ALGEBRAIC MODELS, DUALITY, AND RESONANCE

Alex Suciu

Northeastern University

Topology Seminar MIT March 5, 2018

ALEX SUCIU (NORTHEASTERN) MODELS, DUALITY, AND RESONANCE MIT TOPOLOGY SEMINAR 1 / 24

POINCARÉ DUALITY ALGEBRAS

- Let A be a graded, graded-commutative algebra over a field \Bbbk .
 - $A = \bigoplus_{i \ge 0} A^i$, where A^i are k-vector spaces.
 - $: A^i \otimes A^j \to A^{i+j}.$
 - $ab = (-1)^{ij}ba$ for all $a \in A^i$, $b \in B^j$.
- We will assume that A is connected (A⁰ = k ⋅ 1), and locally finite (all the Betti numbers b_i(A) := dim_k Aⁱ are finite).
- *A* is a *Poincaré duality* \Bbbk -*algebra* of dimension *n* if there is a \Bbbk -linear map $\varepsilon \colon A^n \to \Bbbk$ (called an *orientation*) such that all the bilinear forms $A^i \otimes_{\Bbbk} A^{n-i} \to \Bbbk$, $a \otimes b \mapsto \varepsilon(ab)$ are non-singular.
- Consequently,
 - $b_i(A) = b_{n-i}(A)$, and $A^i = 0$ for i > n.
 - ε is an isomorphism.
 - The maps PD: $A^i \to (A^{n-i})^*$, PD $(a)(b) = \varepsilon(ab)$ are isomorphisms.
 - Each $a \in A^i$ has a *Poincaré dual*, $a^{\vee} \in A^{n-i}$, such that $\varepsilon(aa^{\vee}) = 1$.
 - The orientation class is defined as $\omega_A = 1^{\vee}$, so that $\varepsilon(\omega_A) = 1$.

THE ASSOCIATED ALTERNATING FORM

- Associated to a \Bbbk -PD_n algebra there is an alternating *n*-form, $\mu_A: \bigwedge^n A^1 \to \Bbbk, \quad \mu_A(a_1 \land \dots \land a_n) = \varepsilon(a_1 \cdots a_n).$
- Assume now that n = 3, and set $r = b_1(A)$. Fix a basis $\{e_1, \ldots, e_r\}$ for A^1 , and let $\{e_1^{\vee}, \ldots, e_r^{\vee}\}$ be the dual basis for A^2 .
- The multiplication in A, then, is given on basis elements by

$$oldsymbol{e}_ioldsymbol{e}_j = \sum_{k=1} \mu_{ijk} \,oldsymbol{e}_k^{\scriptscriptstyleee}, \quad oldsymbol{e}_ioldsymbol{e}_j^{\scriptscriptstyleee} = \delta_{ij}\omega,$$

where $\mu_{ijk} = \mu(\boldsymbol{e}_i \wedge \boldsymbol{e}_j \wedge \boldsymbol{e}_k)$.

Alternatively, let A_i = (Aⁱ)*, and let eⁱ ∈ A₁ be the (Kronecker) dual of e_i. We may then view μ dually as a trivector,

$$\mu = \sum \mu_{ijk} \, e^i \wedge e^j \wedge e^k \in \bigwedge{}^3A_1$$
,

which encodes the algebra structure of A.

POINCARÉ DUALITY IN ORIENTABLE MANIFOLDS

- If *M* is a compact, connected, orientable, *n*-dimensional manifold, then the cohomology ring *A* = *H*[•](*M*, k) is a PD_n algebra over k.
- Sullivan (1975): for every finite-dimensional Q-vector space V and every alternating 3-form $\mu \in \bigwedge^3 V^*$, there is a closed 3-manifold M with $H^1(M, \mathbb{Q}) = V$ and cup-product form $\mu_M = \mu$.
- Such a 3-manifold can be constructed via "Borromean surgery."

• If *M* bounds an oriented 4-manifold *W* such that the cup-product pairing on $H^2(W, M)$ is non-degenerate (e.g., if *M* is the link of an isolated surface singularity), then $\mu_M = 0$.

DUALITY SPACES

A more general notion of duality is due to Bieri and Eckmann (1978). Let *X* be a connected, finite-type CW-complex, and set $\pi = \pi_1(X, x_0)$.

- X is a *duality space* of dimension n if $H^i(X, \mathbb{Z}\pi) = 0$ for $i \neq n$ and $H^n(X, \mathbb{Z}\pi) \neq 0$ and torsion-free.
- Let $D = H^n(X, \mathbb{Z}\pi)$ be the dualizing $\mathbb{Z}\pi$ -module. Given any $\mathbb{Z}\pi$ -module A, we have $H^i(X, A) \cong H_{n-i}(X, D \otimes A)$.
- If $D = \mathbb{Z}$, with trivial $\mathbb{Z}\pi$ -action, then X is a Poincaré duality space.
- If $X = K(\pi, 1)$ is a duality space, then π is a *duality group*.

ABELIAN DUALITY SPACES

We introduce in [Denham–S.–Yuzvinsky 2016/17] an analogous notion, by replacing $\pi \rightsquigarrow \pi_{ab}$.

- X is an *abelian duality space* of dimension *n* if $H^i(X, \mathbb{Z}\pi_{ab}) = 0$ for $i \neq n$ and $H^n(X, \mathbb{Z}\pi_{ab}) \neq 0$ and torsion-free.
- Let $B = H^n(X, \mathbb{Z}\pi_{ab})$ be the dualizing $\mathbb{Z}\pi_{ab}$ -module. Given any $\mathbb{Z}\pi_{ab}$ -module A, we have $H^i(X, A) \cong H_{n-i}(X, B \otimes A)$.
- The two notions of duality are independent:

EXAMPLE

- Surface groups of genus at least 2 are not abelian duality groups, though they are (Poincaré) duality groups.
- Let $\pi = \mathbb{Z}^2 * G$, where

 $G = \langle x_1, \dots, x_4 \mid x_1^{-2}x_2x_1x_2^{-1}, \dots, x_4^{-2}x_1x_4x_1^{-1} \rangle$ is Higman's acyclic group. Then π is an abelian duality group (of dimension 2), but not a duality group. THEOREM (DSY)

Let X be an abelian duality space of dimension n. Then:

- $b_1(X) \ge n-1$.
- $b_i(X) \neq 0$, for $0 \leq i \leq n$ and $b_i(X) = 0$ for i > n.
- $(-1)^n \chi(X) \ge 0.$

THEOREM (DENHAM-S. 2017)

Let U be a connected, smooth, complex quasi-projective variety of dimension n. Suppose U has a smooth compactification Y for which

- ① Components of $Y \setminus U$ form an arrangement of hypersurfaces A;
- 2 For each submanifold X in the intersection poset L(A), the complement of the restriction of A to X is a Stein manifold.

Then U is both a duality space and an abelian duality space of dimension n.

LINEAR, ELLIPTIC, AND TORIC ARRANGEMENTS

THEOREM (DS17)

Suppose that \mathcal{A} is one of the following:

- **1** An affine-linear arrangement in \mathbb{C}^n , or a hyperplane arrangement in \mathbb{CP}^n ;
- ⁽²⁾ A non-empty elliptic arrangement in E^n ;
- 3 A toric arrangement in $(\mathbb{C}^*)^n$.

Then the complement $M(\mathcal{A})$ is both a duality space and an abelian duality space of dimension n - r, n + r, and n, respectively, where r is the corank of the arrangement.

This theorem extends several previous results:

- Davis, Januszkiewicz, Leary, and Okun (2011);
- 2 Levin and Varchenko (2012);
- ③ Davis and Settepanella (2013), Esterov and Takeuchi (2014).

ALEX SUCIU (NORTHEASTERN)

MODELS, DUALITY, AND RESONANCE

COMMUTATIVE DIFFERENTIAL GRADED ALGEBRAS

- Let A = (A[•], d) be a commutative, differential graded algebra over a field k of characteristic 0. That is:
 - $A = \bigoplus_{i \ge 0} A^i$, where A^i are k-vector spaces.
 - The multiplication $: A^i \otimes A^j \to A^{i+j}$ is graded-commutative, i.e., $ab = (-1)^{|a||b|} ba$ for all homogeneous *a* and *b*.
 - The differential d: $A^i \rightarrow A^{i+1}$ satisfies the graded Leibnitz rule, i.e., d(*ab*) = d(*a*)*b* + (-1)^{|*a*|}*a*d(*b*).
- A CDGA *A* is of *finite-type* (or *q-finite*) if it is connected (i.e., $A^0 = \mathbb{k} \cdot 1$) and dim $A^i < \infty$ for all $i \leq q$.
- $H^{\bullet}(A)$ inherits an algebra structure from A.
- A cdga morphism φ: A → B is both an algebra map and a cochain map. Hence, it induces a morphism φ*: H•(A) → H•(B).

- A map φ: A → B is a quasi-isomorphism if φ* is an isomorphism. Likewise, φ is a q-quasi-isomorphism (for some q ≥ 1) if φ* is an isomorphism in degrees ≤ q and is injective in degree q + 1.
- Two cdgas, A and B, are (q-)equivalent (≃q) if there is a zig-zag of (q-)quasi-isomorphisms connecting A to B.
- A cdga A is formal (or just q-formal) if it is (q-)equivalent to $(H^{\bullet}(A), d = 0)$.
- A CDGA is *q*-minimal if it is of the form (∧ V, d), where the differential structure is the inductive limit of a sequence of Hirsch extensions of increasing degrees, and Vⁱ = 0 for i > q.
- Every CDGA A with $H^0(A) = \Bbbk$ admits a *q*-minimal model, $\mathcal{M}_q(A)$ (i.e., a *q*-equivalence $\mathcal{M}_q(A) \to A$ with $\mathcal{M}_q(A) = (\bigwedge V, d)$ a *q*-minimal cdga), unique up to iso.

ALGEBRAIC MODELS FOR SPACES

- Given any (path-connected) space X, there is an associated Sullivan Q-cdga, A_{PL}(X), such that H[•](A_{PL}(X)) = H[•](X, Q).
- An algebraic (q-)model (over k) for X is a k-cgda (A, d) which is (q-) equivalent to A_{PL}(X) ⊗_Q k.
- If *M* is a smooth manifold, then $\Omega_{dR}(M)$ is a model for *M* (over \mathbb{R}).
- Examples of spaces having finite-type models include:
 - Formal spaces (such as compact Kähler manifolds, hyperplane arrangement complements, toric spaces, etc).
 - Smooth quasi-projective varieties, compact solvmanifolds, Sasakian manifolds, etc.

RESONANCE VARIETIES OF A CDGA

- Let $A = (A^{\bullet}, d)$ be a connected, finite-type CDGA over $\Bbbk = \mathbb{C}$.
- For each $a \in Z^1(A) \cong H^1(A)$, we have a cochain complex,

$$(A^{\bullet}, \delta_a): A^0 \xrightarrow{\delta_a^0} A^1 \xrightarrow{\delta_a^1} A^2 \xrightarrow{\delta_a^2} \cdots,$$

with differentials $\delta_a^i(u) = a \cdot u + d u$, for all $u \in A^i$.

- The resonance varieties of *A* are the affine varieties $\mathcal{R}_{s}^{i}(A) = \{a \in H^{1}(A) \mid \dim H^{i}(A^{\bullet}, \delta_{a}) \ge s\}.$
- If A is a CGA (that is, d = 0), the resonance varieties Rⁱ_s(A) are homogeneous subvarieties of A¹.
- If X is a connected, finite-type CW-complex, we set $\mathcal{R}^i_s(X) := \mathcal{R}^i_s(\mathcal{H}^{\bullet}(X, \mathbb{C})).$

- Fix a k-basis $\{e_1, \ldots, e_r\}$ for A^1 , and let $\{x_1, \ldots, x_r\}$ be the dual basis for $A_1 = (A^1)^*$.
- Identify $\text{Sym}(A_1)$ with $S = \Bbbk[x_1, \dots, x_r]$, the coordinate ring of the affine space A^1 .
- Define a cochain complex of free *S*-modules, $L(A) := (A^{\bullet} \otimes S, \delta)$,

$$\cdots \longrightarrow A^{i} \otimes S \xrightarrow{\delta^{i}} A^{i+1} \otimes S \xrightarrow{\delta^{i+1}} A^{i+2} \otimes S \longrightarrow \cdots$$

where $\delta^{i}(u \otimes f) = \sum_{j=1}^{n} e_{j}u \otimes fx_{j} + du \otimes f$.

- The specialization of $(A \otimes S, \delta)$ at $a \in A^1$ coincides with (A, δ_a) .
- Hence, Rⁱ_s(A) is the zero-set of the ideal generated by all minors of size b_i − s + 1 of the block-matrix δⁱ⁺¹ ⊕ δⁱ.
- In particular, R¹_s(A) = V(I_{r-s}(δ¹)), the zero-set of the ideal of codimension s minors of δ¹.

RESONANCE VARIETIES OF PD-ALGEBRAS

- Let A be a PD_n algebra.
- For all $0 \le i \le n$ and all $a \in A^1$, the square

$$(A^{n-i})^* \xrightarrow{(\delta_a^{n-i-1})^*} (A^{n-i-1})^*$$

$$PD \stackrel{i}{\cong} PD \stackrel{i}{\cong} A^i \xrightarrow{\delta_a^i} A^{i+1}$$

commutes up to a sign of $(-1)^i$.

Consequently,

$$\left(H^{i}(\boldsymbol{A},\delta_{\boldsymbol{a}})\right)^{*}\cong H^{n-i}(\boldsymbol{A},\delta_{-\boldsymbol{a}}).$$

Hence, for all *i* and *s*,

$$\mathcal{R}^i_{s}(A) = \mathcal{R}^{n-i}_{s}(A).$$

• In particular, $\mathcal{R}_1^n(A) = \{0\}.$

3-DIMENSIONAL POINCARÉ DUALITY ALGEBRAS

- Let *A* be a PD₃-algebra with $b_1(A) = r > 0$. Then
 - $\mathcal{R}_1^3(A) = \mathcal{R}_1^0(A) = \{0\}.$
 - $\mathcal{R}^2_s(A) = \mathcal{R}^1_s(A)$ for $1 \leq s \leq r$.
 - $\mathcal{R}_{s}^{i}(A) = \emptyset$, otherwise.
- Write *R_s(A)* = *R*¹_s(*A*). Then
 *R*_{2k}(*A*) = *R*_{2k+1}(*A*) if *r* is even.
 *R*_{2k-1}(*A*) = *R*_{2k}(*A*) if *r* is odd.
- If μ_A has rank $r \ge 3$, then $\mathcal{R}_{r-2}(A) = \mathcal{R}_{r-1}(A) = \mathcal{R}_r(A) = \{0\}$.
- If $r \ge 4$, then dim $\mathcal{R}_1(A) \ge \operatorname{null}(\mu_A) \ge 2$.
 - Here, the *rank* of a form μ : $\bigwedge^{3} V \to \Bbbk$ is the minimum dimension of a linear subspace $W \subset V$ such that μ factors through $\bigwedge^{3} W$.
 - The *nullity* of µ is the maximum dimension of a subspace U ⊂ V such that µ(a ∧ b ∧ c) = 0 for all a, b ∈ U and c ∈ V.

- If *r* is even, then $\mathcal{R}_1(A) = \mathcal{R}_0(A) = A^1$.
- If *r* is odd > 1, then $\mathcal{R}_1(A) \neq A^1$ if and only if μ_A is "generic," that is, there is a $c \in A^1$ such that the 2-form $\gamma_c \in \bigwedge^2 A_1$ given by $\gamma_c(a \wedge b) = \mu_A(a \wedge b \wedge c)$ has rank 2*g*, i.e., $\gamma_c^g \neq 0$ in $\bigwedge^{2g} A_1$.
- In that case, $\mathcal{R}_1(A)$ is the hypersurface $Pf(\mu_A) = 0$, where $pf(\delta^1(i; i)) = (-1)^{i+1} x_i Pf(\mu_A)$.

EXAMPLE

Let $M = S^1 \times \Sigma_g$, where $g \ge 2$. Then $\mu_M = \sum_{i=1}^g a_i b_i c$ is generic, and $Pf(\mu_M) = x_{2g+1}^{g-1}$. Hence, $\mathcal{R}_1 = \cdots = \mathcal{R}_{2g-2} = \{x_{2g+1} = 0\}$ and $\mathcal{R}_{2g-1} = \mathcal{R}_{2g} = \mathcal{R}_{2g+1} = \{0\}.$

ALEX SUCIU (NORTHEASTERN)

RESONANCE VARIETIES OF 3-FORMS OF LOW RANK

				<u>п</u> З	μ 12	$\begin{array}{c c} & \mathcal{R}_1 \\ 3 & 0 \end{array}$	<u>п</u> 5	1	μ 25+345	\mathcal{R}_1 {x	$\frac{1}{1} = \mathcal{R}_2$ $\frac{1}{2} = 0$	R ₃ 0]					
$ \begin{array}{c cccc} n & \mu \\ 6 & 123+4 \\ 123+236 \end{array} $					456 6+45	$\begin{array}{c c c c c c c c c c c c c c c c c c c $					$x_4 = x_5 = 0$	<i>x</i> ₆ = 0}	ł	R ₄ 0 0				
	n μ				$\mathcal{R}_1 = \mathcal{R}_2$				$\mathcal{R}_3 = \mathcal{R}_4$								\mathcal{R}_5	
	7	147+257+367				{ <i>x</i> ₇ =		$\{x_7 = 0\}$								0		
		456+147+257+367				$\{x_7 =$		$\{x_4 = x_5 = x_6 = x_7 = 0\}$								0		
		123+456+147			- {	$x_1 = 0\} \cup \cdots$	$\{x_1 = x_1 = x_1$	$\{x_1 = x_2 = x_3 = x_4 = 0\} \cup \{x_1 = x_4 = x_5 = x_6 = 0\}$							0			
		123+456+147+257				$\{x_1x_4 + x_2x_5 = 0\}$				{ <i>x</i> ₁	$= x_2 = x_1$	$x_4 = x_5 =$	$= x_7^2$	$-x_{3}$	$x_{6} = 0$)}		0
		123+456+147+257+367			$\{x_1x_4 + x_2x_5 + x_3x_6 = x_7^2\}$					0								0
n		и			\mathcal{R}_1		$\mathcal{R}_2 =$	Ro					1	$R_{\Lambda} =$	RE			
8		147+257+367+358				$\{x_7 = 0\}$					$\{x_3 = x_5 = x_7 = x_8 = 0\} \cup \{x_1 = x_3 = x_4 = x_5 = x_5$						$x_7 = 0$	
		456+147+257+367+358					0}		$\{x_3 = x_4 = x_5 = x_7 = x_1x_8 + x_6^2 =$						$\frac{1}{2} = 0$			
		123+456+147+358			C8	$\{x_1 = x_5 = 0\} \cup \{x_3 = x_4\}$			$= x_4 = 0$)}	$\{x_1 = x_3 = x_4 = x_5 = x_2x_6 + x_7x_8 = x_1x_6 + x_7x_8 = x_1x_8 + x_1x_8 + x_1x_8 = x_1x_8 + x_1$						$x_8 = 0$)}
		123+456+147+257+358			C ⁸	$\{x_1 = x_5 = 0\} \cup \{x_3 = x_4 = x_5 = 0\}$				= 0}	$\{x_1 = x_2 = x_3 = x_4 = x_5 = x_7 = 0\}$							
	1	123+456+147+257+367+358				$\{x_3 = x_5 = x_1x_4 - x_7^2 = 0\}$					$\{x_1 = x_2 = x_3 = x_4 = x_5 = x_6 = x_7 = 0\}$						0}	
		147+268+358				$\{x_1 = x_4 = x_7 = 0\} \cup \{x_8 = 0\}$)}	$\{x_1 = x_4 = x_7 = x_8 = 0\} \cup \{x_2 = x_3 = x_5 = x_6 = x_8 = 0\}$							
		147+257+268+358			C8		-3		$L_1 \cup L_2$									
		456+147+257+268+358				$C_1 \cup C_2$					$L_1 \cup L_2$							
		147+257+367+268+358				$L_1 \cup L_2 \cup L_3 \cup L_4$				$L'_1 \cup L'_2 \cup L'_3$								
	4	456+147+257+367+268+358				$C_1 \cup C_2 \cup C_3$					$L_1 \cup L_2 \cup L_3$							
		123+456+147+268+358				$C_1 \cup C_2$					L							
	1	123+456+147+257+268+358				$\{t_1 = \cdots = t_{20} = 0\}$					0							
	123	23+456+147+257+367+268+358			C°.	$\{g_1 = \cdots = g_{20} = 0\}$								0				

ALEX SUCIU (NORTHEASTERN)

MODELS, DUALITY, AND RESONANCE

MIT TOPOLOGY SEMINAR 17 / 24

PROPAGATION OF RESONANCE

- We say that the resonance varieties of a graded algebra $A = \bigoplus_{i=0}^{n} A^{i}$ propagate if $\mathcal{R}_{1}^{1}(A) \subseteq \cdots \subseteq \mathcal{R}_{1}^{n}(A)$.
- (Eisenbud–Popescu–Yuzvinsky 2003) If *X* is the complement of a hyperplane arrangement, then its resonance varieties propagate.

THEOREM (DSY 2016/17)

- Suppose the k-dual of A has a linear free resolution over $E = \bigwedge A^1$. Then the resonance varieties of A propagate.
- Let X be a formal, abelian duality space. Then the resonance varieties of X propagate.
- Let *M* be a closed, orientable 3-manifold. If $b_1(M)$ is even and non-zero, then the resonance varieties of *M* do not propagate.

CHARACTERISTIC VARIETIES

- Let X be a connected, finite-type CW-complex. Then $\pi = \pi_1(X, x_0)$ is a finitely presented group, with $\pi_{ab} \cong H_1(X, \mathbb{Z})$.
- The ring $R = \mathbb{C}[\pi_{ab}]$ is the coordinate ring of the character group, $\operatorname{Char}(X) = \operatorname{Hom}(\pi, \mathbb{C}^*) \cong (\mathbb{C}^*)^r \times \operatorname{Tors}(\pi_{ab})$, where $r = b_1(X)$.
- The characteristic varieties of X are the homology jump loci

 $\mathcal{V}^{i}_{s}(X) = \{ \rho \in \operatorname{Char}(X) \mid \dim H_{i}(X, \mathbb{C}_{\rho}) \geq s \}.$

- These varieties are homotopy-type invariants of X, with $\mathcal{V}_s^1(X)$ depending only on $\pi = \pi_1(X)$.
- Set $\mathcal{V}_1(\pi) := \mathcal{V}_1^1(K(\pi, 1))$; then $\mathcal{V}_1(\pi) = \mathcal{V}_1(\pi/\pi'')$.

EXAMPLE

Let $f \in \mathbb{Z}[t_1^{\pm 1}, \ldots, t_n^{\pm 1}]$ be a Laurent polynomial, f(1) = 0. There is then a finitely presented group π with $\pi_{ab} = \mathbb{Z}^n$ such that $\mathcal{V}_1(\pi) = \mathbf{V}(f)$.

THEOREM (DSY)

Let X be an abelian duality space of dimension n. If $\rho : \pi_1(X) \to \mathbb{C}^*$ satisfies $H^i(X, \mathbb{C}_{\rho}) \neq 0$, then $H^j(X, \mathbb{C}_{\rho}) \neq 0$, for all $i \leq j \leq n$.

COROLLARY

Let X be an abelian duality space of dimension n. Then The characteristic varieties propagate, i.e., $\mathcal{V}_1^1(X) \subseteq \cdots \subseteq \mathcal{V}_1^n(X)$.

INFINITESIMAL FINITENESS OBSTRUCTIONS

QUESTION

Let X be a connected CW-complex with finite q-skeleton. Does X admit a q-finite q-model A?

THEOREM

If X is as above, then, for all $i \leq q$ and all s:

- (Dimca–Papadima 2014) $\mathcal{V}_{s}^{i}(X)_{(1)} \cong \mathcal{R}_{s}^{i}(A)_{(0)}$. In particular, if X is q-formal, then $\mathcal{V}_{s}^{i}(X)_{(1)} \cong \mathcal{R}_{s}^{i}(X)_{(0)}$.
- (Macinic, Papadima, Popescu, S. 2017) $TC_0(\mathcal{R}_s^i(A)) \subseteq \mathcal{R}_s^i(X)$.
- (Budur–Wang 2017) All the irreducible components of $\mathcal{V}^{i}(X)$ passing through the origin of $H^{1}(X, \mathbb{C}^{*})$ are algebraic subtori.

EXAMPLE

Let π be a finitely presented group with $\pi_{ab} = \mathbb{Z}^n$ and $\mathcal{V}_1(\pi) = \{t \in (\mathbb{C}^*)^n \mid \sum_{i=1}^n t_i = n\}$. Then π admits no 1-finite 1-model.

THEOREM (PAPADIMA–S. 2017) Suppose X is (q + 1) finite, or X admits a q-finite q-model. Then $b_i(\mathcal{M}_q(X)) < \infty$, for all $i \leq q + 1$.

COROLLARY

Let π be a finitely generated group. Assume that either π is finitely presented, or π has a 1-finite 1-model. Then $b_2(\mathcal{M}_1(\pi)) < \infty$.

EXAMPLE

- Consider the free metabelian group $\pi = F_n / F''_n$ with $n \ge 2$.
- We have $\mathcal{V}_1(\pi) = \mathcal{V}_1(F_n) = (\mathbb{C}^*)^n$, and so π passes the Budur–Wang test.
- But b₂(M₁(π)) = ∞, and so π admits no 1-finite 1-model (and is not finitely presented).

A TANGENT CONE THEOREM FOR **3**-MANIFOLDS

THEOREM

Let *M* be a closed, orientable, 3-dimensional manifold. Suppose $b_1(M)$ is odd and μ_M is generic. Then $TC_1(\mathcal{V}_1^1(M)) = \mathcal{R}_1^1(M)$.

• If $b_1(M)$ is even, the conclusion may or may not hold:

- Let $M = S^1 \times S^2 \# S^1 \times S^2$; then $\mathcal{V}_1^1(M) = \operatorname{Char}(M) = (\mathbb{C}^*)^2$, and so $\operatorname{TC}_1(\mathcal{V}_1^1(M)) = \mathcal{R}_1^1(M) = \mathbb{C}^2$.
- Let *M* be the Heisenberg nilmanifold; then $TC_1(\mathcal{V}_1^1(M)) = \{0\}$, whereas $\mathcal{R}_1^1(M) = \mathbb{C}^2$.
- Let *M* be a closed, orientable 3-manifold with $b_1 = 7$ and $\mu = e_1e_3e_5 + e_1e_4e_7 + e_2e_5e_7 + e_3e_6e_7 + e_4e_5e_6$. Then μ is generic and $Pf(\mu) = (x_5^2 + x_7^2)^2$. Hence, $\mathcal{R}_1^1(M) = \{x_5^2 + x_7^2 = 0\}$ splits as a union of two hyperplanes over \mathbb{C} , but not over \mathbb{Q} .

REFERENCES

- G. Denham, A.I. Suciu, S. Yuzvinsky, *Combinatorial covers and vanishing of cohomology*, Selecta Math. **22** (2016), no. 2, 561–594.
- G. Denham, A.I. Suciu, S. Yuzvinsky, *Abelian duality and propagation of resonance*, Selecta Math. **23** (2017), no. 4, 2331–2367.
- G. Denham, A.I. Suciu, Local systems on arrangements of smooth, complex algebraic hypersurfaces, Forum of Mathematics, Sigma 6 (2018), e6, 20 pages.
- S. Papadima, A.I. Suciu, *Infinitesimal finiteness obstructions*, J. London Math. Soc. (2018).
- A.I. Suciu, *Poincaré duality and resonance varieties*, arxiv:1809.01801.
- A.I. Suciu, Cohomology jump loci of 3-manifolds, arxiv:1901.01419.