Algebraic models, DUALITY, AND RESONANCE

Alex Suciu

Northeastern University

Topology Seminar MIT

March 5, 2018

POINCARÉ DUALITY ALGEBRAS

- Let A be a graded, graded-commutative algebra over a field \mathbb{k}.
- $A=\oplus_{i \geqslant 0} A^{i}$, where A^{i} are \mathbb{k}-vector spaces.
- $\cdot A^{i} \otimes A^{j} \rightarrow A^{i+j}$.
- $a b=(-1)^{i j}$ ba for all $a \in A^{i}, b \in B^{j}$.
- We will assume that A is connected ($A^{0}=\mathbb{k} \cdot 1$), and locally finite (all the Betti numbers $b_{i}(A):=\operatorname{dim}_{\mathbb{k}} A^{i}$ are finite).
- A is a Poincaré duality \mathbb{k}-algebra of dimension n if there is a \mathbb{k}-linear map $\varepsilon: A^{n} \rightarrow \mathbb{k}$ (called an orientation) such that all the bilinear forms $A^{i} \otimes_{\mathbb{k}} A^{n-i} \rightarrow \mathbb{k}, a \otimes b \mapsto \varepsilon(a b)$ are non-singular.
- Consequently,
- $b_{i}(A)=b_{n-i}(A)$, and $A^{i}=0$ for $i>n$.
- ε is an isomorphism.
- The maps PD: $A^{i} \rightarrow\left(A^{n-i}\right)^{*}, \operatorname{PD}(a)(b)=\varepsilon(a b)$ are isomorphisms.
- Each $a \in A^{i}$ has a Poincaré dual, $a^{\vee} \in A^{n-i}$, such that $\varepsilon\left(a a^{\vee}\right)=1$.
- The orientation class is defined as $\omega_{A}=1^{\vee}$, so that $\varepsilon\left(\omega_{A}\right)=1$.

The Associated alternating form

- Associated to a $\mathbb{k}-\mathrm{PD}_{n}$ algebra there is an alternating n-form,

$$
\mu_{A}: \wedge^{n} A^{1} \rightarrow \mathbb{k}, \quad \mu_{A}\left(a_{1} \wedge \cdots \wedge a_{n}\right)=\varepsilon\left(a_{1} \cdots a_{n}\right)
$$

- Assume now that $n=3$, and set $r=b_{1}(A)$. Fix a basis $\left\{e_{1}, \ldots, e_{r}\right\}$ for A^{1}, and let $\left\{e_{1}^{\vee}, \ldots, e_{r}^{\vee}\right\}$ be the dual basis for A^{2}.
- The multiplication in A, then, is given on basis elements by

$$
e_{i} e_{j}=\sum_{k=1}^{r} \mu_{i j k} e_{k}^{\vee}, \quad e_{i} e_{j}^{\vee}=\delta_{i j} \omega,
$$

where $\mu_{i j k}=\mu\left(e_{i} \wedge e_{j} \wedge e_{k}\right)$.

- Alternatively, let $A_{i}=\left(A^{i}\right)^{*}$, and let $e^{i} \in A_{1}$ be the (Kronecker) dual of e_{i}. We may then view μ dually as a trivector,

$$
\mu=\sum \mu_{i j k} e^{i} \wedge e^{j} \wedge e^{k} \in \bigwedge^{3} A_{1}
$$

which encodes the algebra structure of A.

POINCARÉ DUALITY IN ORIENTABLE MANIFOLDS

- If M is a compact, connected, orientable, n-dimensional manifold, then the cohomology ring $A=H^{\cdot}(M, \mathbb{k})$ is a PD_{n} algebra over \mathbb{k}.
- Sullivan (1975): for every finite-dimensional Q-vector space V and every alternating 3-form $\mu \in \bigwedge^{3} V^{*}$, there is a closed 3-manifold M with $H^{1}(M, \mathbb{Q})=V$ and cup-product form $\mu_{M}=\mu$.
- Such a 3-manifold can be constructed via "Borromean surgery."

- If M bounds an oriented 4-manifold W such that the cup-product pairing on $H^{2}(W, M)$ is non-degenerate (e.g., if M is the link of an isolated surface singularity), then $\mu_{M}=0$.

DUALITY SPACES

A more general notion of duality is due to Bieri and Eckmann (1978).
Let X be a connected, finite-type CW-complex, and set $\pi=\pi_{1}\left(X, x_{0}\right)$.

- X is a duality space of dimension n if $H^{i}(X, \mathbb{Z} \pi)=0$ for $i \neq n$ and $H^{n}(X, Z \pi) \neq 0$ and torsion-free.
- Let $D=H^{n}(X, \mathbb{Z} \pi)$ be the dualizing $\mathbb{Z} \pi$-module. Given any $\mathbb{Z} \pi$-module A, we have $H^{i}(X, A) \cong H_{n-i}(X, D \otimes A)$.
- If $D=\mathbb{Z}$, with trivial $\mathbb{Z} \pi$-action, then X is a Poincaré duality space.
- If $X=K(\pi, 1)$ is a duality space, then π is a duality group.

Abelian duality spaces

We introduce in [Denham-S.-Yuzvinsky 2016/17] an analogous notion, by replacing $\pi \rightsquigarrow \pi_{\mathrm{ab}}$.

- X is an abelian duality space of dimension n if $H^{i}\left(X, \mathbb{Z} \tau_{\mathrm{ab}}\right)=0$ for $i \neq n$ and $H^{n}\left(X, Z \pi_{\mathrm{ab}}\right) \neq 0$ and torsion-free.
- Let $B=H^{n}\left(X, \mathbb{Z} \pi_{a b}\right)$ be the dualizing $\mathbb{Z} \tau_{a b}$-module. Given any $\mathbb{Z} \tau_{\mathrm{ab}}$-module A, we have $H^{i}(X, A) \cong H_{n-i}(X, B \otimes A)$.
- The two notions of duality are independent:

EXAMPLE

- Surface groups of genus at least 2 are not abelian duality groups, though they are (Poincaré) duality groups.
- Let $\pi=\mathbb{Z}^{2} * G$, where

$$
G=\left\langle x_{1}, \ldots, x_{4} \mid x_{1}^{-2} x_{2} x_{1} x_{2}^{-1}, \ldots, x_{4}^{-2} x_{1} x_{4} x_{1}^{-1}\right\rangle
$$

is Higman's acyclic group. Then π is an abelian duality group (of dimension 2), but not a duality group.

THEOREM (DSY)

Let X be an abelian duality space of dimension n. Then:

- $b_{1}(X) \geqslant n-1$.
- $b_{i}(X) \neq 0$, for $0 \leqslant i \leqslant n$ and $b_{i}(X)=0$ for $i>n$.
- $(-1)^{n} \chi(X) \geqslant 0$.

THEOREM (DENHAM-S. 2017)

Let U be a connected, smooth, complex quasi-projective variety of dimension n. Suppose U has a smooth compactification Y for which
(1) Components of $Y \backslash \cup$ form an arrangement of hypersurfaces \mathcal{A};
(2) For each submanifold X in the intersection poset $L(\mathcal{A})$, the complement of the restriction of \mathcal{A} to X is a Stein manifold.
Then U is both a duality space and an abelian duality space of dimension n.

LINEAR, ELLIPTIC, AND TORIC ARRANGEMENTS

THEOREM (DS17)

Suppose that \mathcal{A} is one of the following:
(1) An affine-linear arrangement in \mathbb{C}^{n}, or a hyperplane arrangement in $\mathbb{C P}^{n}$;
(2) A non-empty elliptic arrangement in E^{n};
(3) A toric arrangement in $\left(\mathbb{C}^{*}\right)^{n}$.

Then the complement $M(\mathcal{A})$ is both a duality space and an abelian duality space of dimension $n-r, n+r$, and n, respectively, where r is the corank of the arrangement.

This theorem extends several previous results:
(1) Davis, Januszkiewicz, Leary, and Okun (2011);
(2) Levin and Varchenko (2012);
(3) Davis and Settepanella (2013), Esterov and Takeuchi (2014).

COMMUTATIVE DIFFERENTIAL GRADED ALGEBRAS

- Let $A=\left(A^{\bullet}, \mathrm{d}\right)$ be a commutative, differential graded algebra over a field \mathbb{k} of characteristic 0 . That is:
- $A=\oplus_{i \geqslant 0} A^{i}$, where A^{i} are \mathbb{k}-vector spaces.
- The multiplication $\cdot: A^{i} \otimes A^{j} \rightarrow A^{i+j}$ is graded-commutative, i.e., $a b=(-1)^{|a||b|}$ ba for all homogeneous a and b.
- The differential d: $A^{i} \rightarrow A^{i+1}$ satisfies the graded Leibnitz rule, i.e., $\mathrm{d}(a b)=\mathrm{d}(a) b+(-1)^{|a|} a \mathrm{~d}(b)$.
- A CDGA A is of finite-type (or q-finite) if it is connected (i.e., $A^{0}=\mathbb{k} \cdot 1$) and $\operatorname{dim} A^{i}<\infty$ for all $i \leqslant q$.
- $H^{\bullet}(A)$ inherits an algebra structure from A.
- A cdga morphism $\varphi: A \rightarrow B$ is both an algebra map and a cochain map. Hence, it induces a morphism $\varphi^{*}: H^{\bullet}(A) \rightarrow H^{\bullet}(B)$.
- A map $\varphi: A \rightarrow B$ is a quasi-isomorphism if φ^{*} is an isomorphism. Likewise, φ is a q-quasi-isomorphism (for some $q \geqslant 1$) if φ^{*} is an isomorphism in degrees $\leqslant q$ and is injective in degree $q+1$.
- Two cdgas, A and B, are $\left(q\right.$-)equivalent $\left(\simeq_{q}\right)$ if there is a zig-zag of $(q-) q u a s i-i s o m o r p h i s m s ~ c o n n e c t i n g ~ A ~ t o ~ B . ~$
- A cdga A is formal (or just q-formal) if it is (q-)equivalent to $\left(H^{\bullet}(A), d=0\right)$.
- A CDGA is q-minimal if it is of the form ($\bigwedge V, d$), where the differential structure is the inductive limit of a sequence of Hirsch extensions of increasing degrees, and $V^{i}=0$ for $i>q$.
- Every CDGA A with $H^{0}(A)=\mathbb{k}$ admits a q-minimal model, $\mathcal{M}_{q}(A)$ (i.e., a q-equivalence $\mathcal{M}_{q}(A) \rightarrow A$ with $\mathcal{M}_{q}(A)=(\Lambda V, d)$ a q-minimal cdga), unique up to iso.

Algebraic models for spaces

- Given any (path-connected) space X, there is an associated Sullivan Q-cdga, $A_{\text {PL }}(X)$, such that $H^{\bullet}\left(A_{\mathrm{PL}}(X)\right)=H^{\bullet}(X, \mathbb{Q})$.
- An algebraic (q-)model (over \mathbb{k}) for X is a \mathbb{k}-cgda (A, d) which is $(q-)$ equivalent to $A_{\mathrm{PL}}(X) \otimes_{\mathrm{Q}} \mathbb{k}$.
- If M is a smooth manifold, then $\Omega_{\mathrm{dR}}(M)$ is a model for M (over \mathbb{R}).
- Examples of spaces having finite-type models include:
- Formal spaces (such as compact Kähler manifolds, hyperplane arrangement complements, toric spaces, etc).
- Smooth quasi-projective varieties, compact solvmanifolds, Sasakian manifolds, etc.

RESONANCE VARIETIES OF A CDGA

- Let $A=\left(A^{\bullet}\right.$, d) be a connected, finite-type CDGA over $\mathbb{k}=\mathbb{C}$.
- For each $a \in Z^{1}(A) \cong H^{1}(A)$, we have a cochain complex,

$$
\left(A^{\bullet}, \delta_{a}\right): A^{0} \xrightarrow{\delta_{a}^{0}} A^{1} \xrightarrow{\delta_{a}^{1}} A^{2} \xrightarrow{\delta_{a}^{2}} \cdots,
$$

with differentials $\delta_{a}^{i}(u)=a \cdot u+\mathrm{d} u$, for all $u \in A^{i}$.

- The resonance varieties of A are the affine varieties

$$
\mathcal{R}_{s}^{i}(A)=\left\{a \in H^{1}(A) \mid \operatorname{dim} H^{i}\left(A^{\bullet}, \delta_{a}\right) \geqslant s\right\} .
$$

- If A is a CGA (that is, $\mathrm{d}=0$), the resonance varieties $\mathcal{R}_{s}^{i}(A)$ are homogeneous subvarieties of A^{1}.
- If X is a connected, finite-type CW-complex, we set $\mathcal{R}_{s}^{i}(X):=\mathcal{R}_{s}^{i}\left(H^{\bullet}(X, \mathrm{C})\right)$.
- Fix a \mathbb{k}-basis $\left\{e_{1}, \ldots, e_{r}\right\}$ for A^{1}, and let $\left\{x_{1}, \ldots, x_{r}\right\}$ be the dual basis for $A_{1}=\left(A^{1}\right)^{*}$.
- Identify $\operatorname{Sym}\left(A_{1}\right)$ with $S=\mathbb{k}\left[x_{1}, \ldots, x_{r}\right]$, the coordinate ring of the affine space A^{1}.
- Define a cochain complex of free S-modules, $\mathbf{L}(A):=\left(A^{\bullet} \otimes S, \delta\right)$,

$$
\cdots \longrightarrow A^{i} \otimes S \xrightarrow{\delta^{i}} A^{i+1} \otimes S \xrightarrow{\delta^{i+1}} A^{i+2} \otimes S \longrightarrow \cdots
$$

where $\delta^{i}(u \otimes f)=\sum_{j=1}^{n} e_{j} u \otimes f x_{j}+\mathrm{d} u \otimes f$.

- The specialization of $(A \otimes S, \delta)$ at $a \in A^{1}$ coincides with $\left(A, \delta_{a}\right)$.
- Hence, $\mathcal{R}_{s}^{i}(A)$ is the zero-set of the ideal generated by all minors of size $b_{i}-s+1$ of the block-matrix $\delta^{i+1} \oplus \delta^{i}$.
- In particular, $\mathcal{R}_{s}^{1}(A)=V\left(I_{r-s}\left(\delta^{1}\right)\right)$, the zero-set of the ideal of codimension s minors of δ^{1}.

Resonance varieties of PD-algebras

- Let A be a PD_{n} algebra.
- For all $0 \leqslant i \leqslant n$ and all $a \in A^{1}$, the square

$$
\begin{array}{cc}
\left(A^{n-i}\right)^{*} \xrightarrow{\left(\delta_{a}^{n-i-1}\right)^{*}}\left(A^{n-i-1}\right)^{*} \\
\mathrm{PD} \uparrow \cong & \mathrm{PD} \uparrow \cong \\
A^{i} \xrightarrow{\delta_{a}^{i}} & A^{i+1}
\end{array}
$$

commutes up to a sign of $(-1)^{i}$.

- Consequently,

$$
\left(H^{i}\left(A, \delta_{a}\right)\right)^{*} \cong H^{n-i}\left(A, \delta_{-a}\right)
$$

- Hence, for all i and s,

$$
\mathcal{R}_{s}^{i}(A)=\mathcal{R}_{s}^{n-i}(A)
$$

- In particular, $\mathcal{R}_{1}^{n}(A)=\{0\}$.

3-DIMENSIONAL Poincaré DUALITY ALGEBRAS

- Let A be a PD_{3}-algebra with $b_{1}(A)=r>0$. Then
- $\mathcal{R}_{1}^{3}(A)=\mathcal{R}_{1}^{0}(A)=\{0\}$.
- $\mathcal{R}_{s}^{2}(A)=\mathcal{R}_{s}^{1}(A)$ for $1 \leqslant s \leqslant r$.
- $\mathcal{R}_{s}^{i}(A)=\varnothing$, otherwise.
- Write $\mathcal{R}_{s}(A)=\mathcal{R}_{s}^{1}(A)$. Then
- $\mathcal{R}_{2 k}(A)=\mathcal{R}_{2 k+1}(A)$ if r is even.
- $\mathcal{R}_{2 k-1}(A)=\mathcal{R}_{2 k}(A)$ if r is odd.
- If μ_{A} has rank $r \geqslant 3$, then $\mathcal{R}_{r-2}(A)=\mathcal{R}_{r-1}(A)=\mathcal{R}_{r}(A)=\{0\}$.
- If $r \geqslant 4$, then $\operatorname{dim} \mathcal{R}_{1}(A) \geqslant \operatorname{null}\left(\mu_{A}\right) \geqslant 2$.
- Here, the rank of a form $\mu: \bigwedge^{3} V \rightarrow \mathbb{k}$ is the minimum dimension of a linear subspace $W \subset V$ such that μ factors through $\bigwedge^{3} W$.
- The nullity of μ is the maximum dimension of a subspace $U \subset V$ such that $\mu(a \wedge b \wedge c)=0$ for all $a, b \in U$ and $c \in V$.
- If r is even, then $\mathcal{R}_{1}(A)=\mathcal{R}_{0}(A)=A^{1}$.
- If r is odd >1, then $\mathcal{R}_{1}(A) \neq A^{1}$ if and only if μ_{A} is "generic," that is, there is a $c \in A^{1}$ such that the 2 -form $\gamma_{c} \in \bigwedge^{2} A_{1}$ given by $\gamma_{c}(a \wedge b)=\mu_{A}(a \wedge b \wedge c)$ has rank $2 g$, i.e., $\gamma_{c}^{g} \neq 0$ in $\wedge^{2 g} A_{1}$.
- In that case, $\mathcal{R}_{1}(A)$ is the hypersurface $\operatorname{Pf}\left(\mu_{A}\right)=0$, where $\operatorname{pf}\left(\delta^{1}(i ; i)\right)=(-1)^{i+1} x_{i} \operatorname{Pf}\left(\mu_{A}\right)$.

EXAMPLE

Let $M=S^{1} \times \Sigma_{g}$, where $g \geqslant 2$. Then $\mu_{M}=\sum_{i=1}^{g} a_{i} b_{i} c$ is generic, and $\operatorname{Pf}\left(\mu_{M}\right)=x_{2 g+1}^{g-1}$. Hence, $\mathcal{R}_{1}=\cdots=\mathcal{R}_{2 g-2}=\left\{x_{2 g+1}=0\right\}$ and $\mathcal{R}_{2 g-1}=\mathcal{R}_{2 g}=\mathcal{R}_{2 g+1}=\{0\}$.

Resonance varieties of 3-FORMS of LOW Rank

n	μ	\mathcal{R}_{1}					
3	123	0	\quad	n	μ	$\mathcal{R}_{1}=\mathcal{R}_{2}$	\mathcal{R}_{3}
:---:	:---:	:---:	:---:				
5	$125+345$	$\left\{x_{5}=0\right\}$	0				

n	μ	\mathcal{R}_{1}	$\mathcal{R}_{2}=\mathcal{R}_{3}$	\mathcal{R}_{4}
6	$123+456$	\mathbb{C}^{6}	$\left\{x_{1}=x_{2}=x_{3}=0\right\} \cup\left\{x_{4}=x_{5}=x_{6}=0\right\}$	0
	$123+236+456$	\mathbb{C}^{6}	$\left\{x_{3}=x_{5}=x_{6}=0\right\}$	0

n	μ	$\mathcal{R}_{1}=\mathcal{R}_{2}$	$\mathcal{R}_{3}=\mathcal{R}_{4}$	\mathcal{R}_{5}
7	$147+257+367$	$\left\{x_{7}=0\right\}$	$\left\{x_{7}=0\right\}$	0
	$456+147+257+367$	$\left\{x_{7}=0\right\}$	$\left\{x_{4}=x_{5}=x_{6}=x_{7}=0\right\}$	0
	$123+456+147$	$\left\{x_{1}=0\right\} \cup\left\{x_{4}=0\right\}$	$\left\{x_{1}=x_{2}=x_{3}=x_{4}=0\right\} \cup\left\{x_{1}=x_{4}=x_{5}=x_{6}=0\right\}$	0
	$123+456+147+257$	$\left\{x_{1} x_{4}+x_{2} x_{5}=0\right\}$	$\left\{x_{1}=x_{2}=x_{4}=x_{5}=x_{7}^{2}-x_{3} x_{6}=0\right\}$	0
	$123+456+147+257+367$	$\left\{x_{1} x_{4}+x_{2} x_{5}+x_{3} x_{6}=x_{7}^{2}\right\}$	0	0

n	μ	\mathcal{R}_{1}	$\mathcal{R}_{2}=\mathcal{R}_{3}$	$\mathcal{R}_{4}=\mathcal{R}_{5}$
8	$147+257+367+358$	C^{8}	$\left\{x_{7}=0\right\}$	$\left\{x_{3}=x_{5}=x_{7}=x_{8}=0\right\} \cup\left\{x_{1}=x_{3}=x_{4}=x_{5}=x_{7}=0\right\}$
	$456+147+257+367+358$	C^{8}	$\left\{x_{5}=x_{7}=0\right\}$	$\left\{x_{3}=x_{4}=x_{5}=x_{7}=x_{1} x_{8}+x_{6}^{2}=0\right\}$
$123+456+147+358$	C^{8}	$\left\{x_{1}=x_{5}=0\right\} \cup\left\{x_{3}=x_{4}=0\right\}$	$\left\{x_{1}=x_{3}=x_{4}=x_{5}=x_{2} x_{6}+x_{7} x_{8}=0\right\}$	
$123+456+147+257+358$	C^{8}	$\left\{x_{1}=x_{5}=0\right\} \cup\left\{x_{3}=x_{4}=x_{5}=0\right\}$	$\left\{x_{1}=x_{2}=x_{3}=x_{4}=x_{5}=x_{7}=0\right\}$	
$123+456+147+257+367+358$	C^{8}	$\left\{x_{3}=x_{5}=x_{1} x_{4}-x_{7}^{2}=0\right\}$	$\left\{x_{1}=x_{2}=x_{3}=x_{4}=x_{5}=x_{6}=x_{7}=0\right\}$	
$147+268+358$	C^{8}	$\left\{x_{1}=x_{4}=x_{7}=0\right\} \cup\left\{x_{8}=0\right\}$	$\left\{x_{1}=x_{4}=x_{7}=x_{8}=0\right\} \cup\left\{x_{2}=x_{3}=x_{5}=x_{6}=x_{8}=0\right\}$	
$147+257+268+358$	C^{8}	$L_{1} \cup L_{2} \cup L_{3}$	$L_{1} \cup L_{2}$	
$456+147+257+268+358$	C^{8}	$C_{1} \cup C_{2}$	$L_{1} \cup L_{2}$	
$147+257+367+268+358$	C^{8}	$L_{1} \cup L_{2} \cup L_{3} \cup L_{4}$	$L_{1}^{\prime} \cup L_{2}^{\prime} \cup L_{3}^{\prime}$	
$456+147+257+367+268+358$	C^{8}	$C_{1} \cup C_{2} \cup C_{3}$	$L_{1} \cup L_{2} \cup L_{3}$	
$123+456+147+268+358$	C^{8}	$C_{1} \cup C_{2}$	L	
$123+456+147+257+268+358$	C^{8}	$\left\{f_{1}=\cdots=f_{20}=0\right\}$	0	
$123+456+147+257+367+268+358$	C^{8}	$\left\{g_{1}=\cdots=g_{20}=0\right\}$	0	

Alex Suciu (Northeastern)
MODELS, DUALITY, AND RESONANCE
MIT TOPOLOGY SEMINAR

Propagation of Resonance

- We say that the resonance varieties of a graded algebra $A=\oplus_{i=0}^{n} A^{i}$ propagate if $\mathcal{R}_{1}^{1}(A) \subseteq \cdots \subseteq \mathcal{R}_{1}^{n}(A)$.
- (Eisenbud-Popescu-Yuzvinsky 2003) If X is the complement of a hyperplane arrangement, then its resonance varieties propagate.

THEOREM (DSY 2016/17)

- Suppose the \mathbb{k}-dual of A has a linear free resolution over $E=\bigwedge A^{1}$. Then the resonance varieties of A propagate.
- Let X be a formal, abelian duality space. Then the resonance varieties of X propagate.
- Let M be a closed, orientable 3-manifold. If $b_{1}(M)$ is even and non-zero, then the resonance varieties of M do not propagate.

CHARACTERISTIC VARIETIES

- Let X be a connected, finite-type CW-complex. Then $\pi=\pi_{1}\left(X, x_{0}\right)$ is a finitely presented group, with $\pi_{\mathrm{ab}} \cong H_{1}(X, \mathbb{Z})$.
- The ring $R=\mathbb{C}\left[\pi_{\mathrm{ab}}\right]$ is the coordinate ring of the character group, $\operatorname{Char}(X)=\operatorname{Hom}\left(\pi, \mathrm{C}^{*}\right) \cong\left(\mathbb{C}^{*}\right)^{r} \times \operatorname{Tors}\left(\pi_{\mathrm{ab}}\right)$, where $r=b_{1}(X)$.
- The characteristic varieties of X are the homology jump loci

$$
\mathcal{V}_{s}^{i}(X)=\left\{\rho \in \operatorname{Char}(X) \mid \operatorname{dim} H_{i}\left(X, \mathbb{C}_{\rho}\right) \geqslant s\right\} .
$$

- These varieties are homotopy-type invariants of X, with $\mathcal{V}_{s}^{1}(X)$ depending only on $\pi=\pi_{1}(X)$.
- Set $\mathcal{V}_{1}(\pi):=\mathcal{V}_{1}^{1}(K(\pi, 1))$; then $\mathcal{V}_{1}(\pi)=\mathcal{V}_{1}\left(\pi / \pi^{\prime \prime}\right)$.

Example

Let $f \in \mathbb{Z}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$ be a Laurent polynomial, $f(1)=0$. There is then a finitely presented group π with $\pi_{\mathrm{ab}}=\mathbb{Z}^{n}$ such that $\mathcal{V}_{1}(\pi)=\mathbf{V}(f)$.

THEOREM (DSY)

Let X be an abelian duality space of dimension n. If $\rho: \pi_{1}(X) \rightarrow \mathbb{C}^{*}$ satisfies $H^{i}\left(X, \mathbb{C}_{\rho}\right) \neq 0$, then $H^{j}\left(X, \mathbb{C}_{\rho}\right) \neq 0$, for all $i \leqslant j \leqslant n$.

Corollary

Let X be an abelian duality space of dimension n. Then The characteristic varieties propagate, i.e., $\mathcal{V}_{1}^{1}(X) \subseteq \cdots \subseteq \mathcal{V}_{1}^{n}(X)$.

INFINITESIMAL FINITENESS OBSTRUCTIONS

Question

Let X be a connected CW-complex with finite q-skeleton. Does X admit a q-finite q-model A ?

THEOREM

If X is as above, then, for all $i \leqslant q$ and all s :

- (Dimca-Papadima 2014) $\mathcal{V}_{s}^{i}(X)_{(1)} \cong \mathcal{R}_{s}^{i}(A)_{(0)}$. In particular, if X is q-formal, then $\mathcal{V}_{s}^{i}(X)_{(1)} \cong \mathcal{R}_{s}^{i}(X)_{(0)}$.
- (Macinic, Papadima, Popescu, S. 2017) $\operatorname{TC}_{0}\left(\mathcal{R}_{s}^{i}(A)\right) \subseteq \mathcal{R}_{s}^{i}(X)$.
- (Budur-Wang 2017) All the irreducible components of $\mathcal{V}^{i}(X)$ passing through the origin of $H^{1}\left(X, \mathbb{C}^{*}\right)$ are algebraic subtori.

EXAMPLE
Let π be a finitely presented group with $\pi_{\mathrm{ab}}=\mathbb{Z}^{n}$ and $\mathcal{V}_{1}(\pi)=\left\{t \in\left(\mathbb{C}^{*}\right)^{n} \mid \sum_{i=1}^{n} t_{i}=n\right\}$. Then π admits no 1-finite 1-model.

THEOREM (PAPADIMA-S. 2017)
Suppose X is $(q+1)$ finite, or X admits a q-finite q-model. Then $b_{i}\left(\mathcal{M}_{q}(X)\right)<\infty$, for all $i \leqslant q+1$.

Corollary

Let π be a finitely generated group. Assume that either π is finitely presented, or π has a 1-finite 1-model. Then $b_{2}\left(\mathcal{M}_{1}(\pi)\right)<\infty$.

EXAMPLE

- Consider the free metabelian group $\pi=F_{n} / F_{n}^{\prime \prime}$ with $n \geqslant 2$.
- We have $\mathcal{V}_{1}(\pi)=\mathcal{V}_{1}\left(F_{n}\right)=\left(\mathbb{C}^{*}\right)^{n}$, and so π passes the Budur-Wang test.
- But $b_{2}\left(\mathcal{M}_{1}(\pi)\right)=\infty$, and so π admits no 1-finite 1-model (and is not finitely presented).

A TANGENT CONE THEOREM FOR 3-MANIFOLDS

THEOREM

Let M be a closed, orientable, 3-dimensional manifold. Suppose $b_{1}(M)$ is odd and μ_{M} is generic. Then $\mathrm{TC}_{1}\left(\mathcal{V}_{1}^{1}(M)\right)=\mathcal{R}_{1}^{1}(M)$.

- If $b_{1}(M)$ is even, the conclusion may or may not hold:
- Let $M=S^{1} \times S^{2} \# S^{1} \times S^{2}$; then $\mathcal{V}_{1}^{1}(M)=\operatorname{Char}(M)=\left(\mathbb{C}^{*}\right)^{2}$, and so $\mathrm{TC}_{1}\left(\mathcal{V}_{1}^{1}(M)\right)=\mathcal{R}_{1}^{1}(M)=\mathbb{C}^{2}$.
- Let M be the Heisenberg nilmanifold; then $\operatorname{TC}_{1}\left(\mathcal{V}_{1}^{1}(M)\right)=\{0\}$, whereas $\mathcal{R}_{1}^{1}(M)=\mathbb{C}^{2}$.
- Let M be a closed, orientable 3-manifold with $b_{1}=7$ and $\mu=e_{1} e_{3} e_{5}+e_{1} e_{4} e_{7}+e_{2} e_{5} e_{7}+e_{3} e_{6} e_{7}+e_{4} e_{5} e_{6}$. Then μ is generic and $\operatorname{Pf}(\mu)=\left(x_{5}^{2}+x_{7}^{2}\right)^{2}$. Hence, $\mathcal{R}_{1}^{1}(M)=\left\{x_{5}^{2}+x_{7}^{2}=0\right\}$ splits as a union of two hyperplanes over \mathbb{C}, but not over \mathbb{Q}.

REFERENCES

G. Denham, A.I. Suciu, S. Yuzvinsky, Combinatorial covers and vanishing of cohomology, Selecta Math. 22 (2016), no. 2, 561-594.
G. Denham, A.I. Suciu, S. Yuzvinsky, Abelian duality and propagation of resonance, Selecta Math. 23 (2017), no. 4, 2331-2367.
(1. G. Denham, A.I. Suciu, Local systems on arrangements of smooth, complex algebraic hypersurfaces, Forum of Mathematics, Sigma 6 (2018), e6, 20 pages.
S. Papadima, A.I. Suciu, Infinitesimal finiteness obstructions, J. London Math. Soc. (2018).
A.I. Suciu, Poincaré duality and resonance varieties, arxiv:1809.01801.
(A.I. Suciu, Cohomology jump loci of 3-manifolds, arxiv:1901.01419.

