Milnor fibrations of arrangements with trivial algebraic monodromy

Alex Suciu

Northeastern University

Workshop on Logarithmic Vector Fields and Freeness of Divisors and Arrangements

Mathematisches Forshungsinstitut Oberwolfach, Germany January 29, 2021

Lower central series

- The lower central series of a group G is defined inductively by $\gamma_{1}(G)=G, \gamma_{2}(G)=G^{\prime}$, and $\gamma_{k+1}(G)=\left[G, \gamma_{k}(G)\right]$.
- It is an " N -series", i.e., $\left[\gamma_{k}(G), \gamma_{\ell}(G)\right] \subseteq \gamma_{k+\ell}(G), \quad \forall k, \ell \geqslant 1$.
- The γ_{k} 's are fully invariant subgroups (i.e., $\varphi: G \rightarrow H$ morphism $\Rightarrow \varphi\left(\gamma_{k}(G)\right) \subseteq \gamma_{k}(H)$), and thus normal subgroups.
- The LCS quotients, $\operatorname{gr} r_{k}(G):=\gamma_{k}(G) / \gamma_{k+1}(G)$, are abelian.
- Associated graded Lie algebra: $\operatorname{gr}(G)=\oplus_{k \geqslant 1} \operatorname{gr}_{k}(G)$, with Lie bracket [,]: $\mathrm{gr}_{k} \times \mathrm{gr}_{\ell} \rightarrow \mathrm{gr}_{k+\ell}$ induced by the group commutator.
- The factor groups $G / \gamma_{k+1}(G)$ are the maximal k-step nilpotent quotients of G.
- $G / \gamma_{2}(F)=G_{\mathrm{ab}}$, while $G / \gamma_{3}(G)$ is determined by $H^{\leqslant 2}(G, \mathbb{Z})$.

Derived series and Alexander invariants

- The derived series of G is defined inductively by $G^{(0)}=G$, $G^{(1)}=G^{\prime}, G^{(2)}=G^{\prime \prime}$, and $G^{(r)}=\left[G^{(r-1)}, G^{(r-1)}\right]$.
- Its terms are fully invariant (thus, normal) subgroups.
- Successive quotients: $G^{(r-1)} / G^{(r)}=\left(G^{(r-1)}\right)_{\mathrm{ab}}$.
- $G / G^{(\ell)}$ is the maximal solvable quotient of G of length ℓ.
- Alexander invariant: $B(G):=G^{\prime} / G^{\prime \prime}$, viewed as a $\mathbb{Z} G_{\mathrm{ab}}$-module via $g G^{\prime} \cdot x G^{\prime \prime}=g x g^{-1} G^{\prime \prime}$ for $g \in G$ and $x \in G^{\prime}$.
- Assume now that G is finitely generated. Then $\mathbb{T}_{G}:=\operatorname{Hom}\left(G, \mathbb{C}^{*}\right)$ is an algebraic group. Clearly, $\mathbb{T}_{G}=\mathbb{T}_{G_{\mathrm{ab}}}$.
- Characteristic varieties: $\mathcal{V}_{k}(G):=\left\{\rho \in \mathbb{T}_{G} \mid \operatorname{dim} H^{1}\left(G, \mathbb{C}_{\rho}\right) \geqslant k\right\}$. For a space X, set $\mathcal{V}_{k}(X):=\mathcal{V}_{k}\left(\pi_{1}(X)\right)$.
- $\mathcal{V}_{1}(G)=V(\operatorname{ann}(B(G) \otimes \mathbb{C}))$, away from 1 .

The complement of a hyperplane arrangement

- Let \mathcal{A} be a central arrangement of n hyperplanes in \mathbb{C}^{d}. For each $H \in \mathcal{A}$ let α_{H} be a linear form with $\operatorname{ker}\left(\alpha_{H}\right)=H$; set $f=\prod_{H \in \mathcal{A}} \alpha_{H}$.
- The complement, $M(\mathcal{A}):=\mathbb{C}^{d} \backslash \bigcup_{H \in \mathcal{A}} H$, is a Stein manifold, and so it has the homotopy type of a (connected) d-dimensional CW-complex.
- In fact, M has a minimal cell structure. Consequently, $H_{*}(M, \mathbb{Z})$ is torsion-free (and finitely generated).
- In particular, $H_{1}(M, \mathbb{Z})=\mathbb{Z}^{n}$, generated by meridians $\left\{x_{H}\right\}_{H \in \mathcal{A}}$.
- The cohomology ring $H^{*}(M, \mathbb{Z})$ is determined solely by the intersection lattice, $L(\mathcal{A})$.
- The quasi-projective variety M admits a pure mixed Hodge structure, and so M is \mathbb{Q}-formal (albeit not \mathbb{Z}_{p}-formal, in general).

Fundamental groups of arrangements

- For an arrangement \mathcal{A}, the group $G(\mathcal{A})=\pi_{1}(M(\mathcal{A}))$ admits a finite presentation, with generators $\left\{x_{H}\right\}_{H \in \mathcal{A}}$ and commutator-relators.
- $\mathcal{V}_{k}(M)$ is a finite union of torsion-translated subtori of $\mathbb{T}_{G}=\left(\mathbb{C}^{*}\right)^{n}$.
- $G / \gamma_{2}(G)$ and $G / \gamma_{3}(G)$ are determined by $L_{\leqslant 2}(\mathcal{A})$.
- $G / \gamma_{4}(G)$-and thus G-is not necessarily determined by $L_{\leqslant 2}(\mathcal{A})$.
- If \mathcal{A} is decomposable, though, all nilpotent quotients are combinatorially determined [Porter-S.]
- Since $M=M(\mathcal{A})$ is formal, $G=G(\mathcal{A})$ is 1-formal, i.e., its pronilpotent completion, $\mathfrak{m}(G)$, is quadratic.
- Hence, $\operatorname{gr}(G) \otimes \mathbb{Q}=\operatorname{gr}(\mathfrak{m}(G))$ is determined by $L_{\leqslant 2}(\mathcal{A})$.
- Let $\mathfrak{h}(G)=\operatorname{Lie}\left(G_{\mathrm{ab}}\right) / \operatorname{im}\left(H_{2}(G, \mathbb{Z}) \xrightarrow{u^{\vee}} G_{\mathrm{ab}} \wedge G_{\mathrm{ab}}\right)$ be the quadratic (holonomy) Lie algebra associated to $H^{\leqslant 2}(G, \mathbb{Z})$.
- Then $\mathfrak{h}(G) \rightarrow \operatorname{gr}(G)$ (always), and $\mathfrak{h}(G) \otimes \mathbb{Q} \xrightarrow{\simeq} \operatorname{gr}(G) \otimes \mathbb{Q}$ (since G is 1 -formal).
- $U(\mathfrak{h}(G) \otimes \mathbb{Q})=\operatorname{Ext}_{A}^{1}(\mathbb{Q}, \mathbb{Q})=\bar{A}^{!}$, where \bar{A} is the quadratic closure of $A=H^{*}(M, \mathbb{Q})$.
- An explicit combinatorial formula is lacking in general for the LCS ranks $\phi_{k}:=\operatorname{rank~}_{\mathrm{gr}}^{k}(\mathrm{G})$, although such formulas are known when
- \mathcal{A} is supersolvable $\Rightarrow H^{*}(M, \mathbb{Q})$ is Koszul
- \mathcal{A} is decomposable $\left(\operatorname{gr}_{3}(G)\right.$ is as predicted by $\left.\mu: L_{2}(\mathcal{A}) \rightarrow \mathbb{Z}\right)$
- \mathcal{A} is a graphic arrangement and in some more cases just for ϕ_{3}.
- $\operatorname{gr}_{k}(G)$ may have torsion (at least for $k \geqslant 4$), but the torsion is not necessarily determined by $L_{\leqslant 2}(\mathcal{A})$.
- The map $\mathfrak{h}_{3}(G) \rightarrow \operatorname{gr}_{3}(G)$ is an isomorphism [Porter-S.], but it is not known whether $\mathfrak{h}_{3}(G)$ is torsion-free.
- The Chen ranks $\theta_{k}(G):=\operatorname{rankgr}_{k}\left(G / G^{\prime \prime}\right)$ are also combinatorially determined.

Milnor fibration

- The map $f: \mathbb{C}^{d} \rightarrow \mathbb{C}$ restricts to a smooth fibration, $f: M \rightarrow \mathbb{C}^{*}$, called the Milnor fibration of \mathcal{A}.
- The Milnor fiber is $F(\mathcal{A}):=f^{-1}(1)$. The monodromy, $h: F \rightarrow F$, is given by $h(z)=e^{2 \pi i / n} z$, where $n=|\mathcal{A}|$.
- F is a Stein manifold. It has the homotopy type of a finite CW-complex of dimension $d-1$ (connected if $d>1$).
- F is the regular, \mathbb{Z}_{n}-cover of $U=\mathbb{P}(M)$, classified by the projection $\pi_{1}(U) \rightarrow \mathbb{Z}_{n}, x_{H} \mapsto 1$.
- To understand $\pi_{1}(F)$, we may assume wlog that $d=3$.
- Let $\iota: F \hookrightarrow M$ be the inclusion. Induced maps on π_{1} :

- $b_{1}(F) \geqslant n-1$, and may be computed from $\mathcal{V}_{k}^{1}(U)$. Combinatorial formulas are known in some cases (e.g., if $\mathbb{P}(\mathcal{A})$ has only double or triple points [Papadima-S.]), but not in general.
- MHS on F may not be pure; $\pi_{1}(F)$ may be non-1-formal [Zuber].
- $H_{1}(F, \mathbb{Z})$ may have torsion [Yoshinaga].

Exact sequences and lower central series

- A short exact sequence of groups,

$$
\begin{equation*}
1 \longrightarrow K \xrightarrow{\iota} G \xrightarrow{\pi} Q \longrightarrow 1 \tag{*}
\end{equation*}
$$

yields

- A representation $\varphi: Q \rightarrow \operatorname{Out}(K)$.
- A "monodromy" representation $\bar{\varphi}: Q \rightarrow \operatorname{Aut}\left(K_{\mathrm{ab}}\right)$.
- If (*) admits a splitting, $\sigma: Q \rightarrow G$, then $G=K \rtimes_{\varphi} Q$, where $\varphi: Q \rightarrow \operatorname{Aut}(K), x \mapsto$ conjugation by $\sigma(x)$.
- (${ }^{*}$) is ab-exact if $0 \longrightarrow K_{\mathrm{ab}} \xrightarrow{\iota_{\mathrm{ab}}} G_{\mathrm{ab}} \xrightarrow{\pi_{\mathrm{ab}}} Q_{\mathrm{ab}} \longrightarrow 0$ is also exact; equivalently, Q acts trivially on K_{ab} and ι_{ab} is injective.

THEOREM (FALK-RANDELL)

Let $G=K \rtimes_{\varphi} Q$. If Q acts trivially on K_{ab}, then

- $\gamma_{k}(G)=\gamma_{k}(K) \rtimes_{\varphi} \gamma_{k}(Q)$, for all $k \geqslant 1$.
- $\operatorname{gr}(G)=\operatorname{gr}(K) \rtimes_{\bar{\varphi}} \operatorname{gr}(Q)$.

THEOREM

Let $1 \rightarrow K \stackrel{\iota}{\rightarrow} G \rightarrow Q \rightarrow 1$ be a split-exact and ab-exact sequence. Assume Q is abelian. Then

- $K^{\prime}=G^{\prime}$.
- $B(\iota): B(K) \rightarrow B(G)$ is a $\mathbb{Z} K_{\mathrm{ab}}$-linear isomorphism.
- $\iota^{*}: \mathbb{T}_{G} \rightarrow \mathbb{T}_{K}$ restricts to a surjection $\iota^{*}: \mathcal{V}_{1}(G) \rightarrow \mathcal{V}_{1}(K)$.
- $\operatorname{gr}^{\prime}(\iota): \operatorname{gr}^{\prime}(K) \xrightarrow{\simeq} \operatorname{gr}^{\prime}(G)$ and $\operatorname{gr}^{\prime}(\bar{\iota}): \operatorname{gr}^{\prime}\left(K / K^{\prime \prime}\right) \xrightarrow{\simeq} \operatorname{gr}^{\prime}\left(G / G^{\prime \prime}\right)$.

Corollary
If $\iota_{*}: H_{1}(F, \mathbb{Z}) \rightarrow H_{1}(M, \mathbb{Z})$ is injective, then

- $\iota^{*}: \mathbb{T}_{M} \rightarrow \mathbb{T}_{F}$ restricts to surjection $\iota^{*}: \mathcal{V}_{1}(M) \rightarrow \mathcal{V}_{1}(F)$.
- $\phi_{k}(F)=\phi_{k}(M)$ for $k \geqslant 2$.
- $\theta_{k}(F)=\theta_{k}(M)$ for $k \geqslant 2$.

The rational lower central series

- The rational lower central series of G is defined by $\gamma_{1}^{\circ} G=G$ and $\gamma_{k+1}^{\varrho} G=\sqrt{\left[G, \gamma_{k}^{\circ} G\right] .}$ [Stallings]
- This is an N -series; its terms are fully invariant subgroups.
- $G / \gamma_{2}^{0} G=G_{\mathrm{abf}}$, where $G_{\mathrm{abf}}=G_{\mathrm{ab}} / \operatorname{Tors}\left(G_{\mathrm{ab}}\right)$ is the maximal torsion-free abelian quotient of G.
- Quotients $\operatorname{gr}_{k}^{\circ}(G):=\gamma_{k}^{0} G / \gamma_{k+1}^{0} G$ are torsion-free abelian groups.
- Associated graded Lie algebra: $\operatorname{gr}^{\ominus}(G)=\oplus_{k \geqslant 1} \gamma_{k}^{0} G / \gamma_{k+1}^{0} G$.

Theorem

Let $G=K \rtimes_{\varphi} Q$ be a split extension. If Q acts trivially on K_{abf}, then,

- $\gamma_{k}^{\circ}(G)=\gamma_{k}^{0}(K) \rtimes_{\varphi} \gamma_{k}^{\circ}(Q)$, for all $k \geqslant 1$.
- $\operatorname{gr}^{\bullet}(G)=\operatorname{gr}^{\bullet}(K) \rtimes_{\bar{\varphi}} \operatorname{gr}^{\bullet}(Q)$.

The rational derived series

- The rational derived series of G is defined by $G_{e}^{(0)}=G$ and

- $G_{Q}^{(r)} / G_{Q}^{(r+1)} \cong\left(G_{Q}^{(r)}\right)_{\text {abf }}$. In particular, $G / G_{Q}^{\prime}=G_{\mathrm{abf}}$.
- $B_{\mathbb{e}}(G):=G_{\mathrm{e}}^{\prime} / G_{\mathrm{e}}^{\prime \prime}$, viewed as a module over $\mathbb{Z} G_{\mathrm{abf}}$.
- $V\left(\operatorname{ann}\left(B_{e}(G) \otimes \mathbb{C}\right)\right)=\mathcal{V}_{1}(G) \cap \mathbb{T}_{G}^{0}$ away from 1.

THEOREM

Let $1 \rightarrow K \stackrel{\iota}{\rightarrow} G \rightarrow Q \rightarrow 1$ be a split-exact and abf-exact sequence.
Assume Q is abelian. Then

- $K_{\mathrm{e}}^{\prime}=G_{\mathrm{e}}^{\prime}$.
- $B_{\mathrm{e}}(\iota): B_{\mathrm{e}}(K) \rightarrow B_{\mathrm{e}}(G)$ is a $\mathbb{Z} K_{\text {abf }}$-linear isomorphism.
- $\iota^{*}: \mathbb{T}_{G}^{0} \rightarrow \mathbb{T}_{K}^{0}$ restricts to surjection $\iota^{*}: \mathcal{V}_{1}(G) \cap \mathbb{T}_{G}^{0} \rightarrow \mathcal{V}_{1}(K) \cap \mathbb{T}_{K}^{0}$.
- $\operatorname{gr}^{\prime}(\iota): \operatorname{gr}_{e}^{\prime}(K) \xrightarrow{\simeq} \operatorname{gr}_{e}^{\prime}(G)$ and $\operatorname{gr}^{\prime}(\bar{\iota}): \operatorname{gr}_{e}^{\prime}\left(K / K_{Q}^{\prime \prime}\right) \xrightarrow{\simeq} \operatorname{gr}_{e}^{\prime}\left(G / G_{Q}^{\prime \prime}\right)$.

Formality properties

- Let $Y \rightarrow X$ be a finite, regular cover, with deck group Γ. If Y is 1 -formal, then X is 1 -formal, but the converse is not true.
- (Dimca-Papadima) If Γ acts trivially on $H_{1}(Y, \mathbb{Q})$, then the converse holds.
- Applying to \mathbb{Z}_{n}-cover $F(\mathcal{A}) \rightarrow U(\mathcal{A})$: if the Milnor fibration of \mathcal{A} has trivial \mathbb{Q}-monodromy, then F is 1 -formal.
- (S.-Wang) Let $1 \rightarrow K \rightarrow G \rightarrow Q \rightarrow 1$ be an exact sequence. If G is 1 -formal and retracts onto K, then K is also 1 -formal.
- (Papadima-S.) Let $1 \rightarrow K \rightarrow G \rightarrow \mathbb{Z} \rightarrow 1$ be an exact sequence. Assume G is 1 -formal and $b_{1}(K)<\infty$. Then the eigenvalue 1 of the monodromy action on $H_{1}(K, \mathbb{C})$ has only 1×1 Jordan blocks.

Theorem

Let $1 \rightarrow K \rightarrow G \rightarrow Q \rightarrow 1$ be a split-exact and abf-exact sequence. If G is 1 -formal and K is finitely generated, then K is 1 -formal.

Falk's pair of arrangements

- Both \mathcal{A} and \mathcal{A}^{\prime} have 2 triple points and 9 double points, yet $L(\mathcal{A}) \not \equiv L\left(\mathcal{A}^{\prime}\right)$. Nevertheless, $M(\mathcal{A}) \simeq M\left(\mathcal{A}^{\prime}\right)$.
- $\mathcal{V}_{1}(M)$ and $\mathcal{V}_{1}\left(M^{\prime}\right)$ consist of two 2-dimensional subtori of $\left(\mathbb{C}^{*}\right)^{6}$, corresponding to the triple points; $\mathcal{V}_{2}(M)=\mathcal{V}_{2}\left(M^{\prime}\right)=\{1\}$.
- Both Milnor fibrations have trivial \mathbb{Z}-monodromy.
- $\mathcal{V}_{1}(F)$ and $\mathcal{V}_{1}\left(F^{\prime}\right)$ consist of two 2-dimensional subtori of $\left(\mathbb{C}^{*}\right)^{5}$.
- On the other hand, $\mathcal{V}_{2}(F) \cong \mathbb{Z}_{3}$, yet $\mathcal{V}_{2}\left(F^{\prime}\right)=\{1\}$.
- Thus, $\pi_{1}(F) \not \equiv \pi_{1}\left(F^{\prime}\right)$.

Yoshinaga's icosidodecahedral arrangement

- The icosidodecahedron is a quasiregular polyhedron in \mathbb{R}^{3}, with 20 triangular and 12 pentagonal faces, 60 edges, and 30 vertices, given by the even permutations of $(0,0, \pm 1)$ and $\frac{1}{2}\left(\pm 1, \pm \phi, \pm \phi^{2}\right)$, where $\phi=(1+\sqrt{5}) / 2$.
- One can choose 10 edges to form a decagon; there are 6 ways to choose these decagons, thereby giving 6 planes.
- Each pentagonal face has five diagonals; there are 60 such diagonals in all, and they partition in 10 disjoint sets of coplanar ones, thereby giving 10 planes, each containing 6 diagonals.
- These 16 planes form a arrangement $\mathcal{A}_{\mathbb{R}}$ in \mathbb{R}^{3}, whose complexification is the icosidodecahedral arrangement \mathcal{A} in \mathbb{C}^{3}.
- The complement M is a $K(\pi, 1)$. Moreover, $P_{U}(t)=1+15 t+60 t^{2}$; thus, $\chi(U)=36$ and $\chi(F)=576$.
- In fact, $H_{1}(F, \mathbb{Z})=\mathbb{Z}^{15} \oplus \mathbb{Z}_{2}$. Thus, the algebraic monodromy of the Milnor fibration is trivial over \mathbb{Q} and $\mathbb{Z}_{p}(p>2)$, but not over \mathbb{Z}.
- Hence, $\operatorname{gr}\left(\pi_{1}(F)\right) \cong \operatorname{gr}\left(\pi_{1}(U)\right)$, away from the prime 2. Moreover,
- $\operatorname{gr}_{1}\left(\pi_{1}(F)\right)=\mathbb{Z}^{15} \oplus \mathbb{Z}_{2}$
- $\operatorname{gr}_{2}\left(\pi_{1}(F)\right)=\mathbb{Z}^{45} \oplus \mathbb{Z}_{2}^{7}$
- $\operatorname{gr}_{3}\left(\pi_{1}(F)\right)=\mathbb{Z}^{250} \oplus \mathbb{Z}_{2}^{43}$
- $\operatorname{gr}_{4}\left(\pi_{1}(F)\right)=\mathbb{Z}^{1405} \oplus \mathbb{Z}_{2}^{?}$

