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Lower central series

» The lower central series of a group G is defined inductively by
71(G) = G, 72(G) = G, and 1k41(G) = [G,%(G)].

It is an “N-series", i.e., [vk(G), v(G)] € Yk1e(G), Vk, = 1.

v

v

The ~4’s are fully invariant subgroups (i.e., ¢: G — H morphism
= ¢(v(G)) < 1k (H)), and thus normal subgroups.

v

The LCS quotients, gr,(G) := v« (G)/vx+1(G), are abelian.

v

Associated graded Lie algebra: gr(G) = @y~ grx(G), with Lie
bracket [, |: grx x gr, — grg,, induced by the group commutator.

» The factor groups G/« 1(G) are the maximal k-step nilpotent
quotients of G.

» G/v2(F) = G,p, While G/v3(G) is determined by H<?(G, Z).
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Derived series and Alexander invariants

>

>

The derived series of G is defined inductively by G = G,
G =@, G?® =G, and G = [GU—1, GU—1)].

Its terms are fully invariant (thus, normal) subgroups.
Successive quotients: G/~ /G = (GI1) _ |
G/G"Y is the maximal solvable quotient of G of length .

Alexander invariant. B(G) := G'/G", viewed as a ZG,,-module
viagG - xG" = gxg 'G"forge Gand x € G..

Assume now that G is finitely generated. Then Tg := Hom(G, C*)
is an algebraic group. Clearly, Tg = Tg,, .

Characteristic varieties: Vi (G) := {p € Tg | dim H'(G,C,) > k}.
For a space X, set Vi (X) = Vi(m1(X)).

V1(G) = V(ann(B(G) ® C)), away from 1.
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The complement of a hyperplane arrangement

» Let A be a central arrangement of n hyperplanes in C9. For each
H e Alet ay be a linear form with ker(apy) = H;set f = [ [ 4 an.

» The complement, M(A) := C\ | .4 H, is a Stein manifold, and
so it has the homotopy type of a (connected) d-dimensional
CW-complex.

» In fact, M has a minimal cell structure. Consequently, H.(M,Z) is
torsion-free (and finitely generated).

» In particular, H{ (M, Z) = 7", generated by meridians {xy}Hec.4-

» The cohomology ring H*(M, Z) is determined solely by the
intersection lattice, L(.A).

» The quasi-projective variety M admits a pure mixed Hodge
structure, and so M is Q-formal (albeit not Z,-formal, in general).
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Fundamental groups of arrangements

» For an arrangement A, the group G(A) = 71(M(A)) admits a finite
presentation, with generators {xy} e 4 and commutator-relators.

» V(M) is a finite union of torsion-translated subtori of Tg = (C*)".
» G/72(G) and G/~3(G) are determined by L.»(.A).
» G/v4(G)—and thus G—is not necessarily determined by L >(.A).

» If A is decomposable, though, all nilpotent quotients are
combinatorially determined [Porter—S.]

» Since M = M(A) is formal, G = G(A) is 1-formal, i.e., its
pronilpotent completion, m(G), is quadratic.

» Hence, gr(G) ® Q = gr(m(@Q)) is determined by L.o(A).

» Let h(G) = Lie(Gap)/im(Ha(G, Z) 2> Gab A Gap) be the quadratic
(holonomy) Lie algebra associated to H<?(G, Z).
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v

Then h(G) — gr(G) (always), and h(G) ® Q — gr(G) ® Q (since
Gis 1-formal).

» Uh(G)®Q) = Extl\(Q, Q) = Z!, where A is the quadratic closure
of A= H*(M,Q).

» An explicit combinatorial formula is lacking in general for the LCS
ranks ¢, = rank gri(G), although such formulas are known when
o Ais supersolvable = H*(M, Q) is Koszul

o A is decomposable (gr3(G) is as predicted by : Lr(A) — Z)
o Ais a graphic arrangement
and in some more cases just for ¢3.

» gr(G) may have torsion (at least for k > 4), but the torsion is not
necessarily determined by L>(A).

» The map h3(G) — grz(G) is an isomorphism [Porter-S.], but it is
not known whether h3(G) is torsion-free.

» The Chen ranks 0x(G) = rankgr,(G/G") are also combinatorially
determined.
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Milnor fibration

\_/A
A
F
» The map f: CY — C restricts to a smooth fibration, f: M — C*,
called the Milnor fibration of A.

» The Milnor fiber is F(A) := f=1(1). The monodromy, h: F — F, is
given by h(z) = €2™/"z, where n = | A|.

» F is a Stein manifold. It has the homotopy type of a finite
CW-complex of dimension d — 1 (connected if d > 1).

» F is the regular, Z,-cover of U = P(M), classified by the projection
7['1(U) — Ly X — 1.

» To understand 7 (F), we may assume wlog that d = 3.
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» Let:: F — M be the inclusion. Induced maps on 71:
1

l
Z
l

L \fﬂ‘

1 — m(F) = m(M) =5 72 — 1
N e \
7T1(U) Zn
N
1 Zn
» bi(F) = n—1, and may be computed from V/ (U). Combinatorial
K

formulas are known in some cases (e.g., if P(A) has only double
or triple points [Papadima-S.]), but not in general.

» MHS on F may not be pure; 71 (F) may be non-1-formal [Zuber].

» Hi(F,Z) may have torsion [Yoshinaga].
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Exact sequences and lower central series
» A short exact sequence of groups,

1 —=K-5>5G5>Q—1 ()

yields
o A representation ¢: Q — Out(K).

o A “monodromy" representation ¢: Q — Aut(Kip).

» If (*) admits a splitting, o: Q — G, then G = K %, Q, where
¢: Q — Aut(K), x — conjugation by o(x).

» (*)is ab-exactif 0 — Ky =2 Gap -5 Q,p —> O is also exact;
equivalently, Q acts trivially on K, and ¢, is injective.

THEOREM (FALK-RANDELL)
Let G = K x, Q. If Q acts trivially on Ky, then
» 1k(G) = 1 (K) », % (Q), forall k > 1.
» gr(G) = gr(K) x5 er(Q).
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THEOREM

Let1 - K5 G — Q — 1 be a split-exact and ab-exact sequence.
Assume Q is abelian. Then

» K'=G@.
» B(1): B(K) — B(G) is a ZK.,y-linear isomorphism.
» *: Tg — Tk restricts to a surjection .*: V1(G) — V1(K).

~

> g'(1): gr'(K) — gr'(G) and gr'(7): gr'(K/K") = gr'(G/G").

v

COROLLARY

Ifue: Hi(F,Z) — H{(M,Z) is injective, then
» *: Ty — TF restricts to surjection .*: V{(M) — V1(F).
» ok(F) = ¢px(M) fork = 2.
» Ok(F) = 60k(M) fork = 2.
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The rational lower central series

» The rational lower central series of G is defined by /G = G and
Yes1G = V/1G,7,G]. [Stallings]

This is an N-series; its terms are fully invariant subgroups.

v

v

G/75G = Gabf, Where G, = Gap/ Tors(Gap) is the maximal
torsion-free abelian quotient of G.

v

Quotients gr}(G) = v.G/v; . , G are torsion-free abelian groups.
k k k+1

v

Associated graded Lie algebra: gr'(G) = @y-1 7k G/, 1 G-

THEOREM
Let G = K x, Q be a split extension. If Q acts trivially on K., then,

» R(G) = 7(K) %, 72(Q), forall k > 1.
» gri(G) = gri(K) x5 gr*(Q).
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The rational derived series
» The rational derived series of G is defined by Géo) = Gand

G = /[G/V. G V). [Stallings, Harvey, Cochran]

» G/GUTY = (G))),,,. In particular, G/G,, = Gapy.
» B,(G) := G,/G], viewed as a module over ZG,ps.
» V(ann(B,(G) ® C)) = V4(G) n T% away from 1.

THEOREM
Let1 - K5 G — Q — 1 be a split-exact and abf-exact sequence.
Assume Q is abelian. Then

» K, = G,.

» By(1): By(K) — By(G) is a ZKaws-linear isomorphism.

» *: TS — T restricts to surjection v*: Vi(G) n TS — Vi(K) n T%.

~

» gr'(1): gry(K) — gry(G) and gr'(7): er,(K/K!) = gri(G/GY). )
IO, e T L2 L6




Formality properties

» Let Y — X be a finite, regular cover, with deck group I'. If Y'is
1-formal, then X is 1-formal, but the converse is not true.

» (Dimca—Papadima) If I' acts trivially on H;(Y,Q), then the
converse holds.

» Applying to Z,-cover F(A) — U(A): if the Milnor fibration of A has
trivial Q-monodromy, then F is 1-formal.

» (S.—Wang) Let1 — K — G — Q — 1 be an exact sequence. If G
is 1-formal and retracts onto K, then K is also 1-formal.

» (Papadima-S.) Let1 — K — G — Z — 1 be an exact sequence.
Assume G is 1-formal and by (K) < o. Then the eigenvalue 1 of
the monodromy action on H; (K, C) has only 1 x 1 Jordan blocks.

THEOREM

Let1 - K —- G — Q — 1 be a split-exact and abf-exact sequence. If
G is 1-formal and K is finitely generated, then K is 1-formal.
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Falk’s pair of arrangements

» Both A and A’ have 2 triple points and 9 double points, yet
L(A) 2 L(A"). Nevertheless, M(A) ~ M(A").

» V1(M) and V;(M’) consist of two 2-dimensional subtori of (C*)8,
corresponding to the triple points; Vo (M) = Vo(M') = {1}.

» Both Milnor fibrations have trivial Z-monodromy.
» V1(F) and V4 (F’) consist of two 2-dimensional subtori of (C*)°.
» On the other hand, V»>(F) =~ Z3, yet Vo(F') = {1}.

» Thus, 71 (F) 2 4 (F").
G AN 35, B0 A 18



Yoshinaga’s icosidodecahedral arrangement

» The icosidodecahedron is a quasiregular polyhedron in R3, with
20 triangular and 12 pentagonal faces, 60 edges, and 30 vertices,
given by the even permutations of (0,0, +1) and %(J_ﬂ , £, £¢?),
where ¢ = (1 ++/5)/2.

» One can choose 10 edges to form a decagon; there are 6 ways to
choose these decagons, thereby giving 6 planes.

» Each pentagonal face has five diagonals; there are 60 such
diagonals in all, and they partition in 10 disjoint sets of coplanar
ones, thereby giving 10 planes, each containing 6 diagonals.
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These 16 planes form a arrangement Ay in R3, whose
complexification is the icosidodecahedral arrangement A in C3.

v

v

The complement M is a K(, 1). Moreover,
Py(t) = 1 4 15t + 60¢?; thus, x(U) = 36 and x(F) = 576.

v

In fact, Hy (F,Z) = Z'° ® Z,. Thus, the algebraic monodromy of
the Milnor fibration is trivial over Q and Z, (p > 2), but not over Z.

v

Hence, gr(m1(F)) = gr(m (U)), away from the prime 2. Moreover,

o gri(m(F)) =2 ®Zs
o gro(m(F)) = Z* @ Z;
o gra(m(F)) = Z%° @ Z5°
o gru(m(F)) =Z"% 7]
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