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DUALITY PROPERTIES POINCARÉ DUALITY ALGEBRAS

POINCARÉ DUALITY ALGEBRAS

Let A be a graded, graded-commutative algebra over a field k.
A =

À

iě0 Ai , where Ai are k-vector spaces.
¨ : Ai bAj Ñ Ai+j .
ab = (´1)ijba for all a P Ai , b P Bj .

We will assume that A is connected (A0 = k ¨ 1), and locally finite
(all the Betti numbers bi(A) := dimk Ai are finite).

A is a Poincaré duality k-algebra of dimension n if there is a
k-linear map ε : An Ñ k (called an orientation) such that all the
bilinear forms Ai bk An´i Ñ k, ab b ÞÑ ε(ab) are non-singular.
Consequently,

bi (A) = bn´i (A), and Ai = 0 for i ą n.
ε is an isomorphism.
The maps PD : Ai Ñ (An´i )˚, PD(a)(b) = ε(ab) are isomorphisms.
Each a P Ai has a Poincaré dual, a_ P An´i , such that ε(aa_) = 1.
The orientation class is defined as ωA = 1_, so that ε(ωA) = 1.

ALEX SUCIU (NORTHEASTERN) MODELS, DUALITY, AND RESONANCE MIT TOPOLOGY SEMINAR 2 / 24



DUALITY PROPERTIES POINCARÉ DUALITY ALGEBRAS

THE ASSOCIATED ALTERNATING FORM

Associated to a k-PDn algebra there is an alternating n-form,

µA :
ŹnA1 Ñ k, µA(a1 ^ ¨ ¨ ¨ ^ an) = ε(a1 ¨ ¨ ¨ an).

Assume now that n = 3, and set r = b1(A). Fix a basis
te1, . . . ,eru for A1, and let te_1 , . . . ,e_r u be the dual basis for A2.

The multiplication in A, then, is given on basis elements by

eiej =
r

ÿ

k=1

µijk e_k , eie_j = δij ω,

where µijk = µ(ei ^ ej ^ ek ).

Alternatively, let Ai = (Ai)˚, and let ei P A1 be the (Kronecker)
dual of ei . We may then view µ dually as a trivector,

µ =
ÿ

µijk ei ^ ej ^ ek P
Ź3A1,

which encodes the algebra structure of A.
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DUALITY PROPERTIES POINCARÉ DUALITY ALGEBRAS

POINCARÉ DUALITY IN ORIENTABLE MANIFOLDS

If M is a compact, connected, orientable, n-dimensional manifold,
then the cohomology ring A = H.(M,k) is a PDn algebra over k.

Sullivan (1975): for every finite-dimensional Q-vector space V and
every alternating 3-form µ P

Ź3V ˚, there is a closed 3-manifold M
with H1(M,Q) = V and cup-product form µM = µ.

Such a 3-manifold can be constructed via “Borromean surgery."

If M bounds an oriented 4-manifold W such that the cup-product
pairing on H2(W ,M) is non-degenerate (e.g., if M is the link of an
isolated surface singularity), then µM = 0.
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DUALITY PROPERTIES DUALITY SPACES

DUALITY SPACES

A more general notion of duality is due to Bieri and Eckmann (1978).

Let X be a connected, finite-type CW-complex, and set π = π1(X , x0).

X is a duality space of dimension n if H i(X ,Zπ) = 0 for i ‰ n and
Hn(X ,Zπ) ‰ 0 and torsion-free.

Let D = Hn(X ,Zπ) be the dualizing Zπ-module. Given any
Zπ-module A, we have H i(X ,A) – Hn´i(X ,D bA).

If D = Z, with trivial Zπ-action, then X is a Poincaré duality
space.

If X = K (π,1) is a duality space, then π is a duality group.
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DUALITY PROPERTIES ABELIAN DUALITY SPACES

ABELIAN DUALITY SPACES

We introduce in [Denham–S.–Yuzvinsky 2016/17] an analogous
notion, by replacing π  πab.

X is an abelian duality space of dimension n if H i(X ,Zπab) = 0
for i ‰ n and Hn(X ,Zπab) ‰ 0 and torsion-free.

Let B = Hn(X ,Zπab) be the dualizing Zπab-module. Given any
Zπab-module A, we have H i(X ,A) – Hn´i(X ,B bA).

The two notions of duality are independent:

EXAMPLE

Surface groups of genus at least 2 are not abelian duality groups,
though they are (Poincaré) duality groups.

Let π = Z2 ˚G, where
G = xx1, . . . , x4 | x´2

1 x2x1x´1
2 , . . . , x´2

4 x1x4x´1
1 y

is Higman’s acyclic group. Then π is an abelian duality group (of
dimension 2), but not a duality group.
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DUALITY PROPERTIES ARRANGEMENTS OF SMOOTH HYPERSURFACES

THEOREM (DSY)

Let X be an abelian duality space of dimension n. Then:
b1(X ) ě n´ 1.
bi(X ) ‰ 0, for 0 ď i ď n and bi(X ) = 0 for i ą n.
(´1)nχ(X ) ě 0.

THEOREM (DENHAM–S. 2017)

Let U be a connected, smooth, complex quasi-projective variety of
dimension n. Suppose U has a smooth compactification Y for which

1 Components of Y zU form an arrangement of hypersurfaces A;

2 For each submanifold X in the intersection poset L(A), the
complement of the restriction of A to X is a Stein manifold.

Then U is both a duality space and an abelian duality space of
dimension n.
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DUALITY PROPERTIES ARRANGEMENTS OF SMOOTH HYPERSURFACES

LINEAR, ELLIPTIC, AND TORIC ARRANGEMENTS

THEOREM (DS17)

Suppose that A is one of the following:

1 An affine-linear arrangement in Cn, or a hyperplane arrangement
in CPn;

2 A non-empty elliptic arrangement in En;

3 A toric arrangement in (C˚)n.
Then the complement M(A) is both a duality space and an abelian
duality space of dimension n´ r , n + r , and n, respectively, where r is
the corank of the arrangement.

This theorem extends several previous results:
1 Davis, Januszkiewicz, Leary, and Okun (2011);
2 Levin and Varchenko (2012);
3 Davis and Settepanella (2013), Esterov and Takeuchi (2014).
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ALGEBRAIC MODELS AND RESONANCE VARIETIES COMMUTATIVE DIFFERENTIAL GRADED ALGEBRAS

COMMUTATIVE DIFFERENTIAL GRADED ALGEBRAS

Let A = (A‚, d) be a commutative, differential graded algebra over
a field k of characteristic 0. That is:

A =
À

iě0 Ai , where Ai are k-vector spaces.

The multiplication ¨ : Ai bAj Ñ Ai+j is graded-commutative, i.e.,
ab = (´1)|a||b|ba for all homogeneous a and b.
The differential d : Ai Ñ Ai+1 satisfies the graded Leibnitz rule, i.e.,
d(ab) = d(a)b + (´1)|a|a d(b).

A CDGA A is of finite-type (or q-finite) if it is connected (i.e.,
A0 = k ¨ 1) and dimAi ă 8 for all i ď q.

H‚(A) inherits an algebra structure from A.

A cdga morphism ϕ : A Ñ B is both an algebra map and a cochain
map. Hence, it induces a morphism ϕ˚ : H‚(A)Ñ H‚(B).
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ALGEBRAIC MODELS AND RESONANCE VARIETIES COMMUTATIVE DIFFERENTIAL GRADED ALGEBRAS

A map ϕ : A Ñ B is a quasi-isomorphism if ϕ˚ is an isomorphism.
Likewise, ϕ is a q-quasi-isomorphism (for some q ě 1) if ϕ˚ is an
isomorphism in degrees ď q and is injective in degree q + 1.

Two cdgas, A and B, are (q-)equivalent (»q) if there is a zig-zag of
(q-)quasi-isomorphisms connecting A to B.

A cdga A is formal (or just q-formal) if it is (q-)equivalent to
(H‚(A),d = 0).

A CDGA is q-minimal if it is of the form (
Ź

V ,d), where the
differential structure is the inductive limit of a sequence of Hirsch
extensions of increasing degrees, and V i = 0 for i ą q.

Every CDGA A with H0(A) = k admits a q-minimal model, Mq(A)
(i.e., a q-equivalence Mq(A)Ñ A with Mq(A) = (

Ź

V ,d) a
q-minimal cdga), unique up to iso.
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ALGEBRAIC MODELS AND RESONANCE VARIETIES ALGEBRAIC MODELS FOR SPACES

ALGEBRAIC MODELS FOR SPACES

Given any (path-connected) space X , there is an associated
Sullivan Q-cdga, APL(X ), such that H‚(APL(X )) = H‚(X ,Q).

An algebraic (q-)model (over k) for X is a k-cgda (A,d) which is
(q-) equivalent to APL(X )bQ k.

If M is a smooth manifold, then ΩdR(M) is a model for M (over R).

Examples of spaces having finite-type models include:

Formal spaces (such as compact Kähler manifolds, hyperplane
arrangement complements, toric spaces, etc).
Smooth quasi-projective varieties, compact solvmanifolds,
Sasakian manifolds, etc.
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ALGEBRAIC MODELS AND RESONANCE VARIETIES RESONANCE VARIETIES OF A CDGA

RESONANCE VARIETIES OF A CDGA

Let A = (A‚, d) be a connected, finite-type CDGA over k = C.

For each a P Z 1(A) – H1(A), we have a cochain complex,

(A‚, δa) : A0 δ0
a // A1 δ1

a // A2 δ2
a // ¨ ¨ ¨ ,

with differentials δi
a(u) = a ¨ u + du, for all u P Ai .

The resonance varieties of A are the affine varieties

Ri
s(A) = ta P H1(A) | dimH i(A‚, δa) ě su.

If A is a CGA (that is, d = 0), the resonance varieties Ri
s(A) are

homogeneous subvarieties of A1.

If X is a connected, finite-type CW-complex, we set
Ri

s(X ) := Ri
s(H‚(X ,C)).
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ALGEBRAIC MODELS AND RESONANCE VARIETIES RESONANCE VARIETIES OF A CDGA

Fix a k-basis te1, . . . ,eru for A1, and let tx1, . . . , xru be the dual
basis for A1 = (A1)˚.

Identify Sym(A1) with S = k[x1, . . . , xr ], the coordinate ring of the
affine space A1.

Define a cochain complex of free S-modules, L(A) := (A‚ bS, δ),

¨ ¨ ¨ // Ai bS δi
// Ai+1 bS δi+1

// Ai+2 bS // ¨ ¨ ¨ ,

where δi(u b f ) =
řn

j=1 eju b f xj + du b f .

The specialization of (AbS, δ) at a P A1 coincides with (A, δa).

Hence, Ri
s(A) is the zero-set of the ideal generated by all minors

of size bi ´ s + 1 of the block-matrix δi+1 ‘ δi .

In particular, R1
s(A) = V (Ir´s(δ1)), the zero-set of the ideal of

codimension s minors of δ1.
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ALGEBRAIC MODELS AND RESONANCE VARIETIES RESONANCE VARIETIES OF A CDGA

RESONANCE VARIETIES OF PD-ALGEBRAS

Let A be a PDn algebra.

For all 0 ď i ď n and all a P A1, the square

(An´i)˚
(δn´i´1

a )˚ // (An´i´1)˚

Ai δi
a //

PD –

OO

Ai+1

PD –

OO

commutes up to a sign of (´1)i .

Consequently, (
H i(A, δa)

)˚
– Hn´i(A, δ´a).

Hence, for all i and s,
Ri

s(A) = Rn´i
s (A).

In particular, Rn
1(A) = t0u.
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ALGEBRAIC MODELS AND RESONANCE VARIETIES 3-DIMENSIONAL POINCARÉ DUALITY ALGEBRAS

3-DIMENSIONAL POINCARÉ DUALITY ALGEBRAS

Let A be a PD3-algebra with b1(A) = r ą 0. Then
R3

1(A) = R0
1(A) = t0u.

R2
s(A) = R1

s(A) for 1 ď s ď r .

Ri
s(A) = H, otherwise.

Write Rs(A) = R1
s(A). Then

R2k (A) = R2k+1(A) if r is even.

R2k´1(A) = R2k (A) if r is odd.

If µA has rank r ě 3, then Rr´2(A) = Rr´1(A) = Rr (A) = t0u.

If r ě 4, then dimR1(A) ě null(µA) ě 2.

Here, the rank of a form µ :
Ź3 V Ñ k is the minimum dimension of

a linear subspace W Ă V such that µ factors through
Ź3 W .

The nullity of µ is the maximum dimension of a subspace U Ă V
such that µ(a^ b^ c) = 0 for all a,b P U and c P V .
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ALGEBRAIC MODELS AND RESONANCE VARIETIES 3-DIMENSIONAL POINCARÉ DUALITY ALGEBRAS

If r is even, then R1(A) = R0(A) = A1.

If r is odd ą 1, then R1(A) ‰ A1 if and only if µA is “generic," that
is, there is a c P A1 such that the 2-form γc P

Ź2 A1 given by
γc(a^ b) = µA(a^ b^ c) has rank 2g, i.e., γ

g
c ‰ 0 in

Ź2g A1.

In that case, R1(A) is the hypersurface Pf(µA) = 0, where
pf(δ1(i ; i)) = (´1)i+1xi Pf(µA).

EXAMPLE

Let M = S1 ˆΣg , where g ě 2. Then µM =
řg

i=1 aibic is generic, and
Pf(µM) = xg´1

2g+1. Hence, R1 = ¨ ¨ ¨ = R2g´2 = tx2g+1 = 0u and
R2g´1 = R2g = R2g+1 = t0u.
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ALGEBRAIC MODELS AND RESONANCE VARIETIES 3-DIMENSIONAL POINCARÉ DUALITY ALGEBRAS

RESONANCE VARIETIES OF 3-FORMS OF LOW RANK

n µ R1
3 123 0

n µ R1 = R2 R3
5 125+345 tx5 = 0u 0

n µ R1 R2 = R3 R4
6 123+456 C6 tx1 = x2 = x3 = 0uY tx4 = x5 = x6 = 0u 0

123+236+456 C6 tx3 = x5 = x6 = 0u 0

n µ R1 = R2 R3 = R4 R5
7 147+257+367 tx7 = 0u tx7 = 0u 0

456+147+257+367 tx7 = 0u tx4 = x5 = x6 = x7 = 0u 0
123+456+147 tx1 = 0uY tx4 = 0u tx1 = x2 = x3 = x4 = 0uY tx1 = x4 = x5 = x6 = 0u 0

123+456+147+257 tx1x4 + x2x5 = 0u tx1 = x2 = x4 = x5 = x2
7 ´ x3x6 = 0u 0

123+456+147+257+367 tx1x4 + x2x5 + x3x6 = x2
7 u 0 0

n µ R1 R2 = R3 R4 = R5 R6
8 147+257+367+358 C8 tx7 = 0u tx3 =x5 =x7 =x8 =0uYtx1 =x3 =x4 =x5 =x7 =0u 0

456+147+257+367+358 C8 tx5 = x7 = 0u tx3 = x4 = x5 = x7 = x1x8 + x2
6 = 0u 0

123+456+147+358 C8 tx1 = x5 = 0uY tx3 = x4 = 0u tx1 = x3 = x4 = x5 = x2x6 + x7x8 = 0u 0
123+456+147+257+358 C8 tx1 = x5 = 0uY tx3 = x4 = x5 = 0u tx1 = x2 = x3 = x4 = x5 = x7 = 0u 0

123+456+147+257+367+358 C8 tx3 = x5 = x1x4´ x2
7 = 0u tx1 = x2 = x3 = x4 = x5 = x6 = x7 = 0u 0

147+268+358 C8 tx1 = x4 = x7 = 0uY tx8 = 0u tx1 =x4 =x7 =x8 =0uYtx2 =x3 =x5 =x6 =x8 =0u 0
147+257+268+358 C8 L1Y L2Y L3 L1Y L2 0

456+147+257+268+358 C8 C1YC2 L1Y L2 0
147+257+367+268+358 C8 L1Y L2Y L3Y L4 L1

1Y L1
2Y L1

3 0
456+147+257+367+268+358 C8 C1YC2YC3 L1Y L2Y L3 0

123+456+147+268+358 C8 C1YC2 L 0
123+456+147+257+268+358 C8 tf1 = ¨ ¨ ¨ = f20 = 0u 0 0

123+456+147+257+367+268+358 C8 tg1 = ¨ ¨ ¨ = g20 = 0u 0 0
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ALGEBRAIC MODELS AND RESONANCE VARIETIES PROPAGATION OF RESONANCE

PROPAGATION OF RESONANCE

We say that the resonance varieties of a graded algebra
A =

Àn
i=0 Ai propagate if R1

1(A) Ď ¨ ¨ ¨ Ď Rn
1(A).

(Eisenbud–Popescu–Yuzvinsky 2003) If X is the complement of a
hyperplane arrangement, then its resonance varieties propagate.

THEOREM (DSY 2016/17)

Suppose the k-dual of A has a linear free resolution over
E =

Ź

A1. Then the resonance varieties of A propagate.

Let X be a formal, abelian duality space. Then the resonance
varieties of X propagate.

Let M be a closed, orientable 3-manifold. If b1(M) is even and
non-zero, then the resonance varieties of M do not propagate.
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CHARACTERISTIC VARIETIES CHARACTERISTIC VARIETIES

CHARACTERISTIC VARIETIES

Let X be a connected, finite-type CW-complex. Then
π = π1(X , x0) is a finitely presented group, with πab – H1(X ,Z).

The ring R = C[πab] is the coordinate ring of the character group,
Char(X ) = Hom(π,C˚) – (C˚)r ˆTors(πab), where r = b1(X ).

The characteristic varieties of X are the homology jump loci

V i
s(X ) = tρ P Char(X ) | dimHi(X ,Cρ) ě su.

These varieties are homotopy-type invariants of X , with V1
s (X )

depending only on π = π1(X ).

Set V1(π) := V1
1 (K (π,1)); then V1(π) = V1(π/π2).
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CHARACTERISTIC VARIETIES
ABELIAN DUALITY AND PROPAGATION OF CHARACTERISTIC

VARIETIES

EXAMPLE

Let f P Z[t˘1
1 , . . . , t˘1

n ] be a Laurent polynomial, f (1) = 0. There is then
a finitely presented group π with πab = Zn such that V1(π) = V(f ).

THEOREM (DSY)

Let X be an abelian duality space of dimension n. If ρ : π1(X )Ñ C˚

satisfies H i(X ,Cρ) ‰ 0, then H j(X ,Cρ) ‰ 0, for all i ď j ď n.

COROLLARY

Let X be an abelian duality space of dimension n. Then The
characteristic varieties propagate, i.e., V1

1 (X ) Ď ¨ ¨ ¨ Ď Vn
1 (X ).
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CHARACTERISTIC VARIETIES INFINITESIMAL FINITENESS OBSTRUCTIONS

INFINITESIMAL FINITENESS OBSTRUCTIONS

QUESTION

Let X be a connected CW-complex with finite q-skeleton. Does X
admit a q-finite q-model A?

THEOREM

If X is as above, then, for all i ď q and all s:
(Dimca–Papadima 2014) V i

s(X )(1) – Ri
s(A)(0).

In particular, if X is q-formal, then V i
s(X )(1) – Ri

s(X )(0).

(Macinic, Papadima, Popescu, S. 2017) TC0(Ri
s(A)) Ď Ri

s(X ).
(Budur–Wang 2017) All the irreducible components of V i(X )
passing through the origin of H1(X ,C˚) are algebraic subtori.

EXAMPLE

Let π be a finitely presented group with πab = Zn and
V1(π) = tt P (C˚)n |

řn
i=1 ti = nu. Then π admits no 1-finite 1-model.
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CHARACTERISTIC VARIETIES INFINITESIMAL FINITENESS OBSTRUCTIONS

THEOREM (PAPADIMA–S. 2017)

Suppose X is (q + 1) finite, or X admits a q-finite q-model. Then
bi(Mq(X )) ă 8, for all i ď q + 1.

COROLLARY

Let π be a finitely generated group. Assume that either π is finitely
presented, or π has a 1-finite 1-model. Then b2(M1(π)) ă 8.

EXAMPLE

Consider the free metabelian group π = Fn / F2n with n ě 2.
We have V1(π) = V1(Fn) = (C˚)n, and so π passes the
Budur–Wang test.
But b2(M1(π)) = 8, and so π admits no 1-finite 1-model (and is
not finitely presented).
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CHARACTERISTIC VARIETIES A TANGENT CONE THEOREM FOR 3-MANIFOLDS

A TANGENT CONE THEOREM FOR 3-MANIFOLDS

THEOREM

Let M be a closed, orientable, 3-dimensional manifold. Suppose b1(M)
is odd and µM is generic. Then TC1(V1

1 (M)) = R1
1(M).

If b1(M) is even, the conclusion may or may not hold:

Let M = S1 ˆS2#S1 ˆS2; then V1
1 (M) = Char(M) = (C˚)2, and

so TC1(V1
1 (M)) = R1

1(M) = C2.

Let M be the Heisenberg nilmanifold; then TC1(V1
1 (M)) = t0u,

whereas R1
1(M) = C2.

Let M be a closed, orientable 3-manifold with b1 = 7 and
µ = e1e3e5 + e1e4e7 + e2e5e7 + e3e6e7 + e4e5e6. Then µ is
generic and Pf(µ) = (x2

5 + x2
7 )

2. Hence, R1
1(M) = tx2

5 + x2
7 = 0u

splits as a union of two hyperplanes over C, but not over Q.
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