Arrangements and lower central series

Alex Suciu

Northeastern University

Arrangements in Ticino
Università della Svizzera italiana, Locarno, Switzerland
July 1, 2022

N -series

- An N-series for a group G is a descending filtration $G=K_{1} \geqslant \cdots \geqslant K_{n} \geqslant \cdots$ such that $\left[K_{m}, K_{n}\right] \subseteq K_{m+n}, \forall m, n \geqslant 1$.
- In particular, $\kappa=\left\{K_{n}\right\}_{n \geqslant 1}$ is a central series, i.e., $\left[G, K_{n}\right] \subseteq K_{n+1}$.
- Thus, it is also a normal series, i.e., $K_{n} \triangleleft G$.
- Consequently, each quotient K_{n} / K_{n+1} lies in the center of G / K_{n+1}, and thus is an abelian group.
- If all those quotients are torsion-free, κ is called an N_{0}-series.
- Associated graded Lie algebra:

$$
\operatorname{gr}^{\kappa}(G)=\bigoplus_{n \geqslant 1} K_{n} / K_{n+1}
$$

with addition induced by $\cdot: G \times G \rightarrow G$, and Lie bracket
$[]:, \operatorname{gr}_{m} \times \mathrm{gr}_{n} \rightarrow \mathrm{gr}_{m+n}$ induced by $[x, y]:=x y x^{-1} y^{-1}$.

Lower central series

- The lower central series, $\gamma(G)=\left\{\gamma_{n}(G)\right\}_{n \geqslant 1}$ is defined inductively by $\gamma_{1}(G)=G, \gamma_{2}(G)=G^{\prime}$, and $\gamma_{n+1}(G)=\left[G, \gamma_{n}(G)\right]$.
- It is an N-series, and the fastest descending central series for G.
- If $\varphi: G \rightarrow H$ is a homomorphism, then $\varphi\left(\gamma_{n}(G)\right) \subseteq \gamma_{n}(H)$.
- $\operatorname{gr}(G):=\operatorname{gr}^{\gamma}(G)$ is generated by $\operatorname{gr}_{1}(G)=G_{\mathrm{ab}}$.
- If $b_{1}(G)<\infty$, the LCS ranks of G are $\phi_{n}(G):=\operatorname{dim}_{\mathbb{Q}} \operatorname{gr}_{n}(G) \otimes \mathbb{Q}$.
- For each N-series κ, there is a morphism $\operatorname{gr}(G) \rightarrow \mathrm{gr}^{\kappa}(G)$.
- $\Gamma_{n}:=G / \gamma_{n}(G)$ is the maximal $(n-1)$-step nilpotent quotient of G.
- $G / \gamma_{2}(F)=G_{\mathrm{ab}}$, while $G / \gamma_{3}(G) \leftrightarrow H^{\leqslant 2}(G, \mathbb{Z})$.
- G is residually nilpotent $\Longleftrightarrow \gamma_{\omega}(G):=\bigcap_{n \geqslant 1} \gamma_{n}(G)$ is trivial.

Split exact sequences

- A short exact sequence of groups,

$$
\begin{equation*}
1 \longrightarrow K \xrightarrow{\iota} G \xrightarrow{\pi} Q \longrightarrow 1 \tag{*}
\end{equation*}
$$

yields representations $\varphi: Q \rightarrow \operatorname{Out}(K)$ and $\bar{\varphi}: Q \rightarrow \operatorname{Aut}\left(K_{\mathrm{ab}}\right)$.

- If (*) admits a splitting, $\sigma: Q \rightarrow G$, then $G=K \rtimes_{\varphi} Q$, where $\varphi: Q \rightarrow \operatorname{Aut}(K), x \mapsto$ conjugation by $\sigma(x)$.
- (${ }^{*}$) is ab-exact if $0 \longrightarrow K_{\mathrm{ab}} \xrightarrow{\iota_{\mathrm{ab}}} G_{\mathrm{ab}} \xrightarrow{\pi_{\mathrm{ab}}} Q_{\mathrm{ab}} \longrightarrow 0$ is also exact; equivalently, Q acts trivially on K_{ab} and ι_{ab} is injective.

THEOREM (FALK-RANDELL (1985/88))

Let $G=K \rtimes_{\varphi} Q$. If Q acts trivially on K_{ab}, then

- $\gamma_{n}(G)=\gamma_{n}(K) \rtimes_{\varphi} \gamma_{n}(Q)$, for all $n \geqslant 1$.
- $\operatorname{gr}(G)=\operatorname{gr}(K) \rtimes_{\tilde{\varphi}} \operatorname{gr}(Q)$, where $\tilde{\varphi}: \operatorname{gr}(Q) \rightarrow \operatorname{Der}(\operatorname{gr}(K))$.
- If K and Q are residually nilpotent, then G is residually nilpotent.
- For a split extension $G=K \rtimes_{\varphi} Q$, Guaschi and de Miranda e Pereiro define a sequence $L=\left\{L_{n}\right\}_{n \geqslant 1}$ of subgroups of K by

$$
L_{1}=K, \quad L_{n+1}=\left\langle\left[K, L_{n}\right],\left[K, \gamma_{n}(Q)\right],\left[L_{n}, Q\right]\right\rangle
$$

THEOREM (Guaschi-Pereiro 2020)

- $\varphi: Q \rightarrow \operatorname{Aut}(K)$ restricts to $\varphi: \gamma_{n}(Q) \rightarrow \operatorname{Aut}\left(L_{n}\right)$.
- $\gamma_{n}(G)=L_{n} \rtimes_{\varphi} \gamma_{n}(Q)$.

LEMMA

L is an N-series for K.

THEOREM

$\operatorname{gr}(G)=\operatorname{gr}^{L}(K) \rtimes_{\tilde{\varphi}} \operatorname{gr}(Q)$, where $\tilde{\varphi}: \operatorname{gr}(Q) \rightarrow \operatorname{Der}(\operatorname{gr}(K))$.

REMARK

If Q acts trivially on K_{ab}, then $L=\gamma(K)$. So these results generalize those of Falk and Randell.

Isolators

- The isolator in G of a subset $S \subseteq G$ is the subset

$$
\sqrt{S}:=\sqrt[G]{S}=\left\{g \in G \mid g^{m} \in S \text { for some } m \in \mathbb{N}\right\}
$$

- Clearly, $S \subseteq \sqrt{S}$ and $\sqrt{\sqrt{S}}=\sqrt{S}$. Also, if $\varphi: G \rightarrow H$ is a homomorphism, and $\varphi(S) \subseteq T$, then $\varphi(\sqrt[6]{S}) \subseteq \sqrt[4]{T}$.
- The isolator of a subgroup of G need not be a subgroup; for instance, $\sqrt[G]{\{1\}}=\operatorname{Tors}(G)$, which is not a subgroup in general (although it is if G is nilpotent).
- If $N \triangleleft G$ is a normal subgroup, then $\sqrt[G]{N}=\pi^{-1}(\operatorname{Tors}(G / N))$, where $\pi: G \rightarrow G / N$, and so $\sqrt[9]{N} / N \cong \operatorname{Tors}(G / N)$.

PROPOSItion (MASSUYEAU 2007)

Suppose $\kappa=\left\{K_{n}\right\}_{n \geqslant 1}$ is an N-series for G. Then $\sqrt{\kappa}:=\left\{\sqrt{K_{n}}\right\}_{n \geqslant 1}$ is an N_{0}-series for G.

The rational lower central series

- The rational lower central series, $\gamma^{\oplus}(G)$, is defined by $\gamma_{1}^{\varrho}(G)=G$ and $\gamma_{n+1}^{\varrho}(G)=\sqrt{\left[G, \gamma_{n}^{\varrho}(G)\right]}$. (Stallings, 1965)
- $\gamma_{n}^{\varphi}(G)=\sqrt{\gamma_{n}(G)}$ for all $n \geqslant 1$.
- Hence, $\gamma^{Q}(G)$ is an N_{0}-series (since $\gamma(G)$ is an N-series).
- $G / \gamma_{n}^{\varrho}(G)=\Gamma_{n} / \operatorname{Tors}\left(\Gamma_{n}\right)$ is the maximal torsion-free $(n-1)$-step nilpotent quotient of G; in particular, $G / \gamma_{2}^{\oplus}(G)=G_{a b f}$.
- Associated graded Lie algebra: $\operatorname{gr}^{\mathbb{Q}}(G)=\oplus_{n \geqslant 1} \gamma_{n}^{\ominus}(G) / \gamma_{n+1}^{Q}(G)$.
- G is residually torsion-free nilpotent (RTFN) iff $\gamma_{\omega}^{\varrho}(G)=\{1\}$.

PROPOSITION (BASS \& LUbotzкy, 1994)

- $\operatorname{gr}(G) \rightarrow \operatorname{gr}^{\circledR}(G)$ has torsion kernel and cokernel in each degree.
- $\operatorname{gr}(G) \otimes \mathbb{Q} \rightarrow \operatorname{gr}^{\mathbb{Q}}(G) \otimes \mathbb{Q}$ is an isomorphism.
- Thus, if $b_{1}(G)<\infty$, then $\phi_{n}^{\bullet}(G)=\phi_{n}(G)$

Split extensions

- Let $G=K \rtimes_{\varphi} Q$. Since L is an N-series, \sqrt{L} is an N_{0}-series for K.

Theorem

- $\varphi: Q \rightarrow \operatorname{Aut}(K)$ restricts to $\varphi: \sqrt[Q]{\gamma_{n}(Q)} \rightarrow \operatorname{Aut}\left(\sqrt[k]{L_{n}}\right)$.
- $\sqrt[G]{\gamma_{n}(G)}=\sqrt[k]{L_{n}} \rtimes \varphi \sqrt[Q]{\gamma_{n}(Q)}$.
- $\operatorname{gr}^{\bullet}(G) \cong \operatorname{gr}^{\sqrt{L}}(K) \rtimes_{\tilde{\varphi}} \operatorname{gr}^{\bullet}(Q)$.

THEOREM

Suppose Q acts trivially on $K_{\text {abf }}:=H_{1}(K, \mathbb{Z}) /$ Tors. Then

- $\sqrt[K]{L_{n}}=\sqrt[K]{\gamma_{n}(K)}$ for all n.
- $\sqrt[G]{\gamma_{n}(G)}=\sqrt[K]{\gamma_{n}(K)} \rtimes_{\varphi} \sqrt[Q]{\gamma_{n}(Q)}$.
- $\operatorname{gr}^{\bullet}(Q) \cong \operatorname{gr}^{\bullet}(K) \rtimes_{\check{\varphi}} \operatorname{gr}^{\bullet}(Q)$.

Corollary

Let $G=K \rtimes Q$ be a split extension of RTFN groups. If Q acts trivially on K_{abf}, then G is also RTFN.

Alexander invariants and Chen ranks

- The Chen Lie algebra of G is $\operatorname{gr}\left(G / G^{\prime \prime}\right)$, where $G^{\prime \prime}=\left(G^{\prime}\right)^{\prime}$.
- If $b_{1}(G)<\infty$, the Chen ranks of G are defined as $\theta_{n}(G):=\operatorname{dim}_{\mathbb{Q}} \operatorname{gr}_{n}\left(G / G^{\prime \prime}\right) \otimes \mathbb{Q}$.
- $\theta_{n}(G) \leqslant \phi_{n}(G)$, with equality for $n \leqslant 3$.
- Alexander invariant: $B(G):=G^{\prime} / G^{\prime \prime}$, viewed as a $\mathbb{Z}\left[G_{\mathrm{ab}}\right]$-module via $g G^{\prime} \cdot x G^{\prime \prime}=g x g^{-1} G^{\prime \prime}$ for $g \in G$ and $x \in G^{\prime}$.
- (Massey) $I^{n} B(G)=\gamma_{n+2}\left(G / G^{\prime \prime}\right)$, where I is the augmentation ideal of $\mathbb{Z}\left[G_{\mathrm{ab}}\right]$, and hence $\operatorname{gr}_{n}(B(G)) \cong \operatorname{gr}_{n+2}\left(G / G^{\prime \prime}\right)$, for all $n \geqslant 0$.
- If $b_{1}(G)<\infty$, then $\operatorname{Hilb}(\operatorname{gr}(B(G) \otimes \mathbb{Q}), t)=\sum_{n \geqslant 0} \theta_{n+2}(G) t^{n}$.

THEOREM

Suppose $1 \rightarrow K \xrightarrow{\iota} G \rightarrow Q \rightarrow 1$ is an ab-exact sequence of groups, and Q is abelian. Then,

- The induced map on Alexander invariants, $B(\iota): B(K) \rightarrow B(G)$, factors through a $\mathbb{Z}\left[K_{\mathrm{ab}}\right]$-linear isomorphism, $B(K) \rightarrow B(G)_{\iota}$.
- If $G_{a b}$ is finitely generated, then $\theta_{n}(K) \leqslant \theta_{n}(G)$ for all $n \geqslant 1$.
- If the sequence is split exact, then ı induces isos of graded Lie algebras, $\mathrm{gr}_{\geqslant 2}(K) \xrightarrow{\simeq} \mathrm{gr}_{\geqslant 2}(G)$ and $\mathrm{gr}_{\geqslant 2}\left(K / K^{\prime \prime}\right) \xrightarrow{\simeq} \mathrm{gr}_{\geqslant 2}\left(G / G^{\prime \prime}\right)$.
- Consequently, if $b_{1}(G)<\infty$, then $\phi_{n}(K)=\phi_{n}(G)$ and $\theta_{n}(K)=\theta_{n}(G)$ for all $n \geqslant 2$.

The rational Alexander invariant

- Let $B_{Q}(G):=G_{\mathrm{e}}^{\prime} / G_{\mathrm{e}}^{\prime \prime}$, viewed as a module over $\mathbb{Z} G_{\mathrm{abf}}$, where $G_{Q}^{\prime \prime}=\left(G_{Q}^{\prime}\right)_{e}^{\prime}=\sqrt{\left[G_{Q}^{\prime}, G_{e}^{\prime}\right]}$.
- $I^{n}\left(B_{\mathbb{Q}}(G) \otimes \mathbb{Q}\right)=\gamma_{n+2}^{\bullet}\left(G / G_{\mathbb{Q}}^{\prime \prime}\right) \otimes \mathbb{Q}$, where $I=I_{\mathbb{Q}}\left(G_{\mathrm{abf}}\right)$.
- Hence, $\operatorname{gr}_{n}\left(B_{\mathbb{Q}}(G) \otimes \mathbb{Q}\right) \cong \operatorname{gr}_{n+2}\left(G / G_{Q}^{\prime \prime}\right) \otimes \mathbb{Q}$, for all $n \geqslant 0$.

THEOREM

Let $1 \rightarrow K \xrightarrow{\iota} G \rightarrow Q \rightarrow 1$ be an abf-exact sequence and suppose Q is torsion-free abelian. Then,

- The map ॰ induces a $\mathbb{Z}\left[K_{\mathrm{abf}}\right]$-linear isomorphism, $B_{\ell}(K) \rightarrow B_{Q}(G)_{\iota}$.
- If $G_{\text {abf }}$ is finitely generated, then $\theta_{n}(K) \leqslant \theta_{n}(G)$ for all $n \geqslant 1$.
- If the sequence is split exact, then ı induces isos of graded Lie algebras, $\operatorname{gr}_{\geqslant 2}^{\odot}(K) \xrightarrow{\leftrightharpoons} \operatorname{gr}_{\geqslant 2}^{\ominus}(G)$ and $\operatorname{gr}_{\geqslant 2}^{\ominus}\left(K / K^{\prime \prime}\right) \xrightarrow{\leftrightharpoons} \operatorname{gr}_{\geqslant 2}^{\ominus}\left(G / G^{\prime \prime}\right)$.
- Consequently, if $b_{1}(G)<\infty$, then $\phi_{n}(K)=\phi_{n}(G)$ and $\theta_{n}(K)=\theta_{n}(G)$ for all $n \geqslant 2$.

Characteristic varieties

- Let G be a finitely generated group. Then $\mathbb{T}_{G}:=\operatorname{Hom}\left(G, \mathbb{C}^{*}\right)$ is an algebraic group, with identity 1 the trivial character, $g \mapsto 1$.
- Clearly, $\mathbb{T}_{G}=\mathbb{T}_{G_{\mathrm{ab}}}$ and $\mathbb{T}_{G}^{0}=\mathbb{T}_{G_{\mathrm{abf}}}$.
- Characteristic varieties: $\mathcal{V}_{k}(G):=\left\{\rho \in \mathbb{T}_{G} \mid \operatorname{dim} H^{1}\left(G, \mathbb{C}_{\rho}\right) \geqslant k\right\}$.
- Set $\mathcal{W}_{k}(G):=\mathcal{V}_{k}(G) \cap \mathbb{T}_{G}^{0}$.
- For each $k \geqslant 1$, we have

$$
\begin{aligned}
\mathcal{V}_{k}(G) & =V\left(\operatorname{ann}\left(\bigwedge^{k} B(G) \otimes \mathbb{C}\right)\right) \\
\mathcal{W}_{k}(G) & =V\left(\operatorname{ann}\left(\bigwedge^{k} B_{Q}(G) \otimes \mathbb{C}\right)\right)
\end{aligned}
$$

at least away from $1 \in \mathbb{T}_{G}^{0}$.

Theorem

Let $1 \rightarrow K \xrightarrow{\iota} G \rightarrow Q \rightarrow 1$ be an exact sequence of f.g. groups.

- If the sequence is ab-exact and Q is abelian, then $\iota^{*}: \mathbb{T}_{G} \rightarrow \mathbb{T}_{K}$ restricts to maps $\iota^{*}: \mathcal{V}_{k}(G) \rightarrow \mathcal{V}_{k}(K)$ for all $k \geqslant 1$; furthermore, $\iota^{*}: \mathcal{V}_{1}(G) \rightarrow \mathcal{V}_{1}(K)$ is a surjection.
- If the sequence is abf-exact and Q is torsion-free abelian, then $\iota^{*}: \mathbb{T}_{G}^{0} \rightarrow \mathbb{T}_{K}^{0}$ restricts to maps $\iota^{*}: \mathcal{W}_{k}(G) \rightarrow \mathcal{W}_{k}(K)$ for all $k \geqslant 1$; furthermore, $\iota^{*}: \mathcal{W}_{1}(G) \rightarrow \mathcal{W}_{1}(K)$ is a surjection.

Holonomy Lie algebra

- Assume $G_{a b f}$ is finitely generated, and let $\mathbb{L}=\operatorname{Lie}\left(G_{a b f}\right)$ be the free Lie algebra on $G_{a b f}$, so that $\mathbb{L}_{1}=G_{a b f}$ and $\mathbb{L}_{2}=G_{a b f} \wedge G_{a b f}$.
- The holonomy Lie algebra of G is $\mathfrak{h}(G):=\operatorname{Lie}\left(G_{\text {abf }}\right) /\left(i m\left(\cup_{G}^{\vee}\right)\right)$, where $\cup_{G}^{\vee}: H^{2}(G)^{\vee} \rightarrow\left(H^{1}(G) \wedge H^{1}(G)\right)^{\vee} \cong G_{a b f} \wedge G_{a b f}$.
- There is a natural epimorphism $\mathfrak{h}(G) \rightarrow \operatorname{gr}(G)$, which induces epimorphisms $\mathfrak{h}(G) / \mathfrak{h}(G)^{\prime \prime} \rightarrow \operatorname{gr}\left(G / G^{\prime \prime}\right)$.
- Let $\bar{\theta}_{n}(G):=\operatorname{rank}\left(\mathfrak{h}(G) / \mathfrak{h}(G)^{\prime \prime}\right)_{n}$. Then: $\bar{\theta}_{n}(G) \geqslant \theta_{n}(G), \forall n \geqslant 1$.
- If $b_{1}(G)<\infty$, we may also define $\mathfrak{h}(G ; \mathbb{Q})$. If $G_{\text {abf }}$ is finitely generated, $\mathfrak{h}(G ; \mathbb{Q})=\mathfrak{h}(G) \otimes \mathbb{Q}$.
- The infinitesimal Alexander invariant is $\mathfrak{B}(G):=\mathfrak{h}(G)^{\prime} / \mathfrak{h}(G)^{\prime \prime}$, viewed as a graded module over $\operatorname{Sym}\left(G_{\text {abf }}\right)$ via $g \cdot \bar{x}=\overline{[g, x]}$ for $g \in \mathfrak{h} / \mathfrak{h}^{\prime}=G_{\text {abf }}$ and $x \in \mathfrak{h}^{\prime}$.
- If $b_{1}(G)<\infty$, then $\bar{\theta}_{n}(G)=\operatorname{dim}_{\mathbb{Q}} \mathfrak{B}_{n-2}(G ; \mathbb{Q})$, for all $n \geqslant 2$.

Resonance varieties

- Let G be a group with $b_{1}(G)<\infty$. Let $H^{*}=H^{*}(G ; \mathbb{C})$.
- For each $a \in H^{1}$, left-multiplication by a yields a cochain complex,

$$
\left(H, \delta_{a}\right): H^{0} \xrightarrow{\delta_{a}^{0}} H^{1} \xrightarrow{\delta_{a}^{1}} H^{2} .
$$

- The resonance varieties of G :

$$
\mathcal{R}_{k}(G):=\left\{a \in H^{1} \mid \operatorname{dim}_{\mathbb{C}} H^{1}\left(H, \delta_{a}\right) \geqslant k\right\} .
$$

- They are homogeneous algebraic subvarieties of the affine space $H^{1} \cong \mathbb{C}^{b_{1}(G)}$. Note: $0 \in \mathcal{R}_{k}(G)$ iff $b_{1}(G) \geqslant k$.
- $\mathcal{R}_{k}(G)$ contains every isotropic subspace of H^{1} of dimension $\leqslant k+1$; moreover, $\mathcal{R}_{1}(G)$ is the union of all isotropic planes in H^{1}.
- $\mathcal{R}_{k}(G)=V\left(\operatorname{ann}\left(\bigwedge^{k} \mathfrak{B}(G ; \mathbb{C})\right)\right.$, away from 0

THEOREM

Let $1 \rightarrow K \xrightarrow{\iota} G \rightarrow Q \rightarrow 1$ be an exact sequence of f.g. groups.
Suppose that either

- The sequence is split exact, G is graded formal, Q is abelian, and Q acts trivially on $H_{1}(K ; \mathbb{Q})$.
- The sequence if ab-exact, G and K are 1-formal, and Q is abelian.
- The sequence if abf-exact, G and K are 1 -formal, and Q is torsion-free abelian.
Then $\iota^{*}: H^{1}(G, \mathbb{C}) \rightarrow H^{1}(K, \mathbb{C})$ restricts to maps $\iota^{*}: \mathcal{R}_{k}(G) \rightarrow \mathcal{R}_{k}(K)$ for all $k \geqslant 1$; furthermore, $\iota^{*}: \mathcal{R}_{1}(G) \rightarrow \mathcal{R}_{1}(K)$ is surjective.

Corollary

With hypothesis as above, suppose that $\mathcal{R}_{1}(G) \subseteq\{0\}$. Then

- $\mathcal{R}_{1}(K) \subseteq\{0\}$.
- $\bar{\theta}_{n}(K) \leqslant \bar{\theta}_{n}(G)$ for all $n \geqslant 1$.
- $\bar{\theta}_{n}(G)=0$ for $n \gg 0$ and $\bar{\theta}_{n}(K)=0$ for $n \gg 0$.

The complement of a hyperplane arrangement

- Let \mathcal{A} be a central arrangement of m hyperplanes in \mathbb{C}^{d}. For each $H \in \mathcal{A}$ let α_{H} be a linear form with $\operatorname{ker}\left(\alpha_{H}\right)=H$; set $f=\prod_{H \in \mathcal{A}} \alpha_{H}$.
- The complement, $M(\mathcal{A}):=\mathbb{C}^{d} \backslash \bigcup_{H \in \mathcal{A}} H$, is a Stein manifold, and so it has the homotopy type of a (connected) d-dimensional CW-complex.
- In fact, $M=M(\mathcal{A})$ has a minimal cell structure. Consequently, $H_{*}(M, \mathbb{Z})$ is torsion-free (and finitely generated).
- In particular, $H_{1}(M, \mathbb{Z})=\mathbb{Z}^{m}$, generated by meridians $\left\{x_{H}\right\}_{H \in \mathcal{A}}$.
- The cohomology ring $H^{*}(M, \mathbb{Z})$ is determined solely by the intersection lattice, $L(\mathcal{A})$.
- The quasi-projective variety M admits a pure mixed Hodge structure, and so M is \mathbb{Q}-formal (albeit not \mathbb{Z}_{p}-formal, in general).

Fundamental groups of arrangements

- For an arrangement \mathcal{A}, the group $G=\pi_{1}(M(\mathcal{A}))$ admits a finite presentation, with generators $\left\{x_{H}\right\}_{H \in \mathcal{A}}$ and commutator-relators.
- $\mathcal{V}_{k}(M)$ is a finite union of torsion-translated subtori of $\mathbb{T}_{G}=\left(\mathbb{C}^{*}\right)^{m}$.
- $G / \gamma_{2}(G)$ and $G / \gamma_{3}(G)$ are determined by $L_{\leqslant 2}(\mathcal{A})$.
- $G / \gamma_{4}(G)$-and thus G-is not necessarily determined by $L_{\leqslant 2}(\mathcal{A})$.
- If \mathcal{A} is decomposable, though, all nilpotent quotients are combinatorially determined [Porter-S.]
- Since M is formal, G is 1 -formal, i.e., its pronilpotent completion, $\mathfrak{m}(G)$, is quadratic.
- Hence, $\operatorname{gr}(G) \otimes \mathbb{Q}=\operatorname{gr}(\mathfrak{m}(G))$ is determined by $L_{\leqslant 2}(\mathcal{A})$.
- Let $\mathfrak{h}(G)$ be the holonomy Lie algebra associated to $H^{\leqslant 2}(G, \mathbb{Z})$.
- Then $\mathfrak{h}(G) \rightarrow \operatorname{gr}(G)$ (always), and $\mathfrak{h}(G) \otimes \mathbb{Q} \xrightarrow{\simeq} \operatorname{gr}(G) \otimes \mathbb{Q}$ (since G is 1 -formal).
- An explicit combinatorial formula is lacking in general for the LCS ranks $\phi_{n}(G)$, although such formulas are known when
- \mathcal{A} is supersolvable $\Rightarrow H^{*}(M, \mathbb{Q})$ is Koszul
- \mathcal{A} is decomposable $\left(\operatorname{gr}_{3}(G)\right.$ is as predicted by $\left.\mu: L_{2}(\mathcal{A}) \rightarrow \mathbb{Z}\right)$
- \mathcal{A} is a graphic arrangement and in some more cases just for $\phi_{3}(G)$.
- $\operatorname{gr}_{n}(G)$ may have torsion (at least for $n \geqslant 4$), but the torsion is not necessarily determined by $L_{\leqslant 2}(\mathcal{A})$.
- The map $\mathfrak{h}_{3}(G) \rightarrow \operatorname{gr}_{3}(G)$ is an isomorphism [Porter-S.], but it is not known whether $\mathfrak{h}_{3}(G)$ is torsion-free.
- The Chen ranks $\theta_{n}(G)$ are also combinatorially determined.

The Milnor fibration

- The map $f: \mathbb{C}^{d} \rightarrow \mathbb{C}$ restricts to a smooth fibration, $f: M \rightarrow \mathbb{C}^{*}$, called the Milnor fibration of \mathcal{A}.
- The Milnor fiber is $F(\mathcal{A}):=f^{-1}(1)$. The monodromy, $h: F \rightarrow F$, is given by $h(z)=e^{2 \pi i / m} z$, where $m=|\mathcal{A}|$.
- F is a Stein manifold. It has the homotopy type of a finite CW-complex of dimension $d-1$ (connected if $d>1$).
- MHS on F may not be pure; $\pi_{1}(F)$ may be non-1-formal [Zuber].
- $H_{1}(F, \mathbb{Z})$ may have torsion [Yoshinaga].
- F is the regular, \mathbb{Z}_{m}-cover of $U=\mathbb{P}(M)$, classified by the epimorphism $\pi_{1}(U) \rightarrow \mathbb{Z}_{m}, x_{H} \mapsto 1$.
- To study $\pi_{1}(F)$, we may assume w.l.o.g. that $d=3$.
- Let $\iota: F \hookrightarrow M$ be the inclusion. Induced maps on π_{1} :

- $b_{1}(F) \geqslant m-1$, and may be computed from $\mathcal{V}_{k}^{1}(U)$. Combinatorial formulas are known in some cases (e.g., if $\mathbb{P}(\mathcal{A})$ has only double or triple points [Papadima-S.]), but not in general.

COROLLARY

 If $\iota_{*}: H_{1}(F, \mathbb{Z}) \rightarrow H_{1}(M, \mathbb{Z})$ is injective, then- $\iota^{*}: \mathbb{T}_{M} \rightarrow \mathbb{T}_{F}$ restricts to maps $\iota^{*}: \mathcal{V}_{k}(M) \rightarrow \mathcal{V}_{k}(F)$; moreover, $\iota^{*}: \mathcal{V}_{1}(M) \rightarrow \mathcal{V}_{1}(F)$ is surjective.
- $\operatorname{gr} r_{2}\left(\pi_{1}(F)\right) \cong \mathrm{gr}_{\geqslant 2}(G)$ and $g r_{\geqslant 2}\left(\pi_{1}(F) / \pi_{1}(F)^{\prime \prime}\right) \cong g r_{\geqslant 2}\left(G / G^{\prime \prime}\right)$.

COROLLARY

If $\iota_{*}: H_{1}(F, \mathbb{Q}) \rightarrow H_{1}(M, \mathbb{Q})$ is injective, then

- $\iota^{*}: \mathbb{T}_{M} \rightarrow \mathbb{T}_{F}^{0}$ restricts to maps $\iota^{*}: \mathcal{V}_{k}(M) \rightarrow \mathcal{W}_{k}(F)$ for all $k \geqslant 1$; moreover, $\iota^{*}: \mathcal{V}_{1}(M) \rightarrow \mathcal{W}_{1}(F)$ is surjective.
- $\iota^{*}: H^{1}(M ; \mathbb{C}) \rightarrow H^{1}(F ; \mathbb{C})$ restricts to maps $\iota^{*}: \mathcal{R}_{k}(M) \rightarrow \mathcal{R}_{k}(F)$ for all $k \geqslant 1$; moreover, $\iota^{*}: \mathcal{R}_{1}(M) \rightarrow \mathcal{R}_{1}(F)$ is surjective.
- $\operatorname{gr}_{\geqslant 2}^{\ominus}\left(\pi_{1}(F)\right) \cong \operatorname{gr}_{\geqslant 2}^{\ominus}(G)$ and $\operatorname{gr}_{\geqslant 2}^{\ominus}\left(\pi_{1}(F) / \pi_{1}(F)^{\prime \prime}\right) \cong \operatorname{gr}_{\geqslant 2}^{\varrho}\left(G / G^{\prime \prime}\right)$.
- $\phi_{n}\left(\pi_{1}(F)\right)=\phi_{n}\left(\pi_{1}(U)\right)$ and $\theta_{n}\left(\pi_{1}(F)\right)=\theta_{n}\left(\pi_{1}(U)\right)$ for all $n \geqslant 1$.

Falk's pair of arrangements

- Both \mathcal{A} and \mathcal{A}^{\prime} have 2 triple points and 9 double points, yet $L(\mathcal{A}) \not \equiv L\left(\mathcal{A}^{\prime}\right)$. Nevertheless, $M(\mathcal{A}) \simeq M\left(\mathcal{A}^{\prime}\right)$.
- $\mathcal{V}_{1}(M)$ and $\mathcal{V}_{1}\left(M^{\prime}\right)$ consist of two 2-dimensional subtori of $\left(\mathbb{C}^{*}\right)^{6}$, corresponding to the triple points; $\mathcal{V}_{2}(M)=\mathcal{V}_{2}\left(M^{\prime}\right)=\{1\}$.
- Both Milnor fibrations have trivial \mathbb{Z}-monodromy.
- $\mathcal{V}_{1}(F)$ and $\mathcal{V}_{1}\left(F^{\prime}\right)$ consist of two 2-dimensional subtori of $\left(\mathbb{C}^{*}\right)^{5}$.
- On the other hand, $\mathcal{V}_{2}(F) \cong \mathbb{Z}_{3}$, yet $\mathcal{V}_{2}\left(F^{\prime}\right)=\{1\}$.
- Thus, $\pi_{1}(F) \not \equiv \pi_{1}\left(F^{\prime}\right)$.

Yoshinaga's icosidodecahedral arrangement

- The icosidodecahedron is the convex hull of 30 vertices given by the even permutations of $(0,0, \pm 1)$ and $\frac{1}{2}\left(\pm 1, \pm \phi, \pm \phi^{2}\right)$, where $\phi=(1+\sqrt{5}) / 2$.
- It gives rise to an arrangement of 16 hyperplanes in \mathbb{R}^{3}, whose complexification is the icosidodecahedral arrangement \mathcal{A} in \mathbb{C}^{3}.
- $M(\mathcal{A})$ is a $K(G, 1)$.
- $H_{1}(F, \mathbb{Z})=\mathbb{Z}^{15} \oplus \mathbb{Z}_{2}$. Thus, the algebraic monodromy of the Milnor fibration is trivial over \mathbb{Q} and $\mathbb{Z}_{p}(p>2)$, but not over \mathbb{Z}.
- Hence, $\operatorname{gr}\left(\pi_{1}(F)\right) \cong \operatorname{gr}\left(\pi_{1}(U)\right)$, away from the prime 2. Moreover,
- $\operatorname{gr}_{1}\left(\pi_{1}(F)\right)=\mathbb{Z}^{15} \oplus \mathbb{Z}_{2}$
- $\operatorname{gr}_{2}\left(\pi_{1}(F)\right)=\mathbb{Z}^{45} \oplus \mathbb{Z}_{2}^{7}$
- $\operatorname{gr}_{3}\left(\pi_{1}(F)\right)=\mathbb{Z}^{250} \oplus \mathbb{Z}_{2}^{43}$
- $\operatorname{gr}_{4}\left(\pi_{1}(F)\right)=\mathbb{Z}^{1405} \oplus \mathbb{Z}_{2}^{?}$

References

© Alexander I. Suciu, Lower central series and split extensions, arXiv:2105.14129.

R- Alexander I. Suciu, Alexander invariants and cohomology jump loci in group extensions, arXiv:2107.05148.

