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CHARACTERISTIC VARIETIES

Let X be a connected, finite-type CW-complex. Then
π = π1(X , x0) is a finitely presented group, with πab – H1(X ,Z).

The ring R = C[πab] is the coordinate ring of the character group,
Char(X ) = Hom(π,C˚) – (C˚)n ˆTors(πab), where n = b1(X ).

The characteristic varieties of X are the homology jump loci

V i
s(X ) = tρ P Char(X ) | dimC Hi(X ,Cρ) ě su.

These varieties are homotopy-type invariants of X , with V1
s (X )

depending only on π = π1(X ).

Set V1
1 (π) := V1

1 (K (π,1)); then V1
1 (π) = V1(π/π2).

The characteristic varieties of a space can be arbitrarily
complicated.
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RESONANCE VARIETIES OF A CDGA
Let A = (A‚, d) be a commutative, differential graded algebra over
a field k of characteristic 0. That is:

§ A =
À

iě0 Ai , where Ai are k-vector spaces.
§ The multiplication ¨ : Ai bAj Ñ Ai+j is graded-commutative, i.e.,

ab = (´1)|a||b|ba for all homogeneous a and b.
§ The differential d : Ai Ñ Ai+1 satisfies the graded Leibnitz rule, i.e.,
d(ab) = d(a)b + (´1)|a|a d(b).

We assume A0 = k ¨ 1 and dimAi ă 8 for all i .

For each a P Z 1(A) – H1(A), we build a cochain complex,

(A‚, δa) : A0 δ0
a // A1 δ1

a // A2 δ2
a // ¨ ¨ ¨ ,

with differentials δi
a(u) = a ¨ u + d(u), for all u P Ai .

The resonance varieties of A are the affine varieties
Ri

s(A) = ta P H1(A) | dimk H i(A‚, δa) ě su.

For a space X as above, set Ri
s(X ) := Ri

s((H‚(X ,C), d = 0)).
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APPLICATIONS OF COHOMOLOGY JUMP LOCI
Obstructions to formality and (quasi-) projectivity

§ Artin groups, RAAGs, and Bestvina–Brady groups
§ Kähler groups and quasi-projective groups
§ 3-manifold groups

Homology of finite, regular abelian covers
§ Homology of the Milnor fiber of an arrangement
§ Rational homology of smooth, real toric varieties

Homological and geometric finiteness of regular abelian covers
§ Bieri–Neumann–Strebel–Renz invariants
§ Dwyer–Fried invariants

Infinitesimal finiteness obstructions

Resonance varieties and representations of Lie algebras
§ Homological finiteness in the Johnson filtration

Lower central series and Chen Lie algebras
§ The resonance–Chen ranks formula
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ALGEBRAIC MODELS FOR SPACES

A CDGA map ϕ : A Ñ B is a q-quasi-isomorphism (for some q ě 1)
if ϕ˚ : H‚(A)Ñ H‚(B) is an iso for ‚ ď q and is inj for ‚ = q + 1.

Two CDGAs, A and B, are (q-)equivalent if there is a zig-zag of
(q-)quasi-isomorphisms connecting A to B.

A is (q-)formal if it is (q-)equivalent to (H‚(A),d = 0).

Given any (path-connected) space X , there is an associated
Sullivan Q-cdga, APL(X ), such that H‚(APL(X )) = H‚(X ,Q).

An algebraic (q-)model (over k) for X is a k-cgda (A,d) which is
(q-)equivalent to APL(X )bQ k.

If M is a smooth manifold, then ΩdR(M) is a model for M (over R).

A space X is 1-formal if and only if π = π1(X ) is 1-formal, i.e., its
Malcev Lie algebra, m(π) = Prim(yQπ), is quadratic.
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TANGENT CONES

Let W = V (I), a Zariski closed subset of (C˚)n.

The tangent cone at 1 to W is TC1(W ) = V (in(I)).

Let exp : Cn Ñ (C˚)n. The exponential tangent cone at 1 to W is

τ1(W ) = tz P Cn | exp(λz) P W , @λ P Cu.

Both tangent cones are homogeneous subvarieties of Cn; are
non-empty iff 1 P W ; depend only on the analytic germ of W at 1;
commute with finite unions and arbitrary intersections.

τ1(W ) Ď TC1(W ), with = if all irred components of W are subtori,
but ‰ in general.

(Dimca–Papadima–S. 2009) τ1(W ) is a finite union of rationally
defined subspaces.
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THE TANGENT CONE THEOREM
Let X be a connected CW-complex with finite q-skeleton. Suppose X
admits a q-finite q-model A.

THEOREM

For all i ď q and all s:
(DPS 2009, Dimca–Papadima 2014) V i

s(X )(1) – Ri
s(A)(0).

(Budur–Wang 2017) All the irreducible components of V i
s(X )

passing through the origin of Char(X ) are algebraic subtori.

Consequently,

τ1(V i
s(X )) = TC1(V i

s(X )) = Ri
s(A).

THEOREM (PAPADIMA–S. 2018)
A f.g. group G admits a 1-finite 1-model if and only if the Malcev Lie
algebra m(G) is the LCS completion of a finitely presented Lie algebra.
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Examples of spaces having finite-type models include: formal
spaces, smooth quasi-projective varieties, compact solvmanifolds,
Sasakian manifolds, etc.

Examples of formal spaces:
§ Compact Kähler manifolds [Deligne–Griffiths–Morgan–Sulivan ’75]
§ Complements of complex hyperplane arrangements [Brieskorn ’73]

Examples of 1-formal spaces and groups:
§ Complements of projective hypersurfaces [Kohno ’83]
§ Right-angled Artin groups [Notbohm–Ray ’05, Papadima–S. ’06]
§ Normal projective varieties [Arapura–Dimca–Hain ’16]

Every compact Sasakian (2n + 1)-manifold is (n´ 1)-formal.
[Papadima–S. ’18]
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SMOOTH, QUASI-PROJECTIVE VARIETIES

THEOREM (ARAPURA 1997, . . . , BUDUR–WANG 2015)

Let X be a smooth, quasi-projective variety. Then each V i
s(X ) is a

finite union of torsion-translated subtori of Char(X ).

The Alexander polynomial of a f.p. group π is the Laurent polynomial
∆π in Λ := C[πab/Tors] obtained by taking the gcd of the maximal
minors of a presentation matrix for the Λ-module H1(π,Λ).

THEOREM (DIMCA–PAPADIMA–S. 2008)
Let π be a quasi-projective group.

If b1(π) ‰ 2, then the Newton polytope of ∆π is a line segment.
If π is a Kähler group, then ∆π

.
= const.
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THEOREM (DIMCA–PAPADIMA–S. 2009)
Let X be a smooth, quasi-projective variety. If X is 1-formal, then the
(non-zero) irreducible components of R1

1(X ) are linear subspaces of
H1(X ,C) which intersect pairwise only at 0. Moreover:

Each such component Lα is p-isotropic (i.e., the restriction of YX
to Lα has rank p), with dimLα ě 2p + 2, for p = p(α) P t0,1u.
R1

s(X ) = t0u Y
Ť

α:dimLαąs+p(α) Lα

If X is compact, then X is 1-formal, and each Lα is 1-isotropic.
If W1(H1(X ,C)) = 0, then X is 1-formal, and each Lα is
0-isotropic.

An analogous result holds for irreducible normal varieties
[Arapura–Dimca–Hain 2016]
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ARTIN GROUPS

Let Γ = (V ,E) be a finite, simple graph, and let ` : E Ñ Zě2 be an
edge-labeling. The associated Artin group:

AΓ,` = xv P V | vwv ¨ ¨ ¨
loomoon

`(e)

= wvw ¨ ¨ ¨
looomooon

`(e)

, for e = tv ,wu P Ey.

If (Γ, `) is Dynkin diagram of type An´1 with `(ti , i + 1u) = 3 and
`(ti , ju) = 2 otherwise, then AΓ,` is the braid group Bn.

If `(e) = 2, for all e P E , then

AΓ = xv P V | vw = wv if tv ,wu P Ey.

is the right-angled Artin group associated to Γ.

Γ – Γ1 ô AΓ – AΓ1 .
[Kim–Makar-Limanov–Neggers–Roush 80 / Droms 87]
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The corresponding Coxeter group,

WΓ,` = AΓ,`/xv2 = 1 | v P V y,

fits into exact sequence 1 // PΓ,` // AΓ,` //WΓ,` // 1 .

THEOREM (BRIESKORN 1971)
If WΓ,` is finite, then AΓ,` is quasi-projective.

Idea: let
AΓ,` = reflection arrangement of type WΓ,` (over C)

XΓ,` = Cnz
Ť

HPAΓ,`
H, where n = |AΓ,`|

PΓ,` = π1(XΓ,`)

then:
AΓ,` = π1(XΓ,`/WΓ,`) = π1(C

nztδΓ,` = 0u)

THEOREM (KAPOVICH–MILLSON 1998)
There exist infinitely many (Γ, `) such that AΓ,` is not quasi-projective.
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THEOREM (DIMCA–PAPADIMA–S. 2009, ARAPURA–DIMCA–HAIN 2016)

The following are equivalent:
AΓ = π1(X ), for some smooth algebraic variety X.
AΓ = π1(X ), for some normal algebraic variety X.
Γ is a complete, multipartite graph, i.e., Γ = K n1 ˚ ¨ ¨ ¨ ˚K nr .
AΓ = Fn1 ˆ ¨ ¨ ¨ ˆ Fnr .

Likewise, the following are equivalent:
AΓ = π1(X ), for some smooth, projective variety X.
AΓ = π1(X ), for some normal, projective variety X.
Γ = K2r

AΓ = Z2r

The quasi-projectivity of arbitrary Artin groups has been further studied
by Artal Bartolo, Cogolludo, Matei, and Blasco-García.
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3-MANIFOLDS GROUPS

QUESTION (DONALDSON–GOLDMAN 1989)
Which 3-manifold groups are Kähler groups?

Reznikov gave a partial solution in 2002.

THEOREM (DIMCA–S. 2009)

Let π be the fundamental group of a closed 3-manifold. Then π is a
Kähler group ðñ π is a finite subgroup of O(4), acting freely on S3.

Alternative proofs: Kotschick (2012), Biswas–Mj–Seshadri (2012).

THEOREM (FRIEDL–S. 2014)
Let M be a 3-manifold with non-empty, toroidal boundary. If π1(M) is a
Kähler group, then M – S1 ˆS1 ˆ I.

Generalization by Kotschick: If π1(M) is an infinite Kähler group, then
π1(M) is a surface group.
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Idea of proof of [DS09]:

PROPOSITION

Let M be a closed, orientable 3-manifold. Then:

H1(M,C) is not 1-isotropic.

If b1(M) is even, then R1
1(M) = H1(M,C).

On the other hand, it follows from [DPS 2009] that:

PROPOSITION

Let M be a compact Kähler manifold with b1(M) ‰ 0. If
R1

1(M) = H1(M,C), then H1(M,C) is 1-isotropic.

But π = π1(M), with M Kähler ñ b1(π) even.
Thus, if π is both a 3-mfd group and a Kähler group ñ b1(π) = 0.
Using work of Fujiwara (1999) and Reznikov (2002) on Kazhdan’s
property (T), as well as Perelman (2003) ñ G finite subgroup of O(4).
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THEOREM (S. 2018/2019)
Let M be a closed, orientable, 3-manifold, with intersection form on
H1(M,C) = Cn given by µM(a^ b^ c) = xaY bY c, [M ]y. Then:

If rank(µM) = n ě 3, then R1
n´2(M) = R1

n´1(M) = R1
n(M) = t0u.

If n ě 4, then dimR1
1(M) ě null(µM) ě 2.

If n is even, then
§ R1

2k (M) = R1
2k+1(M).

§ R1
1(M) = H1(M,C).

§ TC1(V1
1 (M)) = R1

1(M) if and only if ∆M = 0.

If n is odd, then
§ R1

2k´1(M) = R1
2k (M).

§ R1
1(M) ‰ H1(M,C) if and only if µM is “generic”.

§ If µM is “generic”, then TC1(V1
1 (M)) = R1

1(M).
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INFINITESIMAL FINITENESS OBSTRUCTIONS

THEOREM

Let X be a connected CW-complex with finite q-skeleton. Suppose X
admits a q-finite q-model A. Then, for all i ď q and all s,

(Dimca–Papadima 2014) V i
s(X )(1) – Ri

s(A)(0).
In particular, if X is q-formal, then V i

s(X )(1) – Ri
s(X )(0).

(Macinic, Papadima, Popescu, S. 2017) TC0(Ri
s(A)) Ď Ri

s(X ).
(Budur–Wang 2017) All the irreducible components of V i

s(X )
passing through the origin of H1(X ,C˚) are algebraic subtori.

EXAMPLE

Let G be a f.p. group with Gab = Zn and V1
1 (G) = tt P (C˚)n |

řn
i=1 ti = nu. Then G admits no 1-finite 1-model.
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THEOREM (PAPADIMA–S. 2019)
Let X be a space which admits a q-finite q-model. If Mq(X ) is the
Sullivan q-minimal model of X , then bi(Mq(X )) ă 8, for all i ď q + 1.

COROLLARY

Let G be a f.g. group. Assume that either G is finitely presented, or G
has a 1-finite 1-model. Then b2(M1(G)) ă 8.

EXAMPLE

Consider the free metabelian group G = Fn / F2n with n ě 2.
We have V1(G) = V1(Fn) = (C˚)n, and so G passes the
Budur–Wang test.
But b2(M1(G)) = 8, and so G admits no 1-finite 1-model (and is
not finitely presented).
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FINITENESS PROPERTIES FOR SPACES AND GROUPS

A group G has property Fk if it admits a classifying space K (G,1)
with finite k -skeleton.

§ F1: G is finitely generated;
§ F2: G is finitely presentable.

G has property FPk if the trivial ZG-module Z admits a projective
ZG-resolution which is finitely generated in all dimensions up to k .

The following implications (none of which can be reversed) hold:

G is of type Fk ñ G is of type FPk

ñ Hi(G,Z) is finitely generated, for all i ď k
ñ bi(G) ă 8, for all i ď k .

Moreover, FPk &F2 ñ Fk .
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DWYER–FRIED SETS

For a fixed r P N, the connected, regular covers Y Ñ X with
group of deck-transformations Zr are parametrized by the
Grassmannian of r -planes in H1(X ,Q).

Moving about this variety, and recording when b1(Y ), . . . ,bi(Y )
are finite defines subsets Ωi

r (X ) Ď Grr (H1(X ,Q)), which we call
the Dwyer–Fried invariants of X .

These sets depend only on the homotopy type of X . Hence, if G is
a f.g. group, we may define Ωi

r (G) := Ωi
r (K (G,1)).

THEOREM

Let G be a f.g. group, and ν : G� Zr an epimorphism, with kernel Γ.
Suppose Ωk

r (G) = H, and Γ is of type Fk´1. Then bk (Γ) = 8.

Proof: Set X = K (G,1); then X ν = K (Γ,1). Since Γ is of type Fk´1,
bi(X ν) ă 8 for i ď k ´ 1. But now Ωk

r (X ) = H implies bk (X ν) = 8.
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COROLLARY

Let G be a f.g. group, and suppose Ω3
1(G) = H. Let ν : G� Z be an

epimorphism. If the group Γ = ker(ν) is f.p., then b3(Γ) = 8.

EXAMPLE (THE STALLINGS GROUP)

Let Y = S1 _S1 and X = Y ˆY ˆY . Clearly, X is a classifying
space for G = F2 ˆ F2 ˆ F2.

Let ν : G Ñ Z be the homomorphism taking each standard
generator to 1. Set Γ = ker(ν).

Stallings (1963) showed that Γ is finitely presented.

Using a Mayer-Vietoris argument, he also showed that H3(Γ,Z) is
not finitely generated.

Alternate explanation: Ω3
1(X ) = H. Thus, by the previous

Corollary, a stronger statement holds: b3(Γ) is not finite.
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KOLLÁR’S QUESTION

QUESTION (J. KOLLÁR 1995)
Given a smooth, projective variety M, is the fundamental group
G = π1(M) commensurable, up to finite kernels, with another group,
π, admitting a K (π,1) which is a quasi-projective variety?

(Two groups, G1 and G2, are said to be commensurable up to finite
kernels if there is a zig-zag of groups and homomorphisms connecting
them, with all arrows of finite kernel and cofinite image.)

THEOREM (DIMCA–PAPADIMA–S. 2009)
For each k ě 3, there is a smooth, irreducible, complex projective
variety M of complex dimension k ´ 1, such that π1(M) is of type Fk´1,
but not of type FPk .

Further examples given by Llosa Isenrich and Bridson (2016–2019).
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DUALITY SPACES

Let X be a connected, finite-type CW-complex, and set π = π1(X , x0).
Following Bieri and Eckmann (1978), we say that:

X is a duality space of dimension n if H i(X ,Zπ) = 0 for i ‰ n and
Hn(X ,Zπ) ‰ 0 and torsion-free.

Let D = Hn(X ,Zπ) be the dualizing Zπ-module. Given any
Zπ-module A, we have H i(X ,A) – Hn´i(X ,D bA).

If D = Z, with trivial Zπ-action, then X is a Poincaré duality
space.

If X = K (π,1) is a duality space, then π is a duality group.
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ABELIAN DUALITY SPACES
We introduced in [Denham–S.–Yuzvinsky 2016/17] an analogous
notion, by replacing π  πab.

X is an abelian duality space of dimension n if H i(X ,Zπab) = 0
for i ‰ n and Hn(X ,Zπab) ‰ 0 and torsion-free.

Let B = Hn(X ,Zπab) be the dualizing Zπab-module. Given any
Zπab-module A, we have H i(X ,A) – Hn´i(X ,B bA).

The two notions of duality are independent:

EXAMPLE

Surface groups of genus at least 2 are not abelian duality groups,
though they are (Poincaré) duality groups.

Let π = Z2 ˚G, where
G = xx1, . . . , x4 | x´2

1 x2x1x´1
2 , . . . , x´2

4 x1x4x´1
1 y

is Higman’s acyclic group. Then π is an abelian duality group (of
dimension 2), but not a duality group.
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THEOREM (DSY 2018 (AND LIU–MAXIM–WANG 2018))
Let X be an abelian duality space of dimension n. Then:

b1(X ) ě n´ 1.
bi(X ) ‰ 0, for 0 ď i ď n and bi(X ) = 0 for i ą n.
(´1)nχ(X ) ě 0.
Let ρ : π1(X )Ñ C˚ be a character such that H i(X ,Cρ) ‰ 0, for
some i ą 0. Then H j(X ,Cρ) ‰ 0, for all i ď j ď n.

THEOREM (DENHAM–S. 2018)
Let U be a connected, smooth, complex quasi-projective variety of
dimension n. Suppose U has a smooth compactification Y for which

Components of Y zU form an arrangement of hypersurfaces A;
For each submanifold X in the intersection poset L(A), the
complement of the restriction of A to X is a Stein manifold.

Then U is both a duality space and an abelian duality space of
dimension n.

ALEX SUCIU COHOMOLOGY JUMP LOCI IN G&T DONU’S CONFERENCE 25 / 28



LINEAR, ELLIPTIC, AND TORIC ARRANGEMENTS

THEOREM (DENHAM–S. 2018)
Suppose that A is one of the following:

1 An affine-linear arrangement in Cn, or a hyperplane arrangement
in CPn;

2 A non-empty elliptic arrangement in En;

3 A toric arrangement in (C˚)n.
Then the complement M(A) is both a duality space and an abelian
duality space of dimension n´ r , n + r , and n, respectively, where r is
the corank of the arrangement.

This theorem extends several previous results:
1 Davis, Januszkiewicz, Leary, and Okun (2011);
2 Levin and Varchenko (2012);
3 Davis and Settepanella (2013), Esterov and Takeuchi (2018).
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Happy Birthday, Donu!

Nice 2011
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