RESIDUAL FINITENESS PROPERTIES OF FUNDAMENTAL GROUPS

Alex Suciu

Northeastern University

Joint work with Thomas Koberda (U. Virginia) arxiv:1604.02010

Number Theory and Algebraic Geometry Seminar Katholieke Universiteit Leuven May 18, 2016

ALEX SUCIU (NORTHEASTERN)

RESIDUAL FINITENESS PROPERTIES

KU LEUVEN, MAY 2016 1 / 23

FUNDAMENTAL GROUPS IN ALGEBRAIC GEOMETRY

- Fundamental groups of manifolds
- Projective groups
- Quasi-projective groups
- Complements of hypersurfaces
- Line arrangements

2 RESIDUALLY FINITE RATIONALLY *p* GROUPS

- The RFRp property
- Characteristic varieties
- BNS invariants
- The RFRp topology

BOUNDARY MANIFOLDS

- 3-manifolds and the RFRp property
- Boundary manifolds of curves
- The RFRp property for boundary manifolds

FUNDAMENTAL GROUPS OF MANIFOLDS

- Every finitely presented group π can be realized as π = π₁(M), for some smooth, compact, connected manifold Mⁿ of dim n ≥ 4.
- *Mⁿ* can be chosen to be orientable.
- If *n* even, $n \ge 4$, then M^n can be chosen to be symplectic (Gompf).
- If *n* even, $n \ge 6$, then M^n can be chosen to be complex (Taubes).
- Requiring that n = 3 puts severe restrictions on the (closed) 3-manifold group $\pi = \pi_1(M^3)$.

PROJECTIVE GROUPS

- A group π is said to be a *projective group* if π = π₁(M), for some smooth, projective variety M.
- The class of projective groups is closed under finite direct products and passing to finite-index subgroups.
- Every finite group is a projective group. [Serre ~1955]
- The projectivity condition puts strong restrictions on π , e.g.:
 - π is finitely presented.
 - $b_1(\pi)$ is even. [by Hodge theory]
 - π is 1-formal [Deligne–Griffiths–Morgan–Sullivan 1975]
 - π cannot split non-trivially as a free product. [Gromov 1989]
 - $\pi = \pi_1(N)$ for some closed 3-manifold N iff π is a finite subgroup of O(4). [Dimca–S. 2009]

QUASI-PROJECTIVE GROUPS

- A group π is said to be a *quasi-projective group* if $\pi = \pi_1(M \setminus D)$, where *M* is a smooth, projective variety and *D* is a divisor.
- Qp groups are finitely presented. The class of qp groups is closed under direct products and passing to finite-index subgroups.
- For a qp group π ,
 - $b_1(\pi)$ can be arbitrary (e.g., the free groups F_n).
 - π may be non-1-formal (e.g., the Heisenberg group).
 - π can split as a non-trivial free product (e.g., $F_2 = \mathbb{Z} * \mathbb{Z}$).

COMPLEMENTS OF HYPERSURFACES

- A subclass of quasi-projective groups consists of fundamental groups of complements of hypersurfaces in CPⁿ.
- By the Lefschetz hyperplane sections theorem, this class coincides the class of fundamental groups of complements of plane algebraic curves.
- All such groups are 1-formal.
- Even more special are the *arrangement groups*, i.e., the fundamental groups of complements of complex hyperplane arrangements (or, equivalently, complex line arrangements).

PLANE ALGEBRAIC CURVES

- Let C ⊂ CP² be a plane algebraic curve, defined by a homogeneous polynomial f ∈ C[z₁, z₂, z₃].
- Zariski commissioned Van Kampen to find a presentation for the fundamental group of the complement, U(C) = CP²\C.
- Using the Alexander polynomial, Zariski showed that $\pi = \pi_1(U)$ is *not* fully determined by the combinatorics of C, but depends on the position of its singularities.

PROBLEM (ZARISKI)

Is π residually finite?

- That is, given g ∈ π, g ≠ 1, is there is a homomorphism φ: π → G onto some finite group G such that φ(g) ≠ 1.
- Equivalently, is the canonical morphism to the profinite completion $\pi \to \pi^{\text{alg}} := \varprojlim_{N \lhd \pi: [\pi:N] < \infty} \pi/N$, injective?

LINE ARRANGEMENTS

- Let \mathcal{A} be an *arrangement of lines* in \mathbb{CP}^2 , defined by a polynomial $f = \prod_{L \in \mathcal{A}} f_L$, with f_L linear forms so that $L = \mathbb{P}(\ker(f_L))$.
- The combinatorics of A is encoded in the *intersection poset*,
 L(A), with L₁(A) = {lines} and L₂(A) = {intersection points}.

- The group $\pi = \pi_1(U(\mathcal{A}))$ has a finite presentation with
 - Meridional generators x_1, \ldots, x_n , where $n = |\mathcal{A}|$, and $\prod x_i = 1$.
 - Commutator relators $x_i \alpha_j(x_i)^{-1}$, where $\alpha_1, \ldots \alpha_s \in P_n \subset Aut(F_n)$, and $s = |\mathcal{L}_2(\mathcal{A})|$.
- Let $\gamma_1(\pi) = \pi$, $\gamma_2(\pi) = \pi' = [\pi, \pi]$, $\gamma_k(\pi) = [\gamma_{k-1}(\pi), \pi]$, be the LCS of π . Then:
 - $\pi_{ab} = \pi / \gamma_2$ equals \mathbb{Z}^{n-1} .
 - π/γ_3 is determined by $L(\mathcal{A})$.
 - π/γ_4 (and thus, π) is *not* determined by $L(\mathcal{A})$ (G. Rybnikov).

PROBLEM (ORLIK)

Is π torsion-free?

• Answer is yes if $U(\mathcal{A})$ is a $K(\pi, 1)$. This happens if the cone on \mathcal{A} is a simplicial arrangement (Deligne), or supersolvable (Terao).

THE RFRp property

Let G be a finitely generated group and let p be a prime.

We say that *G* is *residually finite rationally p* if there exists a sequence of subgroups $G = G_0 > \cdots > G_i > G_{i+1} > \cdots$ such that

- 3 G_i/G_{i+1} is an elementary abelian *p*-group.

Remarks:

- We may assume that each $G_i \lhd G$.
- *G* is RFR*p* if and only if $\operatorname{rad}_{p}(G) := \bigcap_{i} G_{i}$ is trivial.
- For each prime *p*, there exists a finitely presented group *G_p* which is RFR*p*, but not RFR*q* for any prime *q* ≠ *p*.

- **G** RFR $p \Rightarrow$ residually $p \Rightarrow$ residually finite and residually nilpotent.
- $G \operatorname{RFR}_p \Rightarrow G$ torsion-free.
- *G* finitely presented and $RFR_p \Rightarrow G$ has solvable word problem.
- The class of RFRp groups is closed under these operations:
 - Taking subgroups.
 - Finite direct products.
 - Finite free products.
- The following groups are RFRp, for all p:
 - Finitely generated free groups.
 - Closed, orientable surface groups.
 - Right-angled Artin groups.
- The following groups are *not* RFR*p*, for any *p*:
 - Finite groups
 - Non-abelian nilpotent groups

- Let *G* be a finitely-generated group, and let $\hat{G} = \text{Hom}(G, \mathbb{C}^*)$.
- The (degree 1) *characteristic varieties* of *G* are the closed algebraic subsets

$$V_i(G) = \{ \chi \in \widehat{G} \mid \dim H^1(G, \mathbb{C}_{\chi}) \ge i \}.$$

LEMMA

Let G'' = [G', G']. The projection map $\pi \colon G \to G/G''$ induces an isomorphism $\hat{\pi} \colon \widehat{G/G''} \to \widehat{G}$ which restricts to isomorphisms $V_i(G/G'') \to V_i(G)$ for all $i \ge 1$.

A group G is *large* if G virtually surjects onto a non-abelian free group.

LEMMA (KOBERDA 2014)

An f.p. group G is large if and only if there exists a finite-index subgroup H < G such that $V_1(H)$ has infinitely many torsion points.

ALEX SUCIU (NORTHEASTERN)

RESIDUAL FINITENESS PROPERTIES

THEOREM

Let G be a non-abelian, finitely generated group which is RFRp for infinitely many primes. Then:

- **G**/**G**" is not finitely presented.
- G' is not finitely generated.
- $V_1(G)$ contains infinitely many torsion points.

As a consequence, we obtain the following 'Tits alternative' for RFR*p* groups.

COROLLARY

Let G be a finitely presented group which is RFRp for infinitely many primes. Then either:

- G is abelian.
- G is large.

BNS INVARIANTS

• The Bieri–Neumann–Strebel invariant of a f.g. group G is the set

 $\Sigma^{1}(G) = \{ \chi \in S(G) \mid \mathsf{Cay}_{\chi}(G) \text{ is connected} \},\$

where

- S(G) is the unit sphere in $H^1(G, \mathbb{R})$.
- For each non-zero homomorphism χ: G → ℝ, we let Cay_χ(G) be the induced subgraph on vertices g ∈ G such that χ(g) ≥ 0.
- Although Cay_{\chi}(G) depends on the choice of a (finite, symmetric) generating set for G, its connectivity is independent of such choice.

THEOREM (PAPADIMA-S. (2010))

 $\Sigma^1(\mathbf{G}) \subset (\tau_1^{\mathbb{R}}(\mathbf{V}_1(\mathbf{G})))^{c}.$

Here, if $V \subset (\mathbb{C}^*)^n$, then $\tau_1(V) = \{z \in \mathbb{C}^n \mid \exp(\lambda z) \in V, \forall \lambda \in \mathbb{C}\}.$

For $N \lhd G$, write $S(G, N) = \{\chi \in S(G) \mid \chi|_N = 0\}$.

THEOREM (BNS 1988)

Let *G* be a finitely generated group, and let *G*/*N* be an infinite abelian quotient. Then the group *N* is finitely generated if and only if $S(G, N) \subset \Sigma^{1}(G)$. In particular, *G'* is finitely generated if and only if $\Sigma^{1}(G) = S(G)$.

By analogy with a result of Beauville on the structure of Kähler groups, we have:

THEOREM

Let *G* be a finitely generated group which is RFRp for infinitely many primes *p*. If $\Sigma^{1}(G) = S(G)$, then *G* is abelian.

ALEX SUCIU (NORTHEASTERN)

THE RFRp TOPOLOGY

- Let *G* be a finitely generated group, and fix a prime *p*.
- The RFR*p* topology on *G* has basis the cosets of the standard RFR*p* filtration {*G_i*} of *G*.
- G is RFRp iff this topology is Hausdorff.
- Let φ_i: G → G/G_i be the canonical projection. A subgroup H < G is *closed* iff for each g ∈ G\H, there is an *i* such that φ_i(g) ∉ φ_i(H).

PROPOSITION

Let $r: G \to H$ be a retraction to a subgroup H < G. Then

- In the RFRp topology on G induces the RFRp topology on H.
- ⁽²⁾ Moreover, if **G** is RFRp, then **H** is a closed subgroup of **G**.

A COMBINATION THEOREM

THEOREM

Fix a prime *p*. Let $G = G_{\Gamma}$ be a finite graph of finitely generated groups with vertex groups $\{G_v\}_{v \in V(\Gamma)}$ and edge groups $\{G_e\}_{e \in E(\Gamma)}$ satisfying the following conditions:

- ① For each $v \in V(\Gamma)$, the group G_v is RFRp.
- ② For each $v \in V(\Gamma)$, the RFRp topology on G induces the RFRp topology on G_v .
- ③ For each e ∈ E(Γ) and each v ∈ e, the image of G_e in G_v is closed in the RFRp topology on G_v.

Then G is RFRp.

3-MANIFOLDS

- Let *M* be a compact, connected, orientable 3-manifold *M*.
- We will assume that $\chi(M) = 0$ and M is prime, i.e., it cannot be decomposed as a nontrivial connected sum.
- *M* is said to be *geometric* if it admits a finite volume complete metric modeled on one of the eight Thurston geometries, S^3 , $S^2 \times \mathbb{R}$, \mathbb{R}^3 , Nil, Sol, $\mathbb{H}^2 \times \mathbb{R}$, $PSL_2(\mathbb{R})$, or \mathbb{H}^3 .
- Perelman's Geometrization Theorem: every prime 3-manifold can be cut up along a canonical collection of incompressible tori into finitely many pieces, each one of which is geometric.

THEOREM

Let $G = \pi_1(M)$ be a geometric 3-manifold group. Then there is a finite index subgroup $G_0 < G$ which is RFRp for every prime p if and only if M admits one of the following geometries: S^3 , $S^2 \times \mathbb{R}$, \mathbb{R}^3 , $\mathbb{H}^2 \times \mathbb{R}$, \mathbb{H}^3 . Otherwise, no finite index subgroup of G is RFRp for any prime p. ALEX SUCIU (NORTHEASTERN) RESIDUAL EINTENESS PROPERTIES KU LEUVEN, MAY 2016 18 / 23

- A graph manifold is a prime 3-manifold which can be cut up along incompressible tori into pieces, each of which is Seifert fibered.
- Let \mathcal{X} be the class of graph manifolds M satisfying:
- The underlying graph Γ is finite, connected, and bipartite with colors P and L, and each vertex in P has degree at least two.
- 2 Each vertex manifold M_v is homeomorphic to a trivial circle bundle over an orientable surface with boundary.
- 3 If M_v is colored by \mathcal{L} then at least one boundary component of M_v is a boundary component of M, and $e(M_v) = 0$.
- ④ If M_v is colored by \mathcal{P} then no boundary component of M_v is a boundary component of M, and $e(M_v) \neq 0$.
- The gluing maps are given by flips.

THEOREM

Suppose *M* is a graph manifold satisfying the above conditions. Then, for each prime *p*, the group $\pi_1(M)$ is RFR*p*.

BOUNDARY MANIFOLDS OF CURVES

- Let C be a (reduced) algebraic curve in CP², and let T be a regular neighborhood of C.
- The *boundary manifold* of C is defined as $M_C = \partial T$. This is a compact, orientable, smooth manifold of dimension 3.
- The homeomorphism type of $M = M_{\mathbb{C}}$ is independent of the choices made in constructing *T*, and depends only on *C* (Durfee).

EXAMPLE

```
Let \mathcal{A} be a pencil of n lines in \mathbb{CP}^2, defined by f = z_1^n - z_2^n.
If n = 1, then M = S^3. If n > 1, then M = \sharp^{n-1}S^1 \times S^2.
```

EXAMPLE

Let \mathcal{A} be a near-pencil of n lines in \mathbb{CP}^2 , defined by $f = z_1(z_2^{n-1} - z_3^{n-1})$. Then $M = S^1 \times \Sigma_{n-2}$, where $\Sigma_g = \sharp^g S^1 \times S^1$.

In both examples, $\pi_1(M)$ is RFR*p* for all primes *p*.

EXAMPLE

Suppose *C* has a single irreducible component *C*, which we assume to be smooth. Then *C* is homeomorphic to an orientable surface Σ_g of genus $g = \binom{d-1}{2}$, where *d* is the degree of *C*, and $C \cdot C = d^2$. Thus, *M* is a circle bundle over Σ_g with Euler number $e = d^2$.

In this example, $\pi_1(M)$ is not RFR*p*, for any prime *p*, provided $d \ge 2$.

EXAMPLE

Suppose $C = C \cup L$ consists of a smooth conic and a transverse line. The graph Γ is a square, the vertex manifolds are thickened tori $S^1 \times S^1 \times I$, and M_C is the Heisenberg nilmanifold.

In this example, $\pi_1(M)$ is not RFR*p*, for any prime *p*.

QUESTION

For which plane algebraic curves C is the fundamental group of the boundary manifold M_C an RFRp group (for some p or all primes p)?

• The boundary manifold of an affine plane curve is defined as $M = \partial T \cap D^4$, for some sufficiently large 4-ball D^4 .

THEOREM

Let ${\mathcal C}$ be a plane algebraic curve such that

- Each irreducible component of *C* is smooth and transverse to the line at infinity.
- Each singular point of C is a type A singularity.

Then the boundary manifold $M_{\mathcal{C}}$ lies in \mathcal{X} .

- More precisely, *L* is the set of irreducible components of *C*, while
 P is the set of multiple points of *C*.
- The graph Γ has vertex set $V(\Gamma) = \mathcal{L} \cup \mathcal{P}$ and edge set $E(\Gamma) = \{(L, P) \mid P \in L\}.$
- For each $v \in V(\Gamma)$, there is a vertex manifold $M_v = S^1 \times S_v$, with $S_v = S^2 \setminus \bigcup_{\{v,w\} \in E(\Gamma)} D^2_{v,w}$.

THEOREM

Let C be an algebraic curve in \mathbb{C}^2 . Suppose each irreducible component of C is smooth and transverse to the line at infinity, and all singularities of C are of type A. Then $\pi_1(M_C)$ is RFRp, for all primes p.

COROLLARY

If *M* is the boundary manifold of a line arrangement in \mathbb{C}^2 , then $\pi_1(M)$ is RFRp, for all primes *p*.

CONJECTURE Arrangement groups are RFR*p*, for all primes *p*.

ALEX SUCIU (NORTHEASTERN)

RESIDUAL FINITENESS PROPERTIES