control the corresponding deformation problem.

- Work of Papadima–S [2017] reveals a surprising connection between SL₂(C) representation varieties of arrangement groups and the monodromy action on the homology of Milnor fibers of hyperplane arrangements.
- ► On the other hand, the universality theorem of Kapovich and Millson [1998] shows that SL₂(C) representation varieties of Artin groups may have arbitrarily bad singularities away from 1.
- This lead us to focus on germs at the origin of such varieties, and look for explicit descriptions via infinitesimal CDGA methods.

REPRESENTATION VARIETIES

- Let π be a finitely generated group.
- G be a k-linear algebraic group.
- ► The set $Hom(\pi, G)$ has a natural structure of an affine variety, called the *G*-representation variety of π .
- Every homomorphism $\varphi \colon \pi \to \pi'$ induces an algebraic morphism, $\varphi^! \colon \operatorname{Hom}(\pi', G) \to \operatorname{Hom}(\pi, G).$
- Example: $Hom(F_n, G) = G^n$.
- ► Hom(Z², GL_k(C)) is irreducible, but not much else is known about the varieties of commuting matrices, Hom(Zⁿ, GL_k(C)).
- The varieties Hom(π₁(Σ_g), G) are connected if G = SL_k(ℂ), and irreducible if G = GL_k(ℂ).

COHOMOLOGY JUMP LOCI

- Let (X, x) be a pointed, path-connected space, and assume $\pi = \pi_1(X, x)$ is finitely generated.
- Hom(π, G) is a parameter space for finite-dimensional local systems on X of type G.
- The *characteristic varieties* of X with respect to a representation $\iota: G \rightarrow GL(V)$ are the sets

 $\mathcal{V}_{r}^{i}(\boldsymbol{X},\iota) = \{ \rho \in \operatorname{Hom}(\pi, \boldsymbol{G}) \mid \dim_{\mathbb{C}} \mathcal{H}^{i}(\boldsymbol{X}, \boldsymbol{V}_{\iota \circ \rho}) \geq r \}.$

- For all $i \ge 0$, these sets form a descending filtration of Hom (π, G) .
- The pairs (Hom(π, G), Vⁱ_r(X, ι)) depend only on the homotopy type of X and on the representation ι.
- If X is a finite-type CW-complex, and ι is a rational representation, then the sets Vⁱ_r(X, ι) are closed subvarieties of Hom(π, G).

FLAT CONNECTIONS

The infinitesimal analogue of the G-representation variety is

 $F(A, \mathfrak{g}),$

the set of \mathfrak{g} -valued flat connections on a commutative, differential graded \mathbb{C} -algebra (A^{\bullet}, d) , where \mathfrak{g} is a Lie algebra.

 This set consists of all elements ω ∈ A¹ ⊗ g which satisfy the Maurer–Cartan equation,

$$d\omega + \frac{1}{2}[\omega, \omega] = 0.$$

If A¹ and g are finite dimensional, then F(A, g) is a Zariski-closed subset of the affine space A¹ ⊗ g.

INFINITESIMAL COHOMOLOGY JUMP LOCI

▶ For each $\omega \in \mathcal{F}(A, \mathfrak{g})$, we turn $A \otimes V$ into a cochain complex,

$$(\boldsymbol{A} \otimes \boldsymbol{V}, \boldsymbol{d}_{\omega}) \colon \ \boldsymbol{A}^{0} \otimes \boldsymbol{V} \xrightarrow{\boldsymbol{d}_{\omega}} \boldsymbol{A}^{1} \otimes \boldsymbol{V} \xrightarrow{\boldsymbol{d}_{\omega}} \boldsymbol{A}^{2} \otimes \boldsymbol{V} \xrightarrow{\boldsymbol{d}_{\omega}} \cdots,$$

using as differential the covariant derivative $d_{\omega} = d \otimes id_{V} + ad_{\omega}$. (The flatness condition on ω insures that $d_{\omega}^{2} = 0$.)

The resonance varieties of the CDGA (A[•], d) with respect to a representation θ: g → gl(V) are the sets

 $\mathcal{R}_{r}^{i}(\boldsymbol{A},\boldsymbol{\theta}) = \{ \boldsymbol{\omega} \in \mathcal{F}(\boldsymbol{A},\mathfrak{g}) \mid \dim_{\mathbb{C}} \boldsymbol{H}^{i}(\boldsymbol{A} \otimes \boldsymbol{V}, \boldsymbol{d}_{\boldsymbol{\omega}}) \geq r \}.$

- For each $i \ge 0$, these sets form a descending filtration of $\mathcal{F}(A, \mathfrak{g})$.
- If A, g, and V are all finite-dimensional, the sets Rⁱ_r(A, θ) are closed subvarieties of F(A, g).

ALGEBRAIC MODELS FOR SPACES

- From now on, X will be a connected space having the homotopy type of a finite CW-complex.
- Let A_{PL}(X) be the Sullivan CDGA of piecewise polynomial C-forms on X. Then H[•](A_{PL}(X)) ≅ H[•](X, C).
- ► A CDGA (A, d) is a model for X if it may be connected by a zig-zag of quasi-isomorphisms to A_{PL}(X).
- *A* is a *finite* model if $\dim_{\mathbb{C}} A < \infty$ and *A* is connected.
- ▶ X is formal if $(H^{\bullet}(X, \mathbb{C}), d = 0)$ is a (finite) model for X.
 - E.g.: Compact Kähler manifolds, complements of hyperplane arrangments.
- ▶ Thus, if *X* is formal, then $H^{\bullet}(X, \mathbb{C})$ is a finite model for *X*.
 - Converse not true. E.g.: all nilmanifolds, solvmanifolds, Sasakian manifolds, smooth quasi-projective varieties, etc, admit finite models, but many are non-formal.

GERMS OF JUMP LOCI

THEOREM (DIMCA–PAPADIMA 2014)

Suppose X admits a finite CDGA model A. Let $\iota: G \to GL(V)$ be a rational representation, and $\theta: \mathfrak{g} \to \mathfrak{gl}(V)$ its tangential representation. There is then an analytic isomorphism of germs,

 $\mathcal{F}(\boldsymbol{A},\mathfrak{g})_{(0)} \xrightarrow{\simeq} \operatorname{Hom}(\pi_1(\boldsymbol{X}),\boldsymbol{G})_{(1)},$

restricting to isomorphisms $\mathcal{R}^i_r(A,\theta)_{(0)} \xrightarrow{\simeq} \mathcal{V}^i_r(X,\iota)_{(1)}$ for all i, r.

Rank 1 case:

- For G = C^{*}, the representation variety Hom(π, C^{*}) = H¹(X, C^{*}) is the character group of π = π₁(X).
- For *ι*: C* → GL₁(C) and V = C, we get the usual characteristic varieties, Vⁱ_r(X)
- For g = C, we have F(A, g) ≃ H¹(A). Also, for θ = id_C, we get the usual resonance varieties Rⁱ_ℓ(A).

The local analytic isomorphism H¹(A)₍₀₎ → Hom(π₁(X), C*)₍₁₎ is induced by the exponential map H¹(X, C) → H¹(X, C*).

THEOREM (DIMCA–PAPADIMA 2014, MACINIC–PAPADIMA–POPESCU–S. 2017) If (A, d) is a finite CDGA such that $A_{\text{PL}}(X) \simeq A$, then

 $\mathsf{TC}_{0}(\mathcal{R}^{i}_{r}(A)) \subseteq \mathcal{R}^{i}_{r}(H^{\bullet}(A)).$

Moreover, if (A, d) is rationally defined, with positive weights, and $A_{\text{PL}}(X) \simeq A$ over \mathbb{Q} , then each $\mathcal{R}_r^i(A)$ is a finite union of rationally defined linear subspaces of $H^1(A)$, and $\mathcal{R}_r^i(A) \subseteq \mathcal{R}_r^i(H^{\bullet}(A))$.

THEOREM (BUDUR–WANG 2017)

If X admits a finite CDGA model A, then all the components of the characteristic varieties $\mathcal{V}_r^i(X)$ passing through 1 are algebraic subtori.

QUASI-KÄHLER MANIFOLDS AND ADMISSIBLE MAPS

- Let *M* be a quasi-Kähler manifold, that is, the complement of a normal crossing divisor *D* in a compact, connected Kähler manifold *M*.
- Arapura [1997]: there is a finite set $\mathcal{E}(M)$ of equivalence classes of 'admissible' maps, up to reparametrization in the target.
- ► Each such map, $f: M \to M_f$, is regular and surjective, its generic fiber is connected, and M_f is a smooth complex curve with $\chi(M_f) < 0$. Let $f_{\sharp}: \pi \to \pi_f$ be the induced homomorphism on π_1 .
- ► Let $f_0: M \to K(\pi_{abf}, 1)$ be a classifying map for the projection $abf: \pi \to \pi_{abf}$ onto the maximal, torsion-free abelian quotient.
- Set $E(M) := \mathcal{E}(M) \cup \{f_0\}$.

RANK **1** JUMP LOCI OF QUASI-PROJ MANIFOLDS

THEOREM (ARAPURA 1997)

The correspondence $f \rightsquigarrow f^*(H^1(M_f, \mathbb{C}^*))$ gives a bijection between the set $\mathcal{E}(M)$ and the set of positive-dimensional irreducible components of $\mathcal{V}_1^1(M)$ passing through the identity of the character group $H^1(M, \mathbb{C}^*)$.

THEOREM (BUDUR–WANG 2015)

If *M* is a smooth quasi-projective variety, then all components of the characteristic varieties $\mathcal{V}_{r}^{i}(M)$ are torsion-translated algebraic subtori.

THEOREM (DIMCA–PAPADIMA 2014)

Let *A* be a finite CDGA model with positive weights for *M*. Then the set $\mathcal{E}(M)$ is in bijection with the set of positive-dimensional, irreducible components of $\mathcal{R}^1_1(A) \subseteq H^1(A) = H^1(M, \mathbb{C})$ via the correspondence $f \rightsquigarrow f^!(H^1(M_f, \mathbb{C}))$.

ORLIK-SOLOMON MODELS

- ▶ Now let *M* be a smooth, quasi-projective variety. Then *M* admits a 'convenient' compactification, $\overline{M} = M \cup D$, where \overline{M} is a smooth projective variety, and *D* is a union of smooth hypersurfaces, intersecting locally like hyperplanes.
- ▶ For such a compactification, every element of $\mathcal{E}(M)$ is represented by an admissible map, $f: M \to M_f$, which is induced by a regular morphism of pairs, $\overline{f}: (\overline{M}, D) \to (\overline{M}_f, D_f)$.
- ▶ Work of Morgan, as recently sharpened by Dupont, associates to these data a bigraded, rationally defined CDGA, $A = OS(\overline{M}, D)$, called the *Orlik–Solomon model* of *M*.
- ► This CDGA is a finite model of M, which is functorial with respect to regular morphisms of pairs (\overline{M}, D) as above.

PULLBACKS AND TRANSVERSALITY

If f: M → M_f is an admissible map, we let Φ_f: A_f → A be the induced map between OS models, and Φ[!]_f: F(A_f, g) → F(A, g) the induced morphism between varieties of flat connections.

THEOREM

Let *M* be a quasi-Kähler manifold, and let $f, g \in \mathcal{E}(M)$ be two distinct admissible maps.

If M is a smooth, quasi-projective variety, then

 $\Phi_{\textit{f}}^!\mathcal{F}(\textit{A}_{\textit{f}},\mathfrak{g}) \cap \Phi_{\textit{g}}^!\mathcal{F}(\textit{A}_{\textit{g}},\mathfrak{g}) = \{0\}.$

 If M is either a compact, connected Kähler manifold or the complement of a complex hyperplane arrangement, then

 $f^!_{\sharp}\operatorname{Hom}(\pi_f, G)_{(1)} \cap g^!_{\sharp}\operatorname{Hom}(\pi_g, G)_{(1)} = \{1\}.$

▶ Let *G* be a complex linear algebraic group, let ι : *G* → GL(*V*) be a rational representation, and let θ : $\mathfrak{g} \to \mathfrak{gl}(V)$ be its tangential representation. For all $r \ge 0$, we have inclusions

$$\mathcal{V}_r^1(\pi,\iota) \supseteq \bigcup_{f \in E(M)} f^!_{\sharp} \mathcal{V}_r^1(\pi_f,\iota),$$

For r = 0 and 1, these inclusions are equivalent to the two inclusions

$$\operatorname{Hom}(\pi, G) \supseteq \operatorname{abf}^{!} \operatorname{Hom}(\pi_{\operatorname{abf}}, G) \cup \bigcup_{f \in \mathcal{E}(M)} f_{\sharp}^{!} \operatorname{Hom}(\pi_{f}, G), \quad (\star)$$

$$\mathcal{V}_{1}^{1}(\pi,\iota) \supseteq \operatorname{abf}^{!} \mathcal{V}_{1}^{1}(\pi_{\operatorname{abf}},\iota) \cup \bigcup_{f \in \mathcal{E}(M)} f_{\sharp}^{!} \operatorname{Hom}(\pi_{f},G).$$
(**)

PULLBACKS AND INCLUSIONS

We also have infinitesimal counterparts of inclusions (\star) and $(\star\star)$:

$$\mathcal{F}(\boldsymbol{A},\mathfrak{g}) \supseteq \mathcal{F}^{1}(\boldsymbol{A},\mathfrak{g}) \cup \bigcup_{f \in \mathcal{E}(\boldsymbol{M})} \Phi_{f}^{!} \mathcal{F}(\boldsymbol{A}_{f},\mathfrak{g}), \tag{\dagger}$$
$$\mathcal{R}_{1}^{1}(\boldsymbol{A},\theta) \supseteq \Pi(\boldsymbol{A},\theta) \cup \bigcup_{f \in \mathcal{E}(\boldsymbol{M})} \Phi_{f}^{!} \mathcal{F}(\boldsymbol{A}_{f},\mathfrak{g}), \tag{\dagger}$$

where

$$\mathcal{F}^{1}(\boldsymbol{A},\mathfrak{g}) = \{\eta \otimes \boldsymbol{g} \in \boldsymbol{A}^{1} \otimes \mathfrak{g} \mid \boldsymbol{d}\eta = \boldsymbol{0}\},\$$

 $\Pi(\boldsymbol{A},\boldsymbol{\theta}) = \{\eta \otimes \boldsymbol{g} \in \mathcal{F}^{1}(\boldsymbol{A},\mathfrak{g}) \mid \det \boldsymbol{\theta}(\boldsymbol{g}) = \boldsymbol{0}\}.$

PULLBACKS AND EQUALITIES

THEOREM A

Let *M* be quasi-projective manifold with $b_1(M) > 0$. For an arbitrary rational representation of $G = SL_2(\mathbb{C})$ or its standard Borel subgroup $Sol_2(\mathbb{C})$, the following statements are equivalent.

- Inclusion (*) becomes an equality near 1.
- ▶ Both (*) and (**) become equalities near 1.
- Inclusion (†) is an equality, for some convenient compactification of M.
- Both (†) and (‡) are equalities, for any convenient compactification of M.

IRREDUCIBLE DECOMPOSITIONS

THEOREM B

Suppose the equivalent properties from Theorem A are satisfied.

If b₁(M_f) ≠ b₁(M) for all f ∈ E(M), then we have the following decompositions into irreducible components of analytic germs:

$$\operatorname{Hom}(\pi, G)_{(1)} = \operatorname{abf}^{!} \operatorname{Hom}(\pi_{\operatorname{abf}}, G)_{(1)} \cup \bigcup_{f \in \mathcal{E}(M)} f^{!}_{\sharp} \operatorname{Hom}(\pi_{f}, G)_{(1)},$$

$$\mathcal{V}_{1}^{1}(\pi,\iota)_{(1)} = \operatorname{abf}^{!} \mathcal{V}_{1}^{1}(\pi_{\operatorname{abf}},\iota)_{(1)} \cup \bigcup_{f \in \mathcal{E}(M)} f_{\sharp}^{!} \operatorname{Hom}(\pi_{f}, G)_{(1)},$$

$$\mathcal{F}(\boldsymbol{A},\mathfrak{g})_{(0)} = \mathcal{F}^{1}(\boldsymbol{A},\mathfrak{g})_{(0)} \cup \bigcup_{f \in \mathcal{E}(\boldsymbol{M})} \Phi_{f}^{!}\mathcal{F}(\boldsymbol{A}_{f},\mathfrak{g})_{(0)},$$
$$\mathcal{R}_{1}^{1}(\boldsymbol{A},\theta)_{(0)} = \Pi(\boldsymbol{A},\theta)_{(0)} \cup \bigcup_{f \in \mathcal{E}(\boldsymbol{M})} \Phi_{f}^{!}\mathcal{F}(\boldsymbol{A}_{f},\mathfrak{g})_{(0)}.$$

If b₁(M_f) = b₁(M) for some f ∈ E(M), then we have the following equalities of irreducible germs:

 $\operatorname{Hom}(\pi, G)_{(1)} = f_{\sharp}^{!} \operatorname{Hom}(\pi_{f}, G)_{(1)}, \quad \mathcal{V}_{1}^{1}(\pi, \iota)_{(1)} = f_{\sharp}^{!} \operatorname{Hom}(\pi_{f}, G)_{(1)},$

 $\mathcal{F}(\boldsymbol{A},\mathfrak{g})_{(0)} = \Phi_{f}^{!}\mathcal{F}(\boldsymbol{A}_{f},\mathfrak{g})_{(0)}, \quad \mathcal{R}_{1}^{1}(\boldsymbol{A},\theta)_{(0)} = \Phi_{f}^{!}\mathcal{F}(\boldsymbol{A}_{f},\mathfrak{g})_{(0)}.$

For any two distinct admissible maps $f, g \in \mathcal{E}(M)$,

 $f^{!}_{\sharp}\operatorname{Hom}(\pi_{f}, G)_{(1)} \cap g^{!}_{\sharp}\operatorname{Hom}(\pi_{g}, G)_{(1)} = \{1\}.$

Under our assumptions, this theorem gives a local, more precise and simple, classification for representations of π into SL(2, \mathbb{C}), when compared to the global, more sophisticated classification obtained by Corlette–Simpson [2008] and Loray–Pereira–Touzet [2016].

APPLICATIONS

THEOREM

Suppose M is a smooth, quasi-projective variety satisfying one of the following hypotheses.

- M is projective.
- $W_1 H^1(M) = 0.$
- $M = F_{\Gamma}(\Sigma_g)$ is a graphic configuration space of a smooth curve.
- $\bullet \ \mathcal{R}^1_1(H^{\bullet}(M)) = \{0\}.$
- M = S\{0}, where S is a quasi-homogeneous affine surface having a normal, isolated singularity at 0.

Then, for $G = SL_2(\mathbb{C})$ or $Sol_2(\mathbb{C})$, the equivalent properties from Theorem A are satisfied, and thus, the conclusions of Theorem B hold.

RANK GREATER THAN 2

- Let *M* = *S*\{0}, where *S* is a quasi-homogeneous affine surface having a normal, isolated singularity at 0.
- ► There is a positive weight C[×]-action on M with finite isotropy groups.
- $M/\mathbb{C}^{\times} = \Sigma_g$, where $g = \frac{1}{2}b_1(M)$. We will assume that g > 0.
- The canonical projection, f: M → M/C[×] = M_f, is an admissible map. Furthermore, E(M) = Ø if g = 1, and E(M) = {f} if g > 1.

THEOREM

If $G = SL_n(\mathbb{C})$ with $n \ge 3$, then

$$\operatorname{Hom}(\pi, G)_{(1)} \supseteq \operatorname{abf}^{!} \operatorname{Hom}(\pi_{\operatorname{abf}}, G)_{(1)} \cup \bigcup_{f \in \mathcal{E}(M)} f_{\sharp}^{!} \operatorname{Hom}(\pi_{f}, G)_{(1)}.$$

DEPTH GREATER THAN 1

THEOREM

Let M be a connected, compact Kähler manifold, or the complement of a complex hyperplane arrangement, and let $\iota: G \to GL(V)$ be a rational representation of $G = SL_2(\mathbb{C})$ or $Sol_2(\mathbb{C})$. Suppose there is an admissible map $f: M \to M_f$ such that $b_1(M) > b_1(M_f)$. Then

$$\mathcal{V}_{1}^{1}(\pi,\iota)_{(1)} = \bigcup_{f \in E(M)} f_{\sharp}^{!} \mathcal{V}_{1}^{1}(\pi_{f},\iota)_{(1)},$$

Nevertheless, if there is $0 \neq v \in V^G$, there is then an r > 1 such that

$$\mathcal{V}_r^1(\pi,\iota)_{(1)} \supseteq \bigcup_{f \in E(M)} f_{\sharp}^! \mathcal{V}_r^1(\pi_f,\iota)_{(1)}.$$

EXAMPLE

Let $M = \Sigma_g \times N$, where Σ_g is a smooth projective curve of genus g > 1and N is a projective manifold with $b_1(N) > 0$. Then the projection $f: M \to \Sigma_g$ defines an element $f \in \mathcal{E}(M)$ with $b_1(M) > b_1(\Sigma_g)$.

EXAMPLE

Let \mathcal{A} be an arrangement of lines in \mathbb{CP}^2 , with an intersection point of multiplicity $k \ge 3$. There is then a pencil $f: M(\mathcal{A}) \to M(\mathcal{B})$, where \mathcal{B} consists of k points in \mathbb{CP}^1 . If \mathcal{A} is not itself a pencil of lines, then $b_1(M(\mathcal{A})) > b_1(M(\mathcal{B}))$.

REFERENCES

- Stefan Papadima and Alex Suciu, The topology of compact Lie group actions through the lens of finite models, arxiv:1511.08948.
- Stefan Papadima and Alex Suciu, Naturality properties and comparison results for topological and infinitesimal embedded jump loci, arxiv:1609.02768.
- Stefan Papadima and Alex Suciu, Rank two topological and infinitesimal embedded jump loci of quasi-projective manifolds, arxiv:1702.05661.
- Anca Măcinic, Stefan Papadima, Radu Popescu, and Alex Suciu, Flat connections and resonance varieties: from rank one to higher ranks, Trans. Amer. Math. Soc. 369 (2017), no. 2, 1309–1343.