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Lower central series

§ The lower central series of a group G is defined inductively by
γ1pGq “ G, γ2pGq “ G1, and γk`1pGq “ rG, γk pGqs.

§ It is an “N-series", i.e., rγk pGq, γ`pGqs Ď γk``pGq, @k , ` ě 1.

§ The γk ’s are fully invariant subgroups (i.e., ϕ : G Ñ H morphism
ñ ϕpγk pGqq Ď γk pHq), and thus normal subgroups.

§ The LCS quotients, grk pGq :“ γk pGq{γk`1pGq, are abelian.

§ Associated graded Lie algebra: grpGq “
À

kě1 grk pGq, with Lie
bracket r , s : grk ˆ gr` Ñ grk`` induced by the group commutator.

§ The factor groups G{γk`1pGq are the maximal k -step nilpotent
quotients of G.

§ G{γ2pF q “ Gab, while G{γ3pGq is determined by Hď2pG,Zq.
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Derived series and Alexander invariants
§ The derived series of G is defined inductively by Gp0q “ G,

Gp1q “ G1, Gp2q “ G2, and Gprq “ rGpr´1q,Gpr´1qs.

§ Its terms are fully invariant (thus, normal) subgroups.

§ Successive quotients: Gpr´1q{Gprq “
`

Gpr´1q
˘

ab
.

§ G{Gp`q is the maximal solvable quotient of G of length `.

§ Alexander invariant: BpGq :“ G1{G2, viewed as a ZGab-module
via gG1 ¨ xG2 “ gxg´1G2 for g P G and x P G1.

§ Assume now that G is finitely generated. Then TG :“ HompG,C˚q
is an algebraic group. Clearly, TG “ TGab

.

§ Characteristic varieties: Vk pGq :“ tρ P TG | dim H1pG,Cρq ě ku.
For a space X , set Vk pX q :“ Vk pπ1pX qq.

§ V1pGq “ V pannpBpGq b Cqq, away from 1.
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The complement of a hyperplane arrangement

§ Let A be a central arrangement of n hyperplanes in Cd . For each
H P A let αH be a linear form with kerpαHq “ H; set f “

ś

HPA αH .

§ The complement, MpAq :“ Cdz
Ť

HPA H, is a Stein manifold, and
so it has the homotopy type of a (connected) d-dimensional
CW-complex.

§ In fact, M has a minimal cell structure. Consequently, H˚pM,Zq is
torsion-free (and finitely generated).

§ In particular, H1pM,Zq “ Zn, generated by meridians txHuHPA.

§ The cohomology ring H˚pM,Zq is determined solely by the
intersection lattice, LpAq.

§ The quasi-projective variety M admits a pure mixed Hodge
structure, and so M is Q-formal (albeit not Zp-formal, in general).
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Fundamental groups of arrangements
§ For an arrangement A, the group GpAq “ π1pMpAqq admits a finite

presentation, with generators txHuHPA and commutator-relators.

§ Vk pMq is a finite union of torsion-translated subtori of TG “ pC˚qn.

§ G{γ2pGq and G{γ3pGq are determined by Lď2pAq.

§ G{γ4pGq—and thus G—is not necessarily determined by Lď2pAq.

§ If A is decomposable, though, all nilpotent quotients are
combinatorially determined [Porter–S.]

§ Since M “ MpAq is formal, G “ GpAq is 1-formal, i.e., its
pronilpotent completion, mpGq, is quadratic.

§ Hence, grpGq bQ “ grpmpGqq is determined by Lď2pAq.

§ Let hpGq “ LiepGabq{ impH2pG,Zq
Y_

ÝÝÑ Gab ^Gabq be the quadratic
(holonomy) Lie algebra associated to Hď2pG,Zq.
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§ Then hpGq� grpGq (always), and hpGq bQ »
ÝÑ grpGq bQ (since

G is 1-formal).

§ UphpGq bQq “ Ext1
ApQ,Qq “ A

!
, where A is the quadratic closure

of A “ H˚pM,Qq.

§ An explicit combinatorial formula is lacking in general for the LCS
ranks φk :“ rank grk pGq, although such formulas are known when
˝ A is supersolvable ñ H˚pM,Qq is Koszul
˝ A is decomposable (gr3pGq is as predicted by µ : L2pAq Ñ Z)
˝ A is a graphic arrangement

and in some more cases just for φ3.

§ grk pGq may have torsion (at least for k ě 4), but the torsion is not
necessarily determined by Lď2pAq.

§ The map h3pGq Ñ gr3pGq is an isomorphism [Porter–S.], but it is
not known whether h3pGq is torsion-free.

§ The Chen ranks θk pGq :“ rank grk pG{G2q are also combinatorially
determined.
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Milnor fibration

A

F

h
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§ The map f : Cd Ñ C restricts to a smooth fibration, f : M Ñ C˚,
called the Milnor fibration of A.

§ The Milnor fiber is F pAq :“ f´1p1q. The monodromy, h : F Ñ F , is
given by hpzq “ e2πi{nz, where n “ |A|.

§ F is a Stein manifold. It has the homotopy type of a finite
CW-complex of dimension d ´ 1 (connected if d ą 1).

§ F is the regular, Zn-cover of U “ PpMq, classified by the projection
π1pUq� Zn, xH ÞÑ 1.

§ To understand π1pF q, we may assume wlog that d “ 3.
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§ Let ι : F ãÑ M be the inclusion. Induced maps on π1:

1

Z

1 π1pF q π1pMq Z 1

π1pUq Zn

1 Zn

ˆn

ι7 f7

p7

§ b1pF q ě n ´ 1, and may be computed from V1
k pUq. Combinatorial

formulas are known in some cases (e.g., if PpAq has only double
or triple points [Papadima–S.]), but not in general.

§ MHS on F may not be pure; π1pF q may be non-1-formal [Zuber].

§ H1pF ,Zq may have torsion [Yoshinaga].
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Exact sequences and lower central series
§ A short exact sequence of groups,

1 K G Q 1ι π (*)
yields
˝ A representation ϕ : Q Ñ OutpK q.
˝ A “monodromy" representation ϕ̄ : Q Ñ AutpKabq.

§ If (*) admits a splitting, σ : Q Ñ G, then G “ K ¸ϕ Q, where
ϕ : Q Ñ AutpK q, x ÞÑ conjugation by σpxq.

§ (*) is ab-exact if 0 Kab Gab Qab 0
ιab πab is also exact;

equivalently, Q acts trivially on Kab and ιab is injective.

THEOREM (FALK-RANDELL)
Let G “ K ¸ϕ Q. If Q acts trivially on Kab, then

§ γk pGq “ γk pK q ¸ϕ γk pQq, for all k ě 1.

§ grpGq “ grpK q ¸ϕ̄ grpQq.
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THEOREM

Let 1 Ñ K ι
ÝÑ G Ñ Q Ñ 1 be a split-exact and ab-exact sequence.

Assume Q is abelian. Then

§ K 1 “ G1.

§ Bpιq : BpK q Ñ BpGq is a ZKab-linear isomorphism.

§ ι˚ : TG � TK restricts to a surjection ι˚ : V1pGq� V1pK q.

§ gr1pιq : gr1pK q »
ÝÑ gr1pGq and gr1pῑq : gr1pK {K 2q »

ÝÑ gr1pG{G2q.

COROLLARY

If ι˚ : H1pF ,Zq Ñ H1pM,Zq is injective, then
§ ι˚ : TM � TF restricts to surjection ι˚ : V1pMq� V1pF q.

§ φk pF q “ φk pMq for k ě 2.

§ θk pF q “ θk pMq for k ě 2.
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The rational lower central series

§ The rational lower central series of G is defined by γQ
1G “ G and

γQ
k`1G “

a

rG, γQ
k Gs. [Stallings]

§ This is an N-series; its terms are fully invariant subgroups.

§ G{γQ
2G “ Gabf , where Gabf “ Gab{TorspGabq is the maximal

torsion-free abelian quotient of G.

§ Quotients grQk pGq :“ γQ
k G{γQ

k`1G are torsion-free abelian groups.

§ Associated graded Lie algebra: grQpGq “
À

kě1 γ
Q
k G{γQ

k`1G.

THEOREM

Let G “ K ¸ϕ Q be a split extension. If Q acts trivially on Kabf , then,

§ γQ
k pGq “ γQ

k pK q ¸ϕ γ
Q
k pQq, for all k ě 1.

§ grQpGq “ grQpK q ¸ϕ̄ grQpQq.
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The rational derived series
§ The rational derived series of G is defined by Gp0qQ “ G and

GprqQ “

b

“

Gpr´1q
Q ,Gpr´1q

Q

‰

. [Stallings, Harvey, Cochran]

§ GprqQ {G
pr`1q
Q –

`

GprqQ

˘

abf
. In particular, G{G1Q “ Gabf .

§ BQpGq :“ G1Q{G2Q, viewed as a module over ZGabf .

§ V pannpBQpGq b Cqq “ V1pGq X T0
G away from 1.

THEOREM

Let 1 Ñ K ι
ÝÑ G Ñ Q Ñ 1 be a split-exact and abf-exact sequence.

Assume Q is abelian. Then

§ K 1Q “ G1Q.

§ BQpιq : BQpK q Ñ BQpGq is a ZKabf-linear isomorphism.

§ ι˚ : T0
G � T0

K restricts to surjection ι˚ : V1pGq X T0
G � V1pK q X T0

K .

§ gr1pιq : gr1QpK q
»
ÝÑ gr1QpGq and gr1pῑq : gr1QpK {K 2Q q

»
ÝÑ gr1QpG{G2Qq.
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Formality properties
§ Let Y Ñ X be a finite, regular cover, with deck group Γ. If Y is

1-formal, then X is 1-formal, but the converse is not true.

§ (Dimca–Papadima) If Γ acts trivially on H1pY ,Qq, then the
converse holds.

§ Applying to Zn-cover F pAq Ñ UpAq: if the Milnor fibration of A has
trivial Q-monodromy, then F is 1-formal.

§ (S.–Wang) Let 1 Ñ K Ñ G Ñ Q Ñ 1 be an exact sequence. If G
is 1-formal and retracts onto K , then K is also 1-formal.

§ (Papadima–S.) Let 1 Ñ K Ñ G Ñ ZÑ 1 be an exact sequence.
Assume G is 1-formal and b1pK q ă 8. Then the eigenvalue 1 of
the monodromy action on H1pK ,Cq has only 1ˆ 1 Jordan blocks.

THEOREM

Let 1 Ñ K Ñ G Ñ Q Ñ 1 be a split-exact and abf-exact sequence. If
G is 1-formal and K is finitely generated, then K is 1-formal.
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Falk’s pair of arrangements' $
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§ Both A and A1 have 2 triple points and 9 double points, yet
LpAq fl LpA1q. Nevertheless, MpAq » MpA1q.

§ V1pMq and V1pM 1q consist of two 2-dimensional subtori of pC˚q6,
corresponding to the triple points; V2pMq “ V2pM 1q “ t1u.

§ Both Milnor fibrations have trivial Z-monodromy.

§ V1pF q and V1pF 1q consist of two 2-dimensional subtori of pC˚q5.

§ On the other hand, V2pF q – Z3, yet V2pF 1q “ t1u.

§ Thus, π1pF q fl π1pF 1q.
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Yoshinaga’s icosidodecahedral arrangement

§ The icosidodecahedron is a quasiregular polyhedron in R3, with
20 triangular and 12 pentagonal faces, 60 edges, and 30 vertices,
given by the even permutations of p0,0,˘1q and 1

2p˘1,˘φ,˘φ2q,
where φ “ p1`

?
5q{2.

§ One can choose 10 edges to form a decagon; there are 6 ways to
choose these decagons, thereby giving 6 planes.

§ Each pentagonal face has five diagonals; there are 60 such
diagonals in all, and they partition in 10 disjoint sets of coplanar
ones, thereby giving 10 planes, each containing 6 diagonals.
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§ These 16 planes form a arrangement AR in R3, whose
complexification is the icosidodecahedral arrangement A in C3.

§ The complement M is a K pπ,1q. Moreover,
PUptq “ 1` 15t ` 60t2; thus, χpUq “ 36 and χpF q “ 576.

§ In fact, H1pF ,Zq “ Z15 ‘ Z2. Thus, the algebraic monodromy of
the Milnor fibration is trivial over Q and Zp (p ą 2), but not over Z.

§ Hence, grpπ1pF qq – grpπ1pUqq, away from the prime 2. Moreover,
˝ gr1pπ1pF qq “ Z15 ‘ Z2

˝ gr2pπ1pF qq “ Z45 ‘ Z7
2

˝ gr3pπ1pF qq “ Z250 ‘ Z43
2

˝ gr4pπ1pF qq “ Z1405 ‘ Z?
2
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