COHOMOLOGY JUMP LOCI IN GEOMETRY AND TOPOLOGY

Alex Suciu

Northeastern University

Donu Arapura's 60th Birthday Conference September 12, 2019

CHARACTERISTIC VARIETIES

- Let X be a connected, finite-type CW-complex. Then $\pi = \pi_1(X, x_0)$ is a finitely presented group, with $\pi_{ab} \cong H_1(X, \mathbb{Z})$.
- The ring $R = \mathbb{C}[\pi_{ab}]$ is the coordinate ring of the character group, $\operatorname{Char}(X) = \operatorname{Hom}(\pi, \mathbb{C}^*) \cong (\mathbb{C}^*)^n \times \operatorname{Tors}(\pi_{ab})$, where $n = b_1(X)$.
- The characteristic varieties of X are the homology jump loci

 $\mathcal{V}_{\boldsymbol{s}}^{i}(\boldsymbol{X}) = \{ \rho \in \operatorname{Char}(\boldsymbol{X}) \mid \dim_{\mathbb{C}} H_{i}(\boldsymbol{X}, \mathbb{C}_{\rho}) \geq \boldsymbol{s} \}.$

- These varieties are homotopy-type invariants of X, with $\mathcal{V}_s^1(X)$ depending only on $\pi = \pi_1(X)$.
- Set $\mathcal{V}_1^1(\pi) := \mathcal{V}_1^1(K(\pi, 1))$; then $\mathcal{V}_1^1(\pi) = \mathcal{V}_1(\pi/\pi'')$.
- The characteristic varieties of a space can be arbitrarily complicated.

COHOMOLOGY JUMP LOCI IN G&T

RESONANCE VARIETIES OF A CDGA

- Let A = (A[•], d) be a commutative, differential graded algebra over a field k of characteristic 0. That is:
 - $A = \bigoplus_{i \ge 0} A^i$, where A^i are k-vector spaces.
 - ▶ The multiplication $: A^i \otimes A^j \to A^{i+j}$ is graded-commutative, i.e., $ab = (-1)^{|a||b|} ba$ for all homogeneous *a* and *b*.
 - ► The differential d: $A^i \rightarrow A^{i+1}$ satisfies the graded Leibnitz rule, i.e., d(*ab*) = d(*a*)*b* + (-1)^{|*a*|}*a*d(*b*).
- We assume $A^0 = \mathbb{k} \cdot 1$ and dim $A^i < \infty$ for all *i*.
- For each $a \in Z^1(A) \cong H^1(A)$, we build a cochain complex,

$$(A^{\bullet}, \delta_a): A^0 \xrightarrow{\delta_a^0} A^1 \xrightarrow{\delta_a^1} A^2 \xrightarrow{\delta_a^2} \cdots,$$

with differentials $\delta_a^i(u) = a \cdot u + d(u)$, for all $u \in A^i$.

• The resonance varieties of *A* are the affine varieties $\mathcal{R}_{s}^{i}(A) = \{a \in H^{1}(A) \mid \dim_{\Bbbk} H^{i}(A^{\bullet}, \delta_{a}) \geq s\}.$

• For a space X as above, set $\mathcal{R}_{s}^{i}(X) := \mathcal{R}_{s}^{i}((H^{\bullet}(X, \mathbb{C}), d = 0)).$

APPLICATIONS OF COHOMOLOGY JUMP LOCI

- Obstructions to formality and (quasi-) projectivity
 - Artin groups, RAAGs, and Bestvina–Brady groups
 - Kähler groups and quasi-projective groups
 - 3-manifold groups
- Homology of finite, regular abelian covers
 - Homology of the Milnor fiber of an arrangement
 - Rational homology of smooth, real toric varieties
- Homological and geometric finiteness of regular abelian covers
 - Bieri–Neumann–Strebel–Renz invariants
 - Dwyer–Fried invariants
- Infinitesimal finiteness obstructions
- Resonance varieties and representations of Lie algebras
 - Homological finiteness in the Johnson filtration
- Lower central series and Chen Lie algebras
 - The resonance–Chen ranks formula

COHOMOLOGY JUMP LOCI IN G&T

ALGEBRAIC MODELS FOR SPACES

- A CDGA map $\varphi: A \to B$ is a *q*-quasi-isomorphism (for some $q \ge 1$) if $\varphi^*: H^{\bullet}(A) \to H^{\bullet}(B)$ is an iso for $\bullet \le q$ and is inj for $\bullet = q + 1$.
- Two CDGAS, *A* and *B*, are (*q*-)equivalent if there is a zig-zag of (*q*-)quasi-isomorphisms connecting *A* to *B*.
- A is (q-)formal if it is (q-)equivalent to $(H^{\bullet}(A), d = 0)$.
- Given any (path-connected) space X, there is an associated Sullivan Q-cdga, A_{PL}(X), such that H[•](A_{PL}(X)) = H[•](X, Q).
- An algebraic (q-)model (over k) for X is a k-cgda (A, d) which is (q-)equivalent to A_{PL}(X) ⊗_Q k.
- If *M* is a smooth manifold, then $\Omega_{dR}(M)$ is a model for *M* (over \mathbb{R}).
- A space X is 1-formal if and only if $\pi = \pi_1(X)$ is 1-formal, i.e., its Malcev Lie algebra, $\mathfrak{m}(\pi) = \operatorname{Prim}(\widehat{\mathbb{Q}\pi})$, is quadratic.

TANGENT CONES

- Let W = V(I), a Zariski closed subset of $(\mathbb{C}^*)^n$.
- The tangent cone at 1 to W is $TC_1(W) = V(in(I))$.
- Let exp: $\mathbb{C}^n \to (\mathbb{C}^*)^n$. The exponential tangent cone at 1 to W is

 $\tau_1(W) = \{ z \in \mathbb{C}^n \mid \exp(\lambda z) \in W, \ \forall \lambda \in \mathbb{C} \}.$

- Both tangent cones are homogeneous subvarieties of Cⁿ; are non-empty iff 1 ∈ W; depend only on the analytic germ of W at 1; commute with finite unions and arbitrary intersections.
- τ₁(W) ⊆ TC₁(W), with = if all irred components of W are subtori, but ≠ in general.
- (Dimca–Papadima–S. 2009) τ₁(W) is a finite union of rationally defined subspaces.

THE TANGENT CONE THEOREM

Let X be a connected CW-complex with finite q-skeleton. Suppose X admits a q-finite q-model A.

THEOREM

For all $i \leq q$ and all s:

- (DPS 2009, Dimca–Papadima 2014) $\mathcal{V}_{s}^{i}(X)_{(1)} \cong \mathcal{R}_{s}^{i}(A)_{(0)}$.
- (Budur–Wang 2017) All the irreducible components of $\mathcal{V}_s^i(X)$ passing through the origin of $\operatorname{Char}(X)$ are algebraic subtori.

Consequently,

$$\tau_1(\mathcal{V}_{\boldsymbol{s}}^i(\boldsymbol{X})) = \mathsf{TC}_1(\mathcal{V}_{\boldsymbol{s}}^i(\boldsymbol{X})) = \mathcal{R}_{\boldsymbol{s}}^i(\boldsymbol{A}).$$

THEOREM (PAPADIMA-S. 2018)

A f.g. group G admits a 1-finite 1-model if and only if the Malcev Lie algebra $\mathfrak{m}(G)$ is the LCS completion of a finitely presented Lie algebra.

- Examples of spaces having finite-type models include: formal spaces, smooth quasi-projective varieties, compact solvmanifolds, Sasakian manifolds, etc.
- Examples of formal spaces:
 - Compact K\u00e4hler manifolds [Deligne-Griffiths-Morgan-Sulivan '75]
 - Complements of complex hyperplane arrangements [Brieskorn '73]
- Examples of 1-formal spaces and groups:
 - Complements of projective hypersurfaces [Kohno '83]
 - Right-angled Artin groups [Notbohm–Ray '05, Papadima–S. '06]
 - Normal projective varieties

- [Arapura–Dimca–Hain '16]
- Every compact Sasakian (2n+1)-manifold is (n-1)-formal.

[Papadima-S. '18]

SMOOTH, QUASI-PROJECTIVE VARIETIES

THEOREM (ARAPURA 1997, ..., BUDUR–WANG 2015)

Let X be a smooth, quasi-projective variety. Then each $\mathcal{V}_s^i(X)$ is a finite union of torsion-translated subtori of $\operatorname{Char}(X)$.

The Alexander polynomial of a f.p. group π is the Laurent polynomial Δ_{π} in $\Lambda := \mathbb{C}[\pi_{ab}/\text{Tors}]$ obtained by taking the gcd of the maximal minors of a presentation matrix for the Λ -module $H_1(\pi, \Lambda)$.

THEOREM (DIMCA-PAPADIMA-S. 2008)

Let π be a quasi-projective group.

- If $b_1(\pi) \neq 2$, then the Newton polytope of Δ_{π} is a line segment.
- If π is a Kähler group, then $\Delta_{\pi} \doteq \text{const.}$

THEOREM (DIMCA–PAPADIMA–S. 2009)

Let X be a smooth, quasi-projective variety. If X is 1-formal, then the (non-zero) irreducible components of $\mathcal{R}^1_1(X)$ are linear subspaces of $H^1(X, \mathbb{C})$ which intersect pairwise only at 0. Moreover:

- Each such component L_α is *p*-isotropic (i.e., the restriction of ∪_X to L_α has rank *p*), with dim L_α ≥ 2*p* + 2, for *p* = *p*(α) ∈ {0, 1}.
- $\mathcal{R}^1_{s}(X) = \{0\} \cup \bigcup_{\alpha: \dim L_{\alpha} > s + p(\alpha)} L_{\alpha}$
- If X is compact, then X is 1-formal, and each L_{α} is 1-isotropic.
- If $W_1(H^1(X, \mathbb{C})) = 0$, then X is 1-formal, and each L_α is 0-isotropic.

An analogous result holds for irreducible normal varieties [Arapura–Dimca–Hain 2016]

ARTIN GROUPS

Let Γ = (V, E) be a finite, simple graph, and let ℓ: E → Z≥2 be an edge-labeling. The associated Artin group:

$$A_{\Gamma,\ell} = \langle v \in V \mid \underbrace{vwv\cdots}_{\ell(e)} = \underbrace{wvw\cdots}_{\ell(e)}, \text{ for } e = \{v, w\} \in E \rangle.$$

• If (Γ, ℓ) is Dynkin diagram of type A_{n-1} with $\ell(\{i, i+1\}) = 3$ and $\ell(\{i, j\}) = 2$ otherwise, then $A_{\Gamma, \ell}$ is the braid group B_n .

• If
$$\ell(e) = 2$$
, for all $e \in E$, then

$$\boldsymbol{A}_{\Gamma} = \langle \boldsymbol{v} \in \mathcal{V} \mid \boldsymbol{v}\boldsymbol{w} = \boldsymbol{w}\boldsymbol{v} \text{ if } \{\boldsymbol{v}, \boldsymbol{w}\} \in \boldsymbol{E} \rangle.$$

is the *right-angled Artin group* associated to Γ .

• $\Gamma \cong \Gamma' \Leftrightarrow A_{\Gamma} \cong A_{\Gamma'}$. [Kim–Makar-Limanov–Neggers–Roush 80 / Droms 87] The corresponding Coxeter group,

$$W_{\Gamma,\ell} = A_{\Gamma,\ell} / \langle v^2 = 1 \mid v \in V \rangle,$$

fits into exact sequence $1 \rightarrow P_{\Gamma,\ell} \rightarrow A_{\Gamma,\ell} \rightarrow W_{\Gamma,\ell} \rightarrow 1$.

THEOREM (BRIESKORN 1971)

If $W_{\Gamma,\ell}$ is finite, then $A_{\Gamma,\ell}$ is quasi-projective.

Idea: let

- $\mathcal{A}_{\Gamma,\ell}$ = reflection arrangement of type $W_{\Gamma,\ell}$ (over \mathbb{C})
- $X_{\Gamma,\ell} = \mathbb{C}^n \setminus \bigcup_{H \in \mathcal{A}_{\Gamma,\ell}} H$, where $n = |\mathcal{A}_{\Gamma,\ell}|$
- $P_{\Gamma,\ell} = \pi_1(X_{\Gamma,\ell})$

then:

$$A_{\Gamma,\ell} = \pi_1(X_{\Gamma,\ell} / W_{\Gamma,\ell}) = \pi_1(\mathbb{C}^n \setminus \{\delta_{\Gamma,\ell} = \mathbf{0}\})$$

THEOREM (KAPOVICH-MILLSON 1998)

There exist infinitely many (Γ, ℓ) such that $A_{\Gamma,\ell}$ is not quasi-projective.

THEOREM (DIMCA–PAPADIMA–S. 2009, ARAPURA–DIMCA–HAIN 2016) *The following are equivalent:*

- $A_{\Gamma} = \pi_1(X)$, for some smooth algebraic variety *X*.
- $A_{\Gamma} = \pi_1(X)$, for some normal algebraic variety X.
- Γ is a complete, multipartite graph, i.e., $\Gamma = \overline{K}_{n_1} * \cdots * \overline{K}_{n_r}$.
- $A_{\Gamma} = F_{n_1} \times \cdots \times F_{n_r}$.

Likewise, the following are equivalent:

- $A_{\Gamma} = \pi_1(X)$, for some smooth, projective variety X.
- $A_{\Gamma} = \pi_1(X)$, for some normal, projective variety X.
- $\Gamma = K_{2r}$
- $A_{\Gamma} = \mathbb{Z}^{2r}$

The quasi-projectivity of arbitrary Artin groups has been further studied by Artal Bartolo, Cogolludo, Matei, and Blasco-García.

3-MANIFOLDS GROUPS

QUESTION (DONALDSON-GOLDMAN 1989)

Which 3-manifold groups are Kähler groups?

Reznikov gave a partial solution in 2002.

THEOREM (DIMCA-S. 2009)

Let π be the fundamental group of a closed 3-manifold. Then π is a Kähler group $\iff \pi$ is a finite subgroup of O(4), acting freely on S³.

Alternative proofs: Kotschick (2012), Biswas-Mj-Seshadri (2012).

THEOREM (FRIEDL-S. 2014)

Let *M* be a 3-manifold with non-empty, toroidal boundary. If $\pi_1(M)$ is a Kähler group, then $M \cong S^1 \times S^1 \times I$.

Generalization by Kotschick: If $\pi_1(M)$ is an infinite Kähler group, then $\pi_1(M)$ is a surface group.

ALEX SUCIU

Idea of proof of [DS09]:

PROPOSITION

Let M be a closed, orientable 3-manifold. Then:

- $H^1(M, \mathbb{C})$ is not 1-isotropic.
- If $b_1(M)$ is even, then $\mathcal{R}^1_1(M) = H^1(M, \mathbb{C})$.

On the other hand, it follows from [DPS 2009] that:

PROPOSITION

Let *M* be a compact Kähler manifold with $b_1(M) \neq 0$. If $\mathcal{R}^1_1(M) = H^1(M, \mathbb{C})$, then $H^1(M, \mathbb{C})$ is 1-isotropic.

But $\pi = \pi_1(M)$, with *M* Kähler $\Rightarrow b_1(\pi)$ even. Thus, if π is both a 3-mfd group and a Kähler group $\Rightarrow b_1(\pi) = 0$. Using work of Fujiwara (1999) and Reznikov (2002) on Kazhdan's property (T), as well as Perelman (2003) $\Rightarrow G$ finite subgroup of O(4).

THEOREM (S. 2018/2019)

Let *M* be a closed, orientable, 3-manifold, with intersection form on $H^1(M, \mathbb{C}) = \mathbb{C}^n$ given by $\mu_M(a \wedge b \wedge c) = \langle a \cup b \cup c, [M] \rangle$. Then:

- If $\operatorname{rank}(\mu_M) = n \ge 3$, then $\mathcal{R}^1_{n-2}(M) = \mathcal{R}^1_{n-1}(M) = \mathcal{R}^1_n(M) = \{0\}$.
- If $n \ge 4$, then dim $\mathcal{R}^1_1(M) \ge \operatorname{null}(\mu_M) \ge 2$.
- If *n* is even, then
 - $\mathcal{R}^1_{2k}(M) = \mathcal{R}^1_{2k+1}(M).$
 - $\mathcal{R}^1_1(M) = H^1(M, \mathbb{C}).$
 - $\operatorname{TC}_1(\mathcal{V}_1^1(M)) = \mathcal{R}_1^1(M)$ if and only if $\Delta_M = 0$.
- If *n* is odd, then
 - $\mathcal{R}^1_{2k-1}(M) = \mathcal{R}^1_{2k}(M).$
 - $\mathcal{R}^1_1(M) \neq H^1(M, \mathbb{C})$ if and only if μ_M is "generic".
 - If μ_M is "generic", then $TC_1(\mathcal{V}_1^1(M)) = \mathcal{R}_1^1(M)$.

INFINITESIMAL FINITENESS OBSTRUCTIONS

THEOREM

Let X be a connected CW-complex with finite q-skeleton. Suppose X admits a q-finite q-model A. Then, for all $i \leq q$ and all s,

- (Dimca–Papadima 2014) $\mathcal{V}_{s}^{i}(X)_{(1)} \cong \mathcal{R}_{s}^{i}(A)_{(0)}$. In particular, if X is q-formal, then $\mathcal{V}_{s}^{i}(X)_{(1)} \cong \mathcal{R}_{s}^{i}(X)_{(0)}$.
- (Macinic, Papadima, Popescu, S. 2017) $TC_0(\mathcal{R}_s^i(A)) \subseteq \mathcal{R}_s^i(X)$.
- (Budur–Wang 2017) All the irreducible components of Vⁱ_s(X) passing through the origin of H¹(X, C^{*}) are algebraic subtori.

EXAMPLE

Let *G* be a f.p. group with $G_{ab} = \mathbb{Z}^n$ and $\mathcal{V}_1^1(G) = \{t \in (\mathbb{C}^*)^n \mid \sum_{i=1}^n t_i = n\}$. Then *G* admits no 1-finite 1-model.

THEOREM (PAPADIMA-S. 2019)

Let X be a space which admits a q-finite q-model. If $\mathcal{M}_q(X)$ is the Sullivan q-minimal model of X, then $b_i(\mathcal{M}_q(X)) < \infty$, for all $i \leq q + 1$.

COROLLARY

Let G be a f.g. group. Assume that either G is finitely presented, or G has a 1-finite 1-model. Then $b_2(\mathcal{M}_1(G)) < \infty$.

EXAMPLE

- Consider the free metabelian group $G = F_n / F''_n$ with $n \ge 2$.
- We have $\mathcal{V}^1(G) = \mathcal{V}^1(F_n) = (\mathbb{C}^*)^n$, and so *G* passes the Budur–Wang test.
- But b₂(M₁(G)) = ∞, and so G admits no 1-finite 1-model (and is not finitely presented).

FINITENESS PROPERTIES FOR SPACES AND GROUPS

- A group *G* has property F_k if it admits a classifying space K(G, 1) with finite *k*-skeleton.
 - F₁: G is finitely generated;
 - F₂: *G* is finitely presentable.
- G has property FP_k if the trivial ZG-module Z admits a projective ZG-resolution which is finitely generated in all dimensions up to k.
- The following implications (none of which can be reversed) hold:

 $\begin{array}{l} G \text{ is of type } \mathsf{F}_k \Rightarrow G \text{ is of type } \mathsf{FP}_k \\ \Rightarrow \mathcal{H}_i(G,\mathbb{Z}) \text{ is finitely generated, for all } i \leqslant k \\ \Rightarrow \mathcal{b}_i(G) < \infty, \text{ for all } i \leqslant k. \end{array}$

• Moreover, $FP_k \& F_2 \Rightarrow F_k$.

DWYER-FRIED SETS

- For a fixed $r \in \mathbb{N}$, the connected, regular covers $Y \to X$ with group of deck-transformations \mathbb{Z}^r are parametrized by the Grassmannian of *r*-planes in $H^1(X, \mathbb{Q})$.
- Moving about this variety, and recording when $b_1(Y), \ldots, b_i(Y)$ are finite defines subsets $\Omega_r^i(X) \subseteq \operatorname{Gr}_r(H^1(X, \mathbb{Q}))$, which we call the *Dwyer–Fried invariants* of *X*.
- These sets depend only on the homotopy type of X. Hence, if G is a f.g. group, we may define Ωⁱ_r(G) := Ωⁱ_r(K(G, 1)).

THEOREM

Let *G* be a f.g. group, and $\nu : G \twoheadrightarrow \mathbb{Z}^r$ an epimorphism, with kernel Γ . Suppose $\Omega_r^k(G) = \emptyset$, and Γ is of type F_{k-1} . Then $b_k(\Gamma) = \infty$.

Proof: Set X = K(G, 1); then $X^{\nu} = K(\Gamma, 1)$. Since Γ is of type F_{k-1} , $b_i(X^{\nu}) < \infty$ for $i \leq k-1$. But now $\Omega_r^k(X) = \emptyset$ implies $b_k(X^{\nu}) = \infty$.

COROLLARY

Let *G* be a f.g. group, and suppose $\Omega_1^3(G) = \emptyset$. Let $\nu : G \twoheadrightarrow \mathbb{Z}$ be an epimorphism. If the group $\Gamma = \ker(\nu)$ is f.p., then $b_3(\Gamma) = \infty$.

EXAMPLE (THE STALLINGS GROUP)

- Let $Y = S^1 \vee S^1$ and $X = Y \times Y \times Y$. Clearly, X is a classifying space for $G = F_2 \times F_2 \times F_2$.
- Let ν: G → Z be the homomorphism taking each standard generator to 1. Set Γ = ker(ν).
- Stallings (1963) showed that Γ is finitely presented.
- Using a Mayer-Vietoris argument, he also showed that H₃(Γ, ℤ) is not finitely generated.
- Alternate explanation: Ω³₁(X) = Ø. Thus, by the previous Corollary, a stronger statement holds: b₃(Γ) is not finite.

KOLLÁR'S QUESTION

QUESTION (J. KOLLÁR 1995)

Given a smooth, projective variety *M*, is the fundamental group $G = \pi_1(M)$ commensurable, up to finite kernels, with another group, π , admitting a $K(\pi, 1)$ which is a quasi-projective variety?

(Two groups, G_1 and G_2 , are said to be *commensurable up to finite kernels* if there is a zig-zag of groups and homomorphisms connecting them, with all arrows of finite kernel and cofinite image.)

THEOREM (DIMCA-PAPADIMA-S. 2009)

For each $k \ge 3$, there is a smooth, irreducible, complex projective variety *M* of complex dimension k - 1, such that $\pi_1(M)$ is of type F_{k-1} , but not of type F_k .

Further examples given by Llosa Isenrich and Bridson (2016–2019).

DUALITY SPACES

Let *X* be a connected, finite-type CW-complex, and set $\pi = \pi_1(X, x_0)$. Following Bieri and Eckmann (1978), we say that:

- X is a *duality space* of dimension n if $H^i(X, \mathbb{Z}\pi) = 0$ for $i \neq n$ and $H^n(X, \mathbb{Z}\pi) \neq 0$ and torsion-free.
- Let $D = H^n(X, \mathbb{Z}\pi)$ be the dualizing $\mathbb{Z}\pi$ -module. Given any $\mathbb{Z}\pi$ -module A, we have $H^i(X, A) \cong H_{n-i}(X, D \otimes A)$.
- If $D = \mathbb{Z}$, with trivial $\mathbb{Z}\pi$ -action, then X is a Poincaré duality space.

• If $X = K(\pi, 1)$ is a duality space, then π is a *duality group*.

ABELIAN DUALITY SPACES

We introduced in [Denham–S.–Yuzvinsky 2016/17] an analogous notion, by replacing $\pi \rightsquigarrow \pi_{ab}$.

- X is an *abelian duality space* of dimension n if $H^i(X, \mathbb{Z}\pi_{ab}) = 0$ for $i \neq n$ and $H^n(X, \mathbb{Z}\pi_{ab}) \neq 0$ and torsion-free.
- Let $B = H^n(X, \mathbb{Z}\pi_{ab})$ be the dualizing $\mathbb{Z}\pi_{ab}$ -module. Given any $\mathbb{Z}\pi_{ab}$ -module A, we have $H^i(X, A) \cong H_{n-i}(X, B \otimes A)$.
- The two notions of duality are independent:

EXAMPLE

• Surface groups of genus at least 2 are not abelian duality groups, though they are (Poincaré) duality groups.

• Let $\pi = \mathbb{Z}^2 * G$, where $G = \langle x_1, \dots, x_4 \mid x_1^{-2} x_2 x_1 x_2^{-1}, \dots, x_4^{-2} x_1 x_4 x_1^{-1} \rangle$ is Higman's acyclic group. Then π is an abelian duality group (of dimension 2), but not a duality group.

THEOREM (DSY 2018 (AND LIU–MAXIM–WANG 2018))

Let X be an abelian duality space of dimension n. Then:

- $b_1(X) \ge n-1$.
- $b_i(X) \neq 0$, for $0 \leq i \leq n$ and $b_i(X) = 0$ for i > n.
- $(-1)^n \chi(X) \ge 0.$
- Let ρ: π₁(X) → C* be a character such that Hⁱ(X, C_ρ) ≠ 0, for some i > 0. Then H^j(X, C_ρ) ≠ 0, for all i ≤ j ≤ n.

THEOREM (DENHAM-S. 2018)

Let U be a connected, smooth, complex quasi-projective variety of dimension n. Suppose U has a smooth compactification Y for which

- Components of $Y \setminus U$ form an arrangement of hypersurfaces \mathcal{A} ;
- For each submanifold X in the intersection poset L(A), the complement of the restriction of A to X is a Stein manifold.

Then U is both a duality space and an abelian duality space of dimension n.

LINEAR, ELLIPTIC, AND TORIC ARRANGEMENTS

THEOREM (DENHAM-S. 2018)

Suppose that \mathcal{A} is one of the following:

- An affine-linear arrangement in Cⁿ, or a hyperplane arrangement in CPⁿ;
- A non-empty elliptic arrangement in Eⁿ;
- A toric arrangement in $(\mathbb{C}^*)^n$.

Then the complement M(A) is both a duality space and an abelian duality space of dimension n - r, n + r, and n, respectively, where r is the corank of the arrangement.

This theorem extends several previous results:

- Davis, Januszkiewicz, Leary, and Okun (2011);
- Levin and Varchenko (2012);
- Davis and Settepanella (2013), Esterov and Takeuchi (2018).

REFERENCES

- G. Denham, A.I. Suciu, and S. Yuzvinsky, *Abelian duality and propagation of resonance*, Selecta Math. **23** (2017), no. 4, 2331–2367.
- G. Denham and A.I. Suciu, *Local systems on arrangements of smooth, complex algebraic hypersurfaces*, Forum of Mathematics, Sigma **6** (2018), e6, 20 pages.
- S. Papadima and A.I. Suciu, *The topology of compact Lie group actions through the lens of finite models*, Int. Math. Res. Not. IMRN (2018).
- S. Papadima and A.I. Suciu, *Infinitesimal finiteness obstructions*, J. London Math. Soc. **99** (2019), no. 1, 173–193.
- A.I. Suciu, *Poincaré duality and resonance varieties*, Proc. Roy. Soc. Edinburgh Sect. A. (to appear), arXiv:1809.01801.
- A.I. Suciu, *Cohomology jump loci of* 3*-manifolds*, arXiv:1901.01419.

Happy Birthday, Donu!

Nice 2011