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1. Finiteness properties of spaces and groups. A recurring theme in topology is to
determine the geometric and homological finiteness properties of spaces and groups. For
instance, one would like to decide whether a path-connected space X is homotopy equivalent
to a CW-complex with finite k-skeleton. In this spirit, a group G is said to have property Fk
if it admits a classifying space K(G, 1) with finite k-skeleton; property F1 simply says that
G is finitely generated, while property F2 says that G is finitely presentable. The group G is
said to have property FPk if the trivial ZG-module Z admits a projective ZG-resolution which
is finitely generated in all dimensions up to k. If G is of type Fk then it is of type FPk; the
converse does not hold in general, but properties FPk and F2 together imply property Fk.

In [1], Bieri, Neumann, and Strebel associated to every finitely generated group G a subset
Σ1(G) of the unit sphere S(G) in the real vector space Hom(G,R). This “geometric” invariant
of the group G is cut out of the sphere by open cones, and is independent of a finite generating
set for G. Shortly after, Bieri and Renz introduced a nested family of higher-order invariants,
{Σi(G,Z)}i≥1, which record the finiteness properties of normal subgroups of G with abelian
quotients. In [8], Farber, Geoghegan and Schütz further extended these definitions: to each
connected, finite-type CW-complex X, they assign a sequence of invariants, {Σi(X,Z)}i≥1, liv-
ing in the unit sphere S(X) ⊂ H1(X,R). The sphere S(X) can be thought of as parametrizing
all free abelian covers of X, while the Σ-invariants (which are again open subsets), keep track
of the geometric finiteness properties of those covers.

Another tack was taken by Dwyer and Fried in [7]. Instead of looking at all free abelian
covers of X at once, they fix the rank, say r, of the deck-transformation group, and view the
resulting covers as being parametrized by the rational Grassmannian Grr(H

1(X,Q)). Inside
this Grassmannian, they consider the subsets Ωir(X), consisting of all covers for which the
Betti numbers up to degree i are finite, and show how to determine these sets in terms of the
support varieties of the relevant Alexander invariants of X. Unlike the Σ-invariants, though,
the Ω-invariants need not be open subsets, see [7, 21].

The Dwyer–Fried sets depend only on the homotopy type of X. Hence, if G is a finitely gen-
erated group, we may define Ωir(G) := Ωir(K(G, 1)). Let now ν : G� Zr be an epimorphism.
As shown in [21], the following holds: If Ωkr (G) = ∅ and Γ := ker(ν) is of type Fk−1, then
bk(Γ) =∞. To see how this works in a concrete example, let Y = S1∨S1; then X = Y ×Y ×Y
is a classifying space for G = F2 × F2 × F2. Let ν : G→ Z be the homomorphism taking each
standard generator to 1. Stallings showed in [18] that the group Γ = ker(ν) is finitely pre-
sented, and that H3(Γ,Z) is not finitely generated. Using our machinery, we compute that
Ω3

1(X) = ∅; and so, by the above, a stronger statement holds: b3(Γ) is not finite.

Theorem 1 ([6]). For each k ≥ 3, there is a smooth, irreducible, complex projective variety
M of complex dimension k − 1, such that π1(M) is of type Fk−1, but not of type FPk.

This theorem answers in the negative a question of Kollár [12]. Some of the arguments that
go into the proof are streamlined in [21]. Further examples of projective groups with exotic
finiteness properties can be found in recent work of Llosa Isenrich and Bridson [13, 14, 2].
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2. Bounds on the Σ- and Ω-invariants. Let Ĝ = Hom(G,C∗) = H1(X,C∗) be the char-
acter group of G = π1(X). The characteristic varieties of X are the sets

Vi(X) = {ρ ∈ Ĝ | Hi(X,Cρ) 6= 0}.
If the CW-complexX has finite k-skeleton, then Vi(X) is a Zariski closed subset of the algebraic

group Ĝ, for each i ≤ k. The varieties Vi(X) are homotopy-type invariants of X; moreover,
V1(X) depends only on G = π1(X). If we set Vi(G) := Vi(K(G, 1)), then V1(G) = V1(G/G′′).

Let exp: H1(X,C) → H1(X,C∗) be the coefficient homomorphism induced by C → C∗,
z 7→ ez. Given a Zariski closed subset W ⊂ H1(X,C∗), let τ1(W ) be the ‘exponential tangent
cone’ to W , i.e., the set of z ∈ H1(X,C) for which exp(λz) ∈ W , for all λ ∈ C. As shown in
[5], this set is a finite union of rationally defined linear subspaces. Furthermore, put τk1 (W ) =
τ1(W ) ∩H1(X,k) for k = Q or R, and write Wi(X) =

⋃
j≤i Vj(X).

Theorem 2 ([16]). Σi(X,Z) ⊆ S(X) \ S(τR1 (Wi(X)).

For i = 1, equality obtains for all right-angled Artin groups [16], and pure braid groups [9].
In general, though, the above inclusion is strict, even in the case of complements of hyperplane
arrangements [20].

Given a homogeneous variety V ⊂ kn, the locus of r-planes in kn intersecting V non-trivially,
σr(V ), is a Zariski closed subset of the Grassmannian Grr(kn).

Theorem 3 ([19, 21]). Ωir(X) ⊆ Grr(H
1(X,Q)) \ σr

(
τQ1 (Wi(X))

)
.

Furthermore, if the upper bound for the Σi-invariants is attained, then the upper bound
for the Ωir-invariants is also attained, for all r, see [20].

3. Infinitesimal finiteness obstructions. Let A be commutative differential graded C-
algebra (for short, a cdga). We say that A is q-finite if it is connected (i.e., A0 = C · 1) and∑
i≤q dimAi < ∞. Two cdgas A and B have the same q-type (written A 'q B) if there is

a zig-zag of cdga maps connecting A and B, with each such map inducing isomorphisms in
homology up to degree q and a monomorphism in degree q+1. Every cdga A with H0(A) = C
admits a q-minimal model, Mq(A), unique up to isomorphism; see [23].

A q-model for a space X is a cdga A with the same q-type as Sullivan’s cdga of piecewise
polynomial, complex-valued forms on X [23]. Examples of spaces having finite-type models in-
clude formal spaces (such as compact Kähler manifolds, hyperplane arrangement complements,
etc), smooth quasi-projective varieties, compact solvmanifolds, and Sasakian manifolds.

For each a ∈ Z1(A) ∼= H1(A), we construct a cochain complex, (A•, δa), with differentials
δia : Ai → Ai+1, u 7→ a · u+ du. The resonance varieties of A are the sets

Ri(A) = {a ∈ H1(A) | Hi(A•, δa) 6= 0}.
These sets are Zariski closed, for all i ≤ q. If X is a connected, finite-type CW-complex, we
obtain the usual resonance varieties by settingRi(X) := Ri(H•(X,C)). The following theorem
summarizes several results relating the analytic germs of the characteristic and resonance
varieties of a space and its (q-finite) model at the respective basepoints.

Theorem 4. Let X be a connected CW-complex with finite q-skeleton which admits a q-finite
q-model A. Then, for all i ≤ q:

[4] Vi(X)(1) ∼= Ri(A)(0). In particular, if X is q-formal, then Vi(X)(1) ∼= Ri(X)(0).

[15] TC0(Ri(A)) ⊆ Ri(X).
[3] All the irreducible components of Vi(X) passing through the identity are algebraic

subtori of π1(X)̂.
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The result of Budur and Wang [3] yields a powerful obstruction for the existence of (par-
tially) finite models for spaces and groups. For instance, if G is a finitely presented group with
Gab = Zn and V1(G) = {t ∈ (C∗)n |

∑n
i=1 ti = n}, then G admits no 1-finite 1-model. In a

recent preprint with S. Papadima, we provide a completely different obstruction.

Theorem 5 ([17]). Suppose X is (q + 1) finite, or X admits a q-finite q-model. Then
bi(Mq(X)) <∞, for all i ≤ q + 1.

Corollary 6 ([17]). Let G be a finitely generated group. Assume that either G is finitely
presented, or G has a 1-finite 1-model. Then b2(M1(G)) <∞.

For instance, let G = Fn/F
′′
n be the free metabelian group of rank n ≥ 2. Then V1(G) =

V1(Fn) = (C∗)n, and so G passes the Budur–Wang test. Yet b2(M1(G)) = ∞, and so, by
Corollary 6, this group admits no 1-finite 1-model, and no finite presentation. More generally,
we have the following result.

Theorem 7 ([17]). Let G be a finitely generated group which has a free, non-cyclic quotient.
Then G/G′′ is not finitely presentable, and does not admit a 1-finite 1-model.

We also reinterpret the condition that a group G admits a 1-finite 1-model in terms of the
Malcev Lie algebra m(G) associated to G. This pronilpotent Lie algebra may be defined as
the set of primitive elements in the completion of the group algebra QG with respect to the
filtration by powers of the augmentation ideal; see for instance [22] and reference therein.

Theorem 8 ([17]). A finitely generated group G admits a 1-finite 1-model if and only if m(G)
is the lower central series completion of a finitely presented Lie algebra.

4. RFRp groups, finiteness, and largeness. In recent work with T. Koberda, we modify
Agol’s celebrated definition of RFRS groups, as follows. Let G be a finitely generated group
and let p be a prime. We say that G is residually finite rationally p if there exists a descending
sequence of subgroups {Gi}i≥0 such that G0 = G; Gi+1 / Gi;

⋂
i≥0Gi = {1}; Gi/Gi+1 is an

elementary abelian p-group; and ker(Gi → H1(Gi,Q)) < Gi+1. The class of RFRp groups is
closed under taking subgroups, finite direct products, and finite free products. Such groups
are residually finite, torsion-free, and residually torsion-free polycyclic.

Theorem 9 ([11]). Let G be a finitely presented group which is non-abelian and RFRp for
infinitely many primes p. Then G is bi-orderable; the maximal k-step solvable quotients G/G(k)

are not finitely presented, for any k ≥ 2; and Σ1(G){ 6= ∅.
Surface groups and right-angled Artin groups are RFRp, for all p, but finite groups and

non-abelian nilpotent groups are not RFRp, for any p. We show in [11] that a large class of
groups occurring at the interface between complex algebraic geometry and low-dimensional
topology enjoy the RFRp property. More precisely, let C be an algebraic curve in C2, with
boundary manifold M . Suppose that each irreducible component of C is smooth and transverse
to the line at infinity, and all singularities of C are of type A. Then π1(M) is RFRp, for all p.

A finitely generated group G is said to be large if there is a finite-index subgroup H < G
which surjects onto a free, non-cyclic group. As shown in [10], a finitely presented group G is
large if and only if there exists a finite-index subgroup K < G such that V1(K) has infinitely
many torsion points.

Theorem 10 ([11]). Let G be a finitely presented group which is non-abelian and RFRp for
infinitely many primes p. Then G is large.

The following result from [17] (based on foundational work of Arapura) gives a geometric
interpretation of largeness within the class of quasi-projective groups.
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Proposition 11 ([17]). Let X be a quasi-projective manifold. Then π1(X) is large if and only
if there is a finite cover Y → X and a regular, surjective map from Y to a smooth curve C
with χ(C) < 0, so that the generic fiber is connected.
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