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DUALITY PROPERTIES POINCARE DUALITY ALGEBRAS

POINCARE DUALITY ALGEBRAS

o Let A be a graded, graded-commutative algebra over a field k.
o A= @,- A, where A are k-vector spaces.
° -:A/®A/7>Ai+/. ‘ '
o ab=(—1)/baforallac A',be B.

o We will assume that A is connected (AO =k - 1), and locally finite
(all the Betti numbers b;(A) := dimy A’ are finite).

o Ais a Poincaré duality k-algebra of dimension n if there is a
k-linear map ¢: A" — k (called an orientation) such that all the
bilinear forms A'®x A"' — k, a® b — ¢(ab) are non-singular.

o Consequently,

bi(A) = b,_;(A),and A =0 for i > n.

¢ is an isomorphism.

The maps PD: A’ — (A"~)* PD(a)(b) = ¢(ab) are isomorphisms.
Each ae A has a Poincaré dual, a¥ € A"/, such that e(aa¥) = 1.
The orientation class is defined as ws = 1V, so that e(wy) = 1.
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DUALITY PROPERTIES POINCARE DUALITY ALGEBRAS

THE ASSOCIATED ALTERNATING FORM

o Associated to a k-PD, algebra there is an alternating n-form,
}lA:/\nA1 — k, ]/lA(a1 /\---Aan):s(a1--~an).
o Assume now that n = 3, and set r = by (A). Fix a basis

{e1,..., er} for A', and let {ey, ..., ey} be the dual basis for A2.
o The multiplication in A, then is given on basis elements by

k=1

where i = (e A € n e).

o Alternatively, let A; = (A)*, and let & € A; be the (Kronecker)
dual of e;. We may then view u dually as a trivector,

1 :Zy,-jkei/\ e nefe N3A;,
which encodes the algebra structure of A.
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DUALITY PROPERTIES POINCARE DUALITY ALGEBRAS

POINCARE DUALITY IN ORIENTABLE MANIFOLDS

o If Mis a compact, connected, orientable, n-dimensional manifold,
then the cohomology ring A = H*(M, k) is a PD,, algebra over k.

o Sullivan (1975): for every finite-dimensional Q-vector space V and
every alternating 3-form yu € /\3 V*, there is a closed 3-manifold M
with H'(M, Q) = V and cup-product form 1y = .

o Such a 3-manifold can be constructed via “Borromean surgery."

o If M bounds an oriented 4-manifold W such that the cup-product
pairing on H?(W, M) is non-degenerate (e.g., if M is the link of an
isolated surface singularity), then py, = 0.
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DUALITY PROPERTIES DUALITY SPACES

DUALITY SPACES

A more general notion of duality is due to Bieri and Eckmann (1978).
Let X be a connected, finite-type CW-complex, and set 7w = 711 (X, Xg).

o X is a duality space of dimension nif H' (X, Zm) = 0 for i # nand
H"(X,Zm) # 0 and torsion-free.

o Let D = H"(X, Zm) be the dualizing Zr-module. Given any
Zm-module A, we have H'(X, A) = H,_ (X, D® A).

o If D = Z, with trivial Zt-action, then X is a Poincaré duality
space.

o If X = K(m, 1) is a duality space, then 7t is a duality group.
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DUALITY PROPERTIES

ABELIAN DUALITY SPACES

ABELIAN DUALITY SPACES

We introduce in [Denham—S.-Yuzvinsky 2016/17] an analogous
notion, by replacing 7 ~ 7.

o X is an abelian duality space of dimension nif H' (X, Zm.,) = 0
for i # nand H"(X, Zm,,) # 0 and torsion-free.

o Let B= H"(X,Zr,,) be the dualizing Zr.,-module. Given any
Zap-module A, we have H' (X, A) =~ H,_j(X,B® A).

o The two notions of duality are independent:
EXAMPLE

o Surface groups of genus at least 2 are not abelian duality groups,
though they are (Poincaré) duality groups.

o Let 7w = Z2 % G, where

G={X1,... X | X72XaXi Xy 'y X Xy Xa X, )
is Higman’s acyclic group. Then 7t is an abelian duality group (of
dimension 2), but not a duality group.
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DUALITY PROPERTIES ARRANGEMENTS OF SMOOTH HYPERSURFACES

THEOREM (DSY)

Let X be an abelian duality space of dimension n. Then:
o bi(X)=n—1.
o bi(X) #0, for0<i<nandbj(X)=0fori>n.
o (—1)"x(X) = 0.

THEOREM (DENHAM-S. 2017)

Let U be a connected, smooth, complex quasi-projective variety of
dimension n. Suppose U has a smooth compactification Y for which

@ Components of Y\U form an arrangement of hypersurfaces A;

@ For each submanifold X in the intersection poset L(.A), the
complement of the restriction of A to X is a Stein manifold.

Then U is both a duality space and an abelian duality space of
dimension n.
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DUALITY PROPERTIES ARRANGEMENTS OF SMOOTH HYPERSURFACES

LINEAR, ELLIPTIC, AND TORIC ARRANGEMENTS

THEOREM (DS17)
Suppose that A is one of the following:
@ An affine-linear arrangement in C", or a hyperplane arrangement
in CIP";
@ A non-empty elliptic arrangement in E";
@ A toric arrangement in (C*)".

Then the complement M(.A) is both a duality space and an abelian
duality space of dimension n— r, n+ r, and n, respectively, where r is
the corank of the arrangement.

This theorem extends several previous results:
@ Davis, Januszkiewicz, Leary, and Okun (2011);
@ Levin and Varchenko (2012);
@ Davis and Settepanella (2013), Esterov and Takeuchi (2014).
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ALGEBRAIC MODELS AND RESONANCE VARIETIES COMMUTATIVE DIFFERENTIAL GRADED ALGEBRAS

COMMUTATIVE DIFFERENTIAL GRADED ALGEBRAS

o Let A= (A*,d) be a commutative, differential graded algebra over
a field k of characteristic 0. That is:

o A= @;=9A’, where A’ are k-vector spaces.

o The multiplication -: A'®@ A — At/ is graded-commutative, i.e.,
ab = (—1)/@lbIpa for all homogeneous a and b.

o The differential d: A’ — A/ satisfies the graded Leibnitz rule, i.e.,
d(ab) = d(a)b+ (—1)lalad(b).

o A CDGA Ais of finite-type (or g-finite) it it is connected (i.e.,
A® =k-1)and dimA < o forall i < g.

o H*(A) inherits an algebra structure from A.

o A cdga morphism ¢: A — Bis both an algebra map and a cochain
map. Hence, it induces a morphism ¢*: H*(A) — H*(B).
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ALGEBRAIC MODELS AND RESONANCE VARIETIES COMMUTATIVE DIFFERENTIAL GRADED ALGEBRAS

o Amap ¢: A— Bis a quasi-isomorphism if ¢* is an isomorphism.
Likewise, ¢ is a g-quasi-isomorphism (for some g > 1) if ¢* is an
isomorphism in degrees < g and is injective in degree g + 1.

o Two cdgas, A and B, are (q-)equivalent (~) if there is a zig-zag of
(g-)quasi-isomorphisms connecting A to B.

o Acdga Ais formal (or just g-formal) if it is (g-)equivalent to
(H*(A),d =0).

o A CDGA is g-minimal if it is of the form (/\ V, d), where the
differential structure is the inductive limit of a sequence of Hirsch
extensions of increasing degrees, and V' = 0 for i > q.

o Every cDGA A with H°(A) = k admits a g-minimal model, Mq(A)
(i.e., a g-equivalence Mg4(A) — Awith My(A) = (A V,d) a
g-minimal cdga), unique up to iso.
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ALGEBRAIC MODELS AND RESONANCE VARIETIES ALGEBRAIC MODELS FOR SPACES

ALGEBRAIC MODELS FOR SPACES

o Given any (path-connected) space X, there is an associated
Sullivan Q-cdga, Apr(X), such that H*(ApL(X)) = H*(X, Q).

o An algebraic (q-)model (over k) for X is a k-cgda (A, d) which is
(g-) equivalent to App,(X) ®q k.
o If M is a smooth manifold, then Q4r (M) is a model for M (over R).

o Examples of spaces having finite-type models include:

o Formal spaces (such as compact K&hler manifolds, hyperplane
arrangement complements, toric spaces, etc).

o Smooth quasi-projective varieties, compact solvmanifolds,
Sasakian manifolds, etc.

ALEX SUCIU (NORTHEASTERN) MODELS, DUALITY, AND RESONANCE MIT TOPOLOGY SEMINAR 11/ 24



ALGEBRAIC MODELS AND RESONANCE VARIETIES RESONANCE VARIETIES OF A CDGA

RESONANCE VARIETIES OF A CDGA

o Let A= (A°,d) be a connected, finite-type CDGA over k = C.
o Foreach ae Z'(A) = H'(A), we have a cochain complex,

0 1 2
(A%, 6,): A0 Sopt o pp %

with differentials 0, (u) = a-u+du, forall ue A'.
o The resonance varieties of A are the affine varieties

RL(A) = {ae H'(A) | dim H'(A®,5,) > s}.

o If Ais a CGA (that is, d = 0), the resonance varieties R (A) are
homogeneous subvarieties of A'.

o If X is a connected, finite-type CW-complex, we set
RL(X) := RL(H*(X,C)).
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ALGEBRAIC MODELS AND RESONANCE VARIETIES RESONANCE VARIETIES OF A CDGA

o Fix a k-basis {eq, ..., er} for A", and let {xq, ..., x;} be the dual
basis for A; = (A")*.

o Identify Sym(A¢) with S = k|[xq, ..., X;], the coordinate ring of the
affine space A'.

o Define a cochain complex of free S-modules, L(A) := (A°® S, ),

--H—A’@SHA’“@S A’+2®S*>~-,

where §'(u@f) =3 guefx+du®f.
o The specialization of (A® S, ¢) at ae A' coincides with (A, 5,).

o Hence, RL(A) is the zero-set of the ideal generated by all minors
of size b; — s + 1 of the block-matrix 6’1 @ 4'.

o In particular, RL(A) = V(I,_s(6")), the zero-set of the ideal of
codimension s minors of 6.
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ALGEBRAIC MODELS AND RESONANCE VARIETIES RESONANCE VARIETIES OF A CDGA

RESONANCE VARIETIES OF PD-ALGEBRAS

o Let Abe a PD, algebra.
o Forall0 <i<nandall ac A", the square

n—i—1y% .
(An—i>* (% ) (An—/—1)*

PDT; PDT;

%2

Ai Ai+1

commutes up to a sign of (—1)".
o Consequently,

(Hi(A 5a))* ~ H' (A 6_a).
o Hence, for all j and s,
Rs(A) = RE(A).
o In particular, R{(A) = {0}.
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ALGEBRAIC MODELS AND RESONANCE VARIETIES 3-DIMENSIONAL POINCARE DUALITY ALGEBRAS

3-DIMENSIONAL POINCARE DUALITY ALGEBRAS

o Let Abe a PD3-algebra with b;(A) = r > 0. Then
o R3(A) = R(A) = {0}.
o R2(A)=RL(A) for1 <s<r.
o RL(A) = &, otherwise.

o Write Rs(A) = R1(A). Then
) RZK(A) R2k+1 (A) if r is even.
o ng_1( ) ng(A) if r is odd.

o If uahasrank r > 3,then R, >(A) = R,_1(A) = R,(A) = {0}.

o If r = 4, then dim R (A) = null(ua) = 2.
o Here, the rank of a form y: /\3 V — k is the minimum dimension of
a linear subspace W < V such that y factors through N4

o The nullity of y is the maximum dimension of a subspace U c V
suchthat uy(anbac)=0foralla be Uandce V.
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ALGEBRAIC MODELS AND RESONANCE VARIETIES 3-DIMENSIONAL POINCARE DUALITY ALGEBRAS

o If ris even, then R¢(A) = Ro(A) = A'.

o If risodd > 1, then R4 (A) # A" if and only if 11, is “generic," that
is, there is a ¢ € A' such that the 2-form v, € A? A; given by
ve(an b) = ua(anbac)hasrank 2g,i.e., 7 = 0in A9 A.

o Inthat case, R+(A) is the hypersurface Pf(y4) = 0, where
pf(61(7; 1)) = (—1)*1x; Pf(ua).

EXAMPLE

Let M = S' x Xg, Where g > 2. Then uy = ZL a;jb;jc is generic, and
Pf(um) = xggj:1. Hence, Ry =+ = Rog_o = {Xog+1 = 0} and
Rog—1 = Rag = Rag+1 = {0}.
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ALGEBRAIC MODELS AND RESONANCE VARIETIES

3-DIMENSIONAL POINCARE DUALITY ALGEBRAS

RESONANCE VARIETIES OF 3-FORMS OF LOW RANK

[n ] #w TR | [[n] & Ri=Rp [ Rs |
[3 ] 128 [ o | [ 5] 125¢345 | {xs=0} | 0 |
n u R Ro =Rz Ry
6 123+456 C6 | {xq=x=x3=0} U {x4 = x5 = x5 = 0} 0
123+236+456 | C° {x3 = x5 = Xg = 0} 0
n I Ry = Ry Rs = Ra Rs
7 147+257+367 {x; =0} {x; =0} 0
456+147+257+367 {x; = 0} X4 = X5 = Xg — x7 — 0} 0
123+456+147 {xy =0} U {xq4 =0} {X{=Xo=Xx3=x4 =0} U{Xy =x4 = X5 = xg =0} 0
123+456+147+257 {XyX4 + Xo x5 = 0} {X{ =Xo = X4 = X5 = x% — X3Xg = 0} 0
123+456+147+257+367 | {X{X4 + XoX5 + XaXg = X2 } 0 0
n I Ry Rp = Rg R4 = Rs
8 147+257+367+358 C8 {x; =0} {x3=x5=x7=xg =0} U{X; =X3 =x4 =X5 =x7 =0}
456+147+257+367+358 [& {x5 = x7 = 0} {x3 =X = X5 = X7 = Xy g + Xg = 0}
123+456+147+358 C8[ {xy =x5 =0} U {xg = x4 = 0} {X{ = X3 = X4 = X5 = XoXg + X7Xg = 0}
123+456+147+257+358 C8[{x; =x5 =0} U {X3 = x4 = x5 = 0} {X{ =Xo = X3 = X4 = X5 = X7 = 0}
123+456+147+257+367+358 |C® {X3 = X5 = xyx4 — x5 = 0} {X{ =Xp =X3 = X4 = X5 = Xg = X7 = 0}
147+268+358 C8| {xq=x4=x7=0}U{xg=0} |{xq=x4=x7=xg=0}U{Xp=X3=X5=Xg=Xg=0)
147+257+268+358 [ Lol ulg Lol
456+147+257+268+358 8 CiuC, Lol
147+257+367+268+358 [ Lol,ulguly ool
456+147+257+367+268+358 |C® CiuCru Cq Liulyoly
123+456+147+268+358 8 CiuC, L
123+456+147+257+268+358 | C® {f = =fpo =0} 0
123+456+147+257+367+268+358| CC {01 = =gop =0} 0
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ALGEBRAIC MODELS AND RESONANCE VARIETIES PROPAGATION OF RESONANCE

PROPAGATION OF RESONANCE

o We say that 'the resonance varieties of a graded algebra
A= @}, A propagateif R}(A)< - Ri(A).

o (Eisenbud—Popescu—Yuzvinsky 2003) If X is the complement of a
hyperplane arrangement, then its resonance varieties propagate.

THEOREM (DSY 2016/17)
o Suppose the k-dual of A has a linear free resolution over
E = AA'. Then the resonance varieties of A propagate.

o Let X be a formal, abelian duality space. Then the resonance
varieties of X propagate.

o Let M be a closed, orientable 3-manifold. If by(M) is even and
non-zero, then the resonance varieties of M do not propagate.
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CHARACTERISTIC VARIETIES CHARACTERISTIC VARIETIES

CHARACTERISTIC VARIETIES

o Let X be a connected, finite-type CW-complex. Then
T = 111(X, Xp) is a finitely presented group, with 7., =~ H; (X, Z).

o Thering R = C|[m,p] is the coordinate ring of the character group,
Char(X) = Hom(7,C*) =~ (C*)" x Tors(,p), Where r = by (X).

o The characteristic varieties of X are the homology jump loci

VI(X) = {p € Char(X) | dim H;(X,C,) > s}.

o These varieties are homotopy-type invariants of X, with V! (X)
depending only on 7= = 771 (X).

o Set Vy(n) := V{(K (7, 1)); then Vi () = Vy(r/7").
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CHARACTERISTIC VARIETIES VA%PM

EXAMPLE

Letfe Z[t{',... t7'] be a Laurent polynomial, (1) = 0. There is then

a finitely presented group 7t with 7t,, = Z" such that V(1) = V(f).

DUALITY AND PROPAGATION OF CHARACTERISTIC

THEOREM (DSY)

Let X be an abelian duality space of dimension n. Ifp: 71 (X) — C*
satisfies H'(X,C,) # 0, then H/(X,C,) # 0, forall i < j < n.

COROLLARY

Let X be an abelian duality space of dimension n. Then The
characteristic varieties propagate, i.e., V] (X) < --- < VP(X).
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CHARACTERISTIC VARIETIES INFINITESIMAL FINITENESS OBSTRUCTIONS

INFINITESIMAL FINITENESS OBSTRUCTIONS
QUESTION

Let X be a connected CW-complex with finite g-skeleton. Does X
admit a g-finite g-model A?

THEOREM
If X is as above, then, for alli < q and all s:
o (Dimca—Papadima 2014) V(X)) = R5(A)o)-
In particular, if X is q-formal, then V(X)) 1) = R(X)o)-
o (Macinic, Papadima, Popescu, S. 2017) TCo(RL(A)) < RL(X).

o (Budur-Wang 2017) All the irreducible components of V'(X)
passing through the origin of H' (X, C*) are algebraic subtori.

EXAMPLE

Let 7t be a finitely presented group with 7r,, = Z" and
Vi(r) = {te (C*)" | Y., t; = n}. Then 7t admits no 1-finite 1-model.
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CHARACTERISTIC VARIETIES INFINITESIMAL FINITENESS OBSTRUCTIONS

THEOREM (PAPADIMA-S. 2017)

Suppose X is (q + 1) finite, or X admits a g-finite g-model. Then
bi(Mg(X)) <o, foralli < q+1.

COROLLARY

Let 7t be a finitely generated group. Assume that either t is finitely
presented, or it has a 1-finite 1-model. Then by(M (7)) < co.

EXAMPLE
o Consider the free metabelian group 7 = F, / F}, with n > 2.
o We have Vy () = V1(F,) = (C*)", and so 7 passes the
Budur—Wang test.

o But bo(M (7)) = o0, and so 7t admits no 1-finite 1-model (and is
not finitely presented).
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CHARACTERISTIC VARIETIES A TANGENT CONE THEOREM FOR 3-MANIFOLDS

A TANGENT CONE THEOREM FOR 3-MANIFOLDS

THEOREM

Let M be a closed, orientable, 3-dimensional manifold. Suppose bi(M)
is odd and .y is generic. Then TCy(V{(M)) = RI(M).

o If by (M) is even, the conclusion may or may not hold:
o Let M = S x S2#81 x $2; then V! (M) = Char(M) = (C*)2, and
so TCy(V] (M)) = RI(M) = C2.

o Let M be the Heisenberg nilmanifold; then TC4 (V] (M)) = {0},
whereas R1(M) = C2.

o Let M be a closed, orientable 3-manifold with by = 7 and
I = €16365 + 616467 + €567 + €365€7 + €46565. Then u is
generic and Pf(u) = (x2 + x2)2. Hence, R1(M) = {x2 + x% = 0}
splits as a union of two hyperplanes over C, but not over Q.
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