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Fundamental groups and geometry Fundamental groups

The fundamental group
Definition (Poincaré 1904)
Given a topological space X , and a basepoint x0 ∈ X , let

π1(X , x0) = {loops at x0}/ '

This is a group, with multiplication = concatenation of loops, unit =
constant loop, and inverse = reversal of loop.

If X is path-connected, π1(X ) does not depend on basepoint.
If f : X → Y is a continuous map, then f] : π1(X , x0)→ (Y , f (x0)),
f]([α]) = [f ◦ α] is a group homomorphism.
f ' g =⇒ f] = g].
X ' Y =⇒ π1(X ) ∼= π1(Y ).

Example

π1(S1) = Z, and π1(Sn) = 0, for n > 1.
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Fundamental groups and geometry Fundamental groups

Example (Poincaré)
Let I < SO(3) be the group of isometries of the icosahedron (I ∼= A5).
Let p : S3 → SO(3) be the double cover. Then

I∗ := p−1(I) ∼= SL(2,F5)

is the binary icosahedral group (of order 120), and

Σ3 := S3/I∗ = Σ(2,3,5)

is the Poincaré sphere (a smooth, compact, connected, orientable,
3-dimensional manifold). We have:

H∗(Σ3,Z) ∼= H∗(S3,Z),

but
π1(Σ3) 6∼= π1(S3).

Thus, Σ3 6' S3.
Alex Suciu (Northeastern University) Cohomology jumping loci Liverpool, October 2009 4 / 37



Fundamental groups and geometry Fundamental groups

Realizing finitely presented groups

If M is a smooth, compact, connected [for short, closed] manifold,
then π1(M) admits a finite presentation:

π1(M) = 〈x1, . . . xp | r1, . . . , rq〉.

Conversely, every finitely presented group G can be realized as
G = π1(M) for a closed manifold Mn of dimension n ≥ 4.
Mn can be chosen to be orientable.
Mn (n even) can be chosen to be symplectic (Gompf 1995).
Mn (n even, n ≥ 6) can be chosen to be complex (Taubes 1992).
Requiring n = 3 puts severe restrictions on G, e.g.:

G abelian 3-manifold group⇐⇒
G ∈ {Z/mZ (m ≥ 1), Z, Z⊕ Z2, Z3}.
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Fundamental groups and geometry Kaehler groups

Kähler manifolds and Kähler groups
Definition
A compact, connected, complex manifold M is called a Kähler manifold
if M admits a Hermitian metric h for which the imaginary part ω = =(h)
is a closed 2-form.

Examples: Riemann surfaces, CPn, and, more generally, smooth,
complex projective varieties.

Definition
A group G is a Kähler group if G = π1(M), for some compact Kähler
manifold M.

G is projective if M is actually a smooth projective variety.

G finite⇒ G is a projective group (Serre 1958).
G1,G2 Kähler groups⇒ G1 ×G2 is a Kähler group
G Kähler group, H < G finite-index subgroup⇒ H is a Kähler gp

Alex Suciu (Northeastern University) Cohomology jumping loci Liverpool, October 2009 6 / 37



Fundamental groups and geometry Kaehler groups

Problem (Serre 1958)
Which finitely presented groups are Kähler (or projective) groups?

The Kähler condition puts strong restrictions on M:

1 H∗(M,Z) admits a Hodge structure
2 Hence, the odd Betti numbers of M are even
3 M is formal, i.e., (Ω(M),d) ' (H∗(M,R),0)

(Deligne–Griffiths–Morgan–Sullivan 1975)

The Kähler condition also puts strong restrictions on G = π1(M):

1 b1(G) is even
2 G is 1-formal, i.e., its Malcev Lie algebra m(G) is quadratic
3 G cannot split non-trivially as a free product (Gromov 1989)
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Fundamental groups and geometry 3-manifolds

Kähler 3-manifold groups

Question (Donaldson–Goldman 1989, Reznikov 1993)
Which 3-manifold groups are Kähler groups?

Clearly, {abelian, 3-manifold, Kähler groups} = {finite cyclic groups}.
Partial answers (much harder):

Theorem (Reznikov 2002)
Let M be an irreducible, atoroidal 3-manifold. Suppose there is a
homomorphism ρ : π1(M)→ SL(2,C) with Zariski dense image. Then
G = π1(M) is not a Kähler group.

Theorem (Hernández-Lamoneda 2001)
Let M be a geometrizable 3-manifold, with all pieces hyperbolic. Then
G = π1(M) is not a Kähler group.
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Fundamental groups and geometry 3-manifolds

Theorem (Dimca–S., JEMS 2009)

Let G be the fundamental group of a closed 3-manifold. If G is a
Kähler group, then G is finite.

By (Perelman 2003):

π1(M3) finite⇐⇒ M3 has a metric of constant positive curvature

Hence,

{Kähler groups} ∩ {3-manifold groups}
= {finite subgroups of O(4), acting freely on S3}

By (Hopf 1925) and (Milnor 1957), these groups are:

1, D∗4m, O∗, I∗, D2k (2m+1), P ′8·3k ,

and products of one of these with a cyclic group of relatively prime
order.
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Fundamental groups and geometry Quasi-Kaehler groups

Quasi-Kähler manifolds
Definition
A manifold X is called quasi-Kähler if X = X \D, where X is a compact
Kähler manifold and D is a divisor with normal crossings.

Similar definition for X quasi-projective.
The notions of quasi-Kähler group and quasi-projective group are
defined as above.

X quasi-projective⇒ H∗(X ,Z) has a mixed Hodge structure
(Deligne 1972–74)

X = CPn \ {hyperplane arrangement} ⇒ X is formal
(Brieskorn 1973)

X quasi-projective, W1(H1(X ,C)) = 0⇒ π1(X ) is 1-formal
(Morgan 1978)

X = CPn \ {hypersurface} ⇒ π1(X ) is 1-formal
(Kohno 1983)
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Fundamental groups and geometry Quasi-Kaehler groups

Question
Which 3-manifold groups are quasi-Kähler groups?

Theorem (Dimca–Papadima–S., arXiv:0810.2158)

Let G be the fundamental group of a closed, orientable 3-manifold.
Assume G is 1-formal. Then the following are equivalent:

1 m(G) ∼= m(π1(X )), for some quasi-Kähler manifold X.

2 m(G) ∼= m(π1(M)), where M is either S3, #nS1 × S2, or S1 × Σg .

Remark
There are many 3-manifold groups which are quasi-Kähler, yet are not
1-formal. We only have partial results in this case.

Alex Suciu (Northeastern University) Cohomology jumping loci Liverpool, October 2009 11 / 37



Fundamental groups and geometry Quasi-Kaehler groups

Proposition
Let (X ,0) be an isolated surface singularity with C∗-action, and let M
be its singularity link. Then G = π1(M) is a quasi-projective, 3-manifold
group, yet G is not 1-formal, provided b1(M) > 0.

Example
The Heisenberg nilmanifold, M = HR/HZ, where H = {3× 3 unipotent
matrices}, occurs as the Brieskorn manifold Σ(2,3,6).

We also construct examples of irreducible, smooth affine surfaces U,
with π1(U) not 1-formal. (Necessarily, W1H1(U,C) 6= 0, by Morgan.)

Example

Take U = X \ V (f ), where X is the surface in C3 given by
xd + yd + zd = 0, with d ≥ 3, and f = x + y2 + z3.
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Fundamental groups and geometry Toric complexes

Toric complexes and right-angled Artin groups
Definition
Let L be simplicial complex on n vertices. The associated toric
complex, TL, is the subcomplex of the n-torus obtained by deleting the
cells corresponding to the missing simplices of L.

Special case of “generalized moment angle complex”.
π1(TL) is the right-angled Artin group associated to graph Γ = L(1):

GΓ = 〈v ∈ V (Γ) | vw = wv if {v ,w} ∈ E(Γ)〉.

K (GΓ,1) = T∆Γ
, where ∆Γ is the flag complex of Γ.

(Davis–Charney 1995, Meier–VanWyk 1995)
H∗(TL,k) is the exterior Stanley-Reisner ring of L, with generators
the duals v∗, and relations the monomials corresponding to the
missing simplices of L.
TL is formal, and so GΓ is 1-formal. (Notbohm–Ray 2005)
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Fundamental groups and geometry Toric complexes

Example

Γ = K n ⇒ GΓ = Fn

Γ = Kn ⇒ GΓ = Zn

Γ = Γ′
∐

Γ′′ ⇒ GΓ = GΓ′ ∗GΓ′′

Γ = Γ′ ∗ Γ′′ ⇒ GΓ = GΓ′ ×GΓ′′

Theorem (Dimca–Papadima–S., Duke 2009)

The following are equivalent:

1 GΓ is a quasi-Kähler group
2 Γ = Kn1,...,nr := K n1 ∗ · · · ∗ K nr

3 GΓ = Fn1 × · · · × Fnr

1 GΓ is a Kähler group
2 Γ = K2r

3 GΓ = Z2r
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Fundamental groups and geometry Toric complexes

Bestvina–Brady groups: NΓ = ker(ν : GΓ � Z), where ν(v) = 1

Theorem (D.–P.–S., JAG 2008)

The following are equivalent:

1 NΓ is a quasi-Kähler group
2 Γ is either a tree, or

Γ = Kn1,...,nr , with some ni = 1,
or all ni ≥ 2 and r ≥ 3.

1 NΓ is a Kähler group
2 Γ = K2r+1

3 NΓ = Z2r
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Cohomology jumping loci Characteristic varieties

Characteristic varieties
• X connected CW-complex with finite k -skeleton (k ≥ 1)
• G = π1(X , x0): a finitely generated group
• k field; Hom(G, k×) character variety

Definition (Green–Lazarsfeld 1987, Beauville 1988, Simpson
1992, . . . )
The characteristic varieties of X (over k):

V i
d (X ,k) = {ρ ∈ Hom(G, k×) | dimk Hi(X ,kρ) ≥ d},

for 0 ≤ i ≤ k and d > 0.

For each i , get stratification Hom(G,k×) ⊇ V i
1 ⊇ V i

2 ⊇ · · ·
If k ⊆ K extension: V i

d (X , k) = V i
d (X ,K) ∩ Hom(G, k×)

For G of type Fk , set: V i
d (G,k) := V i

d (K (G,1), k)

Note: Vd (X ,k) := V1
d (X ,k) = V1

d (π1(X ), k)

Alex Suciu (Northeastern University) Cohomology jumping loci Liverpool, October 2009 16 / 37



Cohomology jumping loci Tangent cones

Tangent cones and exponential tangent cones

The homomorphism C→ C×, z 7→ ez induces

exp : Hom(G,C)→ Hom(G,C×), exp(0) = 1

Let W = V (I) be a Zariski closed subset in Hom(G,C×).

Definition
The tangent cone at 1 to W :

TC1(W ) = V (in(I))

The exponential tangent cone at 1 to W :

τ1(W ) = {z ∈ Hom(G,C) | exp(tz) ∈W , ∀t ∈ C}
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Cohomology jumping loci Tangent cones

Both types of tangent cones
are homogeneous subvarieties of Hom(G,C)

are non-empty iff 1 ∈W
depend only on the analytic germ of W at 1
commute with finite unions and arbitrary intersections

Moreover,
τ1(W ) ⊆ TC1(W )

I = if all irred components of W are subtori
I 6= in general

τ1(W ) is a finite union of rationally defined subspaces
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Cohomology jumping loci Resonance varieties

Resonance varieties
Let A = H∗(X , k). If char k = 2, assume H1(X ,Z) has no 2-torsion.
Then: a ∈ A1 ⇒ a2 = 0. Get cochain complex (“Aomoto complex")

(A, ·a) : A0 a // A1 a // A2 // · · ·

Definition (Falk 1997, Matei–S. 2000)

The resonance varieties of X (over k):

Ri
d (X , k) = {a ∈ A1 | dimk H i(A, ·a) ≥ d}

Homogeneous subvarieties of A1 = H1(X ,k): Ri
1 ⊇ Ri

2 ⊇ · · ·

Theorem (Libgober 2002)

TC1(V i
d (X ,C)) ⊆ Ri

d (X ,C)

Equality does not hold in general (Matei–S. 2002)

Alex Suciu (Northeastern University) Cohomology jumping loci Liverpool, October 2009 19 / 37



Cohomology jumping loci Resonance varieties

Example: resonance of toric complexes

Recall A = H∗(TL,k) is the exterior Stanley-Reisner ring of L.

Theorem (Papadima–S., Adv. Math. 2009)

Ri
d (TL,k) =

⋃
W⊂VP

σ∈LV\W
dimk eHi−1−|σ|(lkLW

(σ),k)≥d

kW,

where LW is the subcomplex induced by L on W, and lkK (σ) is the link
of a simplex σ in a subcomplex K ⊆ L.

Similar formula holds for V i
d (TL,k), with kW replaced by (k×)W. In

particular,
TC1(Ri

d (TL,C)) = V i
d (TL,C).

Alex Suciu (Northeastern University) Cohomology jumping loci Liverpool, October 2009 20 / 37



Cohomology jumping loci Tangent cone theorem

Tangent cone theorem

Theorem (D.–P.–S., Duke 2009)

If G is 1-formal, then exp : (R1
d (G,C),0)

'−→ (V1
d (G,C),1). Hence

τ1(V1
d (G,C)) = TC1(V1

d (G,C)) = R1
d (G,C)

In particular, R1
d (G,C) is a union of rationally defined subspaces in

H1(G,C) = Hom(G,C).

Example

Let G = 〈x1, x2, x3, x4 | [x1, x2], [x1, x4][x−2
2 , x3], [x−1

1 , x3][x2, x4]〉. Then

R1
1(G,C) = {x ∈ C4 | x2

1 − 2x2
2 = 0}

splits into subspaces over R but not over Q. Thus, G is not 1-formal.
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Cohomology jumping loci Tangent cone theorem

Example

X = F (Σg ,n): the configuration space of n labeled points of a
Riemann surface of genus g (a smooth, quasi-projective variety).
π1(X ) = Pg,n: the pure braid group on n strings on Σg .

Using computation of H∗(F (Σg ,n),C) by Totaro (1996), get

R1
1(P1,n,C) =

{
(x , y) ∈ Cn × Cn

∣∣∣∣ ∑n
i=1 xi =

∑n
i=1 yi = 0,

xiyj − xjyi = 0, for 1 ≤ i < j < n

}
For n ≥ 3, this is an irreducible, non-linear variety (a rational normal
scroll). Hence, P1,n is not 1-formal.
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Cohomology jumping loci Bieri-Neumann-Strebel-Renz invariants

Σ-invariants

G finitely generated group C(G) Cayley graph.
χ : G→ R homomorphism Cχ(G) induced subgraph on vertex set
Gχ = {g ∈ G | χ(g) ≥ 0}.

Definition
Σ1(G) = {χ ∈ Hom(G,R) \ {0} | Cχ(G) is connected}

An open, conical subset of Hom(G,R) = H1(G,R), independent of
choice of generating set for G.

Definition

Σk (G,Z) = {χ ∈ Hom(G,R) \ {0} | the monoid Gχ is of type FPk}

Here, G is of type FPk if there is a projective ZG-resolution P• → Z,
with Pi finitely generated for all i ≤ k .
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Cohomology jumping loci Bieri-Neumann-Strebel-Renz invariants

The BNSR invariants Σq(G,Z) form a descending chain of open
subsets of Hom(G,R) \ {0}.
Σk (G,Z) 6= ∅ =⇒ G is of type FPk .
Σ1(G,Z) = Σ1(G).
The Σ-invariants control the finiteness properties of normal
subgroups N /G with G/N is abelian:

N is of type FPk ⇐⇒ S(G,N) ⊆ Σk (G,Z)

where S(G,N) = {χ ∈ Hom(G,R) \ {0} | χ(N) = 0}.
In particular:

ker(χ : G� Z) is f.g.⇐⇒ {±χ} ⊆ Σ1(G)
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Cohomology jumping loci Bieri-Neumann-Strebel-Renz invariants

Let X be a connected CW-complex with finite 1-skeleton, G = π1(X ).

Definition

The Novikov-Sikorav completion of ZG:

ẐGχ =
{
λ ∈ ZG | {g ∈ suppλ | χ(g) < c} is finite, ∀c ∈ R

}
ẐGχ is a ring, contains ZG as a subring =⇒ ẐGχ is a ZG-module.

Definition

Σq(X ,Z) = {χ ∈ Hom(G,R) \ {0} | Hi(X , ẐG−χ) = 0, ∀ i ≤ q}

Bieri: G of type FPk =⇒ Σq(G,Z) = Σq(K (G,1),Z), ∀q ≤ k .
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Cohomology jumping loci Bieri-Neumann-Strebel-Renz invariants

Exponential tangent cone upper bound

Theorem (Papadima–S., PLMS)
If X has finite k-skeleton, then, for every q ≤ k,

Σq(X ,Z) ⊆
(
τR

1
( ⋃

i≤q

V i
1(X ,C)

)){

. (*)

Thus: Each Σ-invariant is contained in the complement of a union of
rationally defined subspaces. Bound is sharp:

Example
Let G be a finitely generated nilpotent group. Then

Σq(G,Z) = Hom(G,R) \ {0}, V q
1 (G,C) = {1}, ∀q

and so (*) holds as an equality.
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Cohomology jumping loci Bieri-Neumann-Strebel-Renz invariants

Resonance upper bound
Corollary

Suppose exp : (Ri
1(X ,C),0)

'−→ (V i
1(X ,C),1), for i ≤ q. Then:

Σq(X ,Z) ⊆
(⋃

i≤q

Ri
1(X ,R)

){

.

Corollary

Suppose G is a 1-formal group. Then Σ1(G) ⊆ R1
1(G,R){.

In particular, if R1
1(G,R) = H1(G,R), then Σ1(G) = ∅.

Example

The above inclusion may be strict: Let G = 〈a,b | aba−1 = b2〉.
Then G is 1-formal, Σ1(G) = (−∞,0), yet R1

1(G,R) = {0}.

Alex Suciu (Northeastern University) Cohomology jumping loci Liverpool, October 2009 27 / 37



Applications Kaehler manifolds

Characteristic varieties of quasi-Kähler manifolds

Theorem (Arapura 1997)

Let X = X \ D be a quasi-Kähler manifold. Then:

1 Each component of V1
1 (X ) is either an isolated unitary character,

or of the form ρ · f ∗(H1(C,C×)), for some torsion character ρ and
some admissible map f : X → C.

2 If either X = X or b1(X ) = 0, then each component of V i
d (X ) is of

the form ρ · f ∗(H1(T ,C×)), for some unitary character ρ and some
holomorphic map f : X → T to a complex torus.

Here, f : X → C is admissible (or, a pencil) if f is a holomorphic,
surjective map to a connected, smooth complex curve C, and there is
a holomorphic, surjective extension f : X → C with connected fibers.
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Applications Kaehler manifolds

Resonance varieties of quasi-Kähler manifolds

Theorem (D.–P.–S., Duke 2009)
Let X be a quasi-Kähler manifold, G = π1(X ). Let {Vα}α be the irred
components of V1

1 (G) containing 1. Set T α = TC1(Vα). Then:

1 Each T α is a p-isotropic subspace of H1(G,C), of dim ≥ 2p + 2,
for some p = p(α) ∈ {0,1}.

2 If α 6= β, then T α
⋂
T β = {0}.

Assume further that G is 1-formal. Let {Rα}α be the irred components
of R1

1(G). Then:

3 {T α}α = {Rα}α.

4 R1
d (G) = {0} ∪

⋃
α : dimRα>d+p(α)Rα.
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Applications Kaehler manifolds

Here we used the following

Definition
A non-zero subspace U ⊆ H1(G,C) is p-isotropic with respect to

∪G : H1(G,C) ∧ H1(G,C)→ H2(G,C)

if the restriction of ∪G to U ∧ U has rank p.

Example
Let C be a smooth complex curve with χ(C) < 0. Then

R1
1(π1(C),C) = H1(C,C)

and this space is either 1- or 0-isotropic, according to whether C is
compact or not.
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Applications Kaehler manifolds

Σ-invariants of quasi-Kähler groups
Theorem (P.–S., PLMS)

Let X be a quasi-Kähler manifold, and G = π1(X ). Then:

1 Σ1(G) ⊆ TCR
1 (V1

1 (G,C)){.

2 If X is Kähler, or W1(H1(X ,C)) = 0, then R1
1(G,R) is a finite union

of rationally defined linear subspaces, and Σ1(G) ⊆ R1
1(G,R){.

Example

Assumption from (2) is necessary. E.g., let X be the complex
Heisenberg manifold: bundle C× → X → (C×)2 with e = 1. Then:

1 X is a smooth quasi-projective variety;
2 G = π1(X ) is nilpotent (and not 1-formal);
3 Σ1(G) = R2 \ {0} and R1

1(G,R) = R2.
Thus, Σ1(G) 6⊆ R1

1(G,R){.
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Applications Kaehler manifolds

For Kähler manifolds, we can say precisely when the resonance upper
bound for Σ1 is attained.

Theorem (P.–S., PLMS)

Let M be a compact Kähler manifold with b1(M) > 0, and G = π1(M).
The following are equivalent:

1 Σ1(G) = R1
1(G,R){.

2 If f : M → C is an elliptic pencil, then f has no multiple fibers.

Proof uses results of Arapura, DPS, and Delzant.
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Applications Hyperplane arrangements

Hyperplane arrangements

Let A be an arrangement of hyperplanes in C`, with complement
X = C` \

⋃
H∈AH, and group G = G(A) = π1(X ).

X is a smooth, quasi-projective variety, and so G is a
quasi-projective group.
X is formal, and so G = π1(X ) is 1-formal.
A = H∗(X ,Z) is the Orlik-Solomon algebra, determined by the
intersection lattice, L(A).
Resonance varieties R1

d (X ,C) are very well understood.
Tangent cone formula holds. In particular, components of
V1

d (X ,C) passing through 1 are combinatorially determined.
V1

1 (X ,C) may contain translated subtori.
Σq(X ,Z) ⊆ Rq

1(X ,R){
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Applications Hyperplane arrangements

Let A be an arrangement of lines in C2, with group G = G(A).

Theorem (S. 2009)

The following are equivalent:

1 G is a Kähler group.

2 G is a free abelian group of even rank.
3 A consists of an even number of lines in general position.

Also equivalent:
1 G is a right-angled Artin group.

2 G is a finite direct product of finitely generated free groups.
3 The multiplicity graph Γ(A) is a forest.
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Applications 3-manifolds

Donaldson–Goldman problem revisited

Proposition

Let M be a closed, orientable 3-manifold. Then:
1 H1(M,C) is not 1-isotropic.

2 If b1(M) is even, then R1(M,C) = H1(M,C).

Proposition

Let M be a compact Kähler manifold with b1(M) 6= 0. If
R1(M,C) = H1(M,C), then H1(M,C) is 1-isotropic.

But G = π1(M), with M Kähler⇒ b1(G) even.
Thus, if G is both a 3-mfd group and a Kähler group⇒ b1(G) = 0.
Using work of Fujiwara (1999) and Reznikov (2002) on Kazhdan’s
property (T)⇒ G finite.
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Applications 3-manifolds

Boundary manifolds of line arrangements
Let A = {`0, . . . , `n} be an arrangement of lines in CP2. The boundary
manifold of A is the closed, orientable 3-manifold M = M(A) obtained
by taking the boundary of a regular neighborhood of

⋃n
i=0 `i in CP2.

Theorem (Cohen–S., GTM 08, Dimca–Papadima–S., IMRN 08)

Let A = {`0, . . . , `n} be an arrangement of lines in CP2, and let M be
the corresponding boundary manifold. The following are equivalent:

1 The manifold M is formal.
2 The group G = π1(M) is 1-formal.

3 TC1(V1(G,C)) = R1(G,C).

4 The group G is quasi-projective.
5 A is either a pencil (and so M = ]nS1 × S2), or A is a near-pencil

(and so M = S1 × Σn−1).
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