Algebra and topology of right-angled Artin groups

Alex Suciu

Northeastern University
Boston, Massachusetts
(visiting the University of Warwick)

Algebra Seminar
University of Leeds
October 19, 2009
(1) Artin groups

- The braid groups
- Serre's realization problem
- Artin groups associated to labeled graphs
- Serre's problem for Artin groups
- Right-angled Artin groups
(2) Toric complexes and right-angled Artin groups
- Partial products of spaces
- Toric complexes
- Associated graded Lie algebra
- Holonomy Lie algebra
- Chen Lie algebra
(3) Resonance varieties
- The resonance varieties of a space
- Resonance of toric complexes
- Resonance of smooth, quasi-projective varieties
- Serre's problem for right-angled Artin groups revisited

The braid group

Definition (E. Artin 1926/1947)

$$
B_{n}=\left\langle\begin{array}{l|ll}
\sigma_{1}, \ldots, \sigma_{n-1} & \begin{array}{ll}
\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1} & 1 \leq i \leq n-2 \\
\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i} & |i-j|>1
\end{array}
\end{array}\right\rangle
$$

Fits into exact sequence

$$
1 \longrightarrow P_{n} \longrightarrow B_{n} \xrightarrow{\pi} S_{n} \longrightarrow 1,
$$

where S_{n} is the symmetric group, π sends a braid to the corresponding permutation, and P_{n} is the group of "pure" braids.

Serre's realization problem

Problem

Which finitely presented groups G are (quasi-) projective, i.e., can be realized as $G=\pi_{1}(M)$, with M a connected, smooth, complex (quasi-) projective variety?

Theorem (J.-P. Serre 1958)

All finite groups are projective.

Theorem (Fox-Neuwirth 1962)

Both P_{n} and B_{n} are quasi-projective groups.

$$
P_{n}=\pi_{1}(F(\mathbb{C}, n)),
$$

where $F(\mathbb{C}, n)=\mathbb{C}^{n} \backslash\left\{z_{i}=z_{j}\right\}$ is the configuration space of n ordered points in \mathbb{C}, or, the complement of the braid arrangement.

$$
B_{n}=\pi_{1}(C(\mathbb{C}, n)),
$$

where $C(\mathbb{C}, n)=F(\mathbb{C}, n) / S_{n}=\mathbb{C}^{n} \backslash\left\{\Delta_{n}=0\right\}$ is the configuration space of n unordered points in \mathbb{C}, or, the complement of the discriminant hypersurface.

Remark

As we shall see later, neither P_{n} nor B_{n} is a projective group.

Artin groups

Let $\Gamma=(V, E)$ be a finite, simple graph, and $\ell: E \rightarrow \mathbb{Z}_{\geq 2}$ an edge-labeling. The associated Artin group:

$$
G_{\Gamma, \ell}=\langle v \in V| \underbrace{v w v \cdots}_{\ell(e)}=\underbrace{w v w \cdots}_{\ell(e)} \text {, for } e=\{v, w\} \in E .\rangle
$$

E.g.: (Γ, ℓ) Dynkin diagram of type $A_{n-1} \Rightarrow G_{\Gamma, \ell}=B_{n}$

The corresponding Coxeter group,

$$
W_{\Gamma, \ell}=G_{\Gamma, \ell} /\left\langle v^{2}=1 \mid v \in V\right\rangle
$$

fits into exact sequence

$$
1 \longrightarrow P_{\Gamma, \ell} \longrightarrow G_{\Gamma, \ell} \xrightarrow{\pi} W_{\Gamma, \ell} \longrightarrow 1 .
$$

Serre's problem for Artin groups

Theorem (Brieskorn 1971)
If $W_{\Gamma, \ell}$ is finite, then $G_{\Gamma, \ell}$ is quasi-projective.
Idea: let

- $\mathcal{A}_{\Gamma, \ell}=$ reflection arrangement of type $W_{\Gamma, \ell}$ (over \mathbb{C})
- $X_{\Gamma, \ell}=\mathbb{C}^{n} \backslash \bigcup_{H \in \mathcal{A}_{\Gamma, \ell}} H$, where $n=\left|\mathcal{A}_{\Gamma, \ell}\right|$
- $P_{\Gamma, \ell}=\pi_{1}\left(X_{\Gamma, \ell}\right)$
then:

$$
G_{\Gamma, \ell}=\pi_{1}\left(X_{\Gamma, \ell} / W_{\Gamma, \ell}\right)=\pi_{1}\left(\mathbb{C}^{n} \backslash\left\{\delta_{\Gamma, \ell}=0\right\}\right)
$$

Theorem (Kapovich-Millson 1998)

There exist infinitely many (Γ, ℓ) such that $G_{\Gamma, \ell}$ is not quasi-projective.

Right-angled Artin groups

Important particular case: $\ell(e)=2$, for all $e \in E$. Simply write:

$$
\left.G_{\Gamma}=\langle v \in \mathrm{~V}| v w=w v \text { if }\{v, w\} \in \mathrm{E}\right\rangle
$$

- $\Gamma=\bar{K}_{n}$ (discrete graph) $\Rightarrow G_{\Gamma}=F_{n}$
- $\Gamma=K_{n}$ (complete graph) $\Rightarrow G_{\Gamma}=\mathbb{Z}^{n}$
- $\Gamma=\Gamma^{\prime} \amalg \Gamma^{\prime \prime} \Rightarrow G_{\Gamma}=G_{\Gamma^{\prime}} * G_{\Gamma^{\prime \prime}}$
- $\Gamma=\Gamma^{\prime} * \Gamma^{\prime \prime} \Rightarrow G_{\Gamma}=G_{\Gamma^{\prime}} \times G_{\Gamma^{\prime \prime}}$

Theorem (Kim-Makar-Limanov-Neggers-Roush 80/Droms 87)

$$
\Gamma \cong \Gamma^{\prime} \Leftrightarrow G_{\Gamma} \cong G_{\Gamma^{\prime}}
$$

Serre's problem for right-angled Artin groups

Theorem (Dimca-Papadima-S. 2009)
The following are equivalent:
(1) G_{Γ} is a quasi-projective group
(2) $\Gamma=\bar{K}_{n_{1}} * \cdots * \bar{K}_{n_{r}}$
(3) $G_{\Gamma}=F_{n_{1}} \times \cdots \times F_{n_{r}}$
(1) G_{Γ} is a projective group
(2) $\Gamma=K_{2 r}$
(3) $G_{\Gamma}=\mathbb{Z}^{2 r}$

Partial product construction

Input:

- L, a simplicial complex on $[n]=\{1, \ldots, n\}$.
- (X, A), a pair of topological spaces, $A \neq \emptyset$.

Output:

$$
(X, A)^{L}=\bigcup_{\sigma \in L}(X, A)^{\sigma} \subset X^{\times n}
$$

where $(X, A)^{\sigma}=\left\{x \in X^{\times n} \mid x_{i} \in A\right.$ if $\left.i \notin \sigma\right\}$.
Interpolates between $A^{\times n}$ and $X^{\times n}$.
Converts simplicial joins to direct products:

$$
(X, A)^{K * L} \cong(X, A)^{K} \times(X, A)^{L} .
$$

Toric complexes

Definition

The toric complex associated to L is the space $T_{L}=\left(S^{1}, *\right)^{L}$.
In other words:

- Circle $S^{1}=e^{0} \cup e^{1}$, with basepoint $*=e^{0}$.
- Torus $T^{n}=\left(S^{1}\right)^{\times n}$, with product cell structure:

$$
(k-1) \text {-simplex } \sigma=\left\{i_{1}, \ldots, i_{k}\right\} \quad \rightsquigarrow \quad k \text {-cell } e^{\sigma}=e_{i_{1}}^{1} \times \cdots \times e_{i_{k}}^{1}
$$

- $T_{L}=\bigcup_{\sigma \in L} e^{\sigma}$.

Examples:

- $T_{\emptyset}=*$
- $T_{n \text { points }}=\bigvee^{n} S^{1}$
- $T_{\partial \Delta^{n-1}}=(n-1)$-skeleton of T^{n}
- $T_{\Delta^{n-1}}=T^{n}$
- k-cells in $T_{L} \longleftrightarrow(k-1)$-simplices in L.
- $C_{*}^{\mathrm{CW}}\left(T_{L}\right)$ is a subcomplex of $C_{*}^{\mathrm{CW}}\left(T^{n}\right)$; thus, all $\partial_{k}=0$, and

$$
H_{k}\left(T_{L}, \mathbb{Z}\right)=C_{k-1}^{\text {simplicial }}(L, \mathbb{Z})=\mathbb{Z}^{\#(k-1) \text {-simplices of } L}
$$

- $H^{*}\left(T_{L}, \mathbb{k}\right)$ is the exterior Stanley-Reisner ring $\mathbb{k}\langle L\rangle=E / J_{L}$, where
- $E=$ exterior algebra (over \mathbb{k}) on generators $v_{1}^{*}, \ldots, v_{n}^{*}$ in degree 1 ;
- $J_{L}=$ ideal generated by all monomials $v_{i_{1}}^{*} \cdots v_{i_{k}}^{*}$ corresponding to simplices $\left\{i_{1}, \ldots, i_{k}\right\} \notin L$.
- Clearly, $\pi_{1}\left(T_{L}\right)=G_{\Gamma}$, where $\Gamma=L^{(1)}$.
- T_{L} is formal, and so G_{Γ} is 1 -formal.
(Notbohm-Ray 2005)
- In fact, $G_{\Gamma, \ell}$ is 1-formal.
(Kapovich-Millson)
- $K\left(G_{\Gamma}, 1\right)=T_{\Delta_{\Gamma}}$, where Δ_{Γ} is the flag complex of Γ.
(Davis-Charney 1995, Meier-VanWyk 1995)
- Hence, $H^{*}\left(G_{\Gamma}, \mathbb{k}\right)=\bigwedge_{\mathbb{k}}\left(v_{1}^{*}, \ldots, v_{n}^{*}\right) / J_{\Gamma}$, where

$$
J_{\Gamma}=\operatorname{ideal}\left(v_{i}^{*} v_{j}^{*} \mid\left\{v_{i}, v_{j}\right\} \notin \mathrm{E}(\Gamma)\right)
$$

- Since J_{Γ} is a quadratic monomial ideal, $A=E / J_{\Gamma}$ is a Koszul algebra (Fröberg 1975), i.e.,

$$
\operatorname{Tor}_{i}^{A}(\mathbb{k}, \mathbb{k})_{j}=0, \quad \text { for all } i \neq j
$$

Associated graded Lie algebra

Let G be a finitely-generated group. Define:

- LCS series: $G=G_{1} \triangleright G_{2} \triangleright \cdots \triangleright G_{k} \triangleright \cdots$, where $G_{k+1}=\left[G_{k}, G\right]$
- LCS quotients: $\mathrm{gr}_{k} G=G_{k} / G_{k+1}$ (f.g. abelian groups)
- LCS ranks: $\phi_{k}(G)=\operatorname{rank}\left(\mathrm{gr}_{k} G\right)$
- Associated graded Lie algebra: $\operatorname{gr}(G)=\bigoplus_{k \geq 1} \operatorname{gr}_{k}(G)$, with Lie bracket [,]: $\mathrm{gr}_{k} \times \mathrm{gr}_{\ell} \rightarrow \mathrm{gr}_{k+\ell}$ induced by group commutator.

Example (Witt, Magnus)

Let $G=F_{n}$ (free group of rank n).
Then $\operatorname{gr} G=\operatorname{Lie}_{n}($ free Lie algebra of rank n), with LCS ranks given by

$$
\prod_{k=1}^{\infty}\left(1-t^{k}\right)^{\phi_{k}}=1-n t
$$

Explicitly: $\phi_{k}\left(F_{n}\right)=\frac{1}{k} \sum_{d \mid k} \mu(d) n^{k / d}$, where μ is Möbius function.

Example (Kohno 1985)

Let $G=P_{n}$. Then:

$$
\prod_{k=1}^{\infty}\left(1-t^{k}\right)^{\phi_{k}}=(1-t) \cdots(1-(n-1) t)
$$

In other words, $\phi_{k}\left(P_{n}\right)=\phi_{k}\left(F_{1} \times \cdots \times F_{n-1}\right)$.

Holonomy Lie algebra

Definition (Chen 1977, Markl-Papadima 1992)

Let G be a finitely generated group, with $H_{1}=H_{1}(G, \mathbb{Z})$ torsion-free. The holonomy Lie algebra of G is the quadratic, graded Lie algebra

$$
\mathfrak{h}_{G}=\operatorname{Lie}\left(H_{1}\right) / \operatorname{ideal}(\operatorname{im}(\nabla)),
$$

where $\nabla: H_{2}(G, \mathbb{Z}) \rightarrow H_{1} \wedge H_{1}=\operatorname{Lie}_{2}\left(H_{1}\right)$ is the comultiplication map.
Let $G=\pi_{1}(X)$ and $A=H^{*}(X, \mathbb{Q})$.

- (Löfwall 1986) $U\left(\mathfrak{h}_{G} \otimes \mathbb{Q}\right) \cong \bigoplus_{k \geq 1} E_{x t_{A}^{k}(\mathbb{Q}, \mathbb{Q})_{k} .}$.
- There is a canonical epimorphism $\mathfrak{h}_{G} \rightarrow \operatorname{gr}(G)$.
- (Sullivan 1977) If G is 1 -formal, then $\mathfrak{h}_{G} \otimes \mathbb{Q} \xrightarrow{\simeq} \operatorname{gr}(G) \otimes \mathbb{Q}$.

Example

$G=F_{n}$, then clearly $\mathfrak{h}_{G}=$ Lie $_{n}$, and so $\mathfrak{h}_{G}=\operatorname{gr}(G)$.

Let $\Gamma=(\mathrm{V}, \mathrm{E})$ graph, and $P_{\Gamma}(t)=\sum_{k \geq 0} f_{k}(\Gamma) t^{k}$ its clique polynomial.

Theorem (Duchamp-Krob 1992, Papadima-S. 2006)

For $G=G_{\Gamma}$:
(1) $\operatorname{gr}(G) \cong \mathfrak{h}_{G}$.
(2) Graded pieces are torsion-free, with ranks given by

$$
\prod_{k=1}^{\infty}\left(1-t^{k}\right)^{\phi_{k}}=P_{\Gamma}(-t)
$$

Idea of proof:
(1) $A=\Lambda_{\mathbb{k}} V^{*} / J_{\Gamma} \Rightarrow \mathfrak{h}_{G} \otimes \mathbb{k}=L_{\Gamma}:=\operatorname{Lie}(V) /([v, w]=0$ if $\{v, w\} \in E)$.
(2) Shelton-Yuzvinsky: $U\left(L_{\Gamma}\right)=A^{!}$(Koszul dual).
(3) Koszul duality: $\operatorname{Hilb}\left(A^{!}, t\right) \cdot \operatorname{Hilb}(A,-t)=1$.
(9) $\operatorname{Hilb}\left(\mathfrak{h}_{G} \otimes \mathbb{k}, t\right)$ independent of $\mathbb{k} \Rightarrow \mathfrak{h}_{G}$ torsion-free.
(0) But $\mathfrak{h}_{G} \rightarrow \operatorname{gr}(G)$ is iso over \mathbb{Q} (by 1 -formality) \Rightarrow iso over \mathbb{Z}.
© LCS formula follows from (3) and PBW.

Chen Lie algebras

Definition (Chen 1951)

The Chen Lie algebra of a finitely generated group G is $\operatorname{gr}\left(G / G^{\prime \prime}\right)$, i.e., the assoc. graded Lie algebra of its maximal metabelian quotient.

Write $\theta_{k}(G)=\operatorname{rankgr}_{k}\left(G / G^{\prime \prime}\right)$ for the Chen ranks. Facts:

- $\operatorname{gr}(G) \rightarrow \operatorname{gr}\left(G / G^{\prime \prime}\right)$, and so $\phi_{k}(G) \geq \theta_{k}(G)$, with equality for $k \leq 3$.
- The map $\mathfrak{h}_{G} \rightarrow \operatorname{gr}(G)$ induces epimorphism $\mathfrak{h}_{G} / \mathfrak{h}_{G}^{\prime \prime} \rightarrow \operatorname{gr}\left(G / G^{\prime \prime}\right)$.
- (P.-S. 2004) If G is 1 -formal, then $\mathfrak{h}_{G} / \mathfrak{h}_{G}^{\prime \prime} \otimes \mathbb{Q} \xrightarrow{\simeq} \operatorname{gr}\left(G / G^{\prime \prime}\right) \otimes \mathbb{Q}$.

Example (Chen 1951)

$\operatorname{gr}\left(F_{n} / F_{n}^{\prime \prime}\right)$ is torsion-free, with ranks $\theta_{1}=n$, and

$$
\theta_{k}=(k-1) \cdot\binom{n+k-2}{k}, \text { for } k \geq 2 .
$$

Example (Cohen-S. 1995)

$\operatorname{gr}\left(P_{n} / P_{n}^{\prime \prime}\right)$ is torsion-free, with ranks $\theta_{1}=\binom{n}{2}, \theta_{2}=\binom{n}{3}$, and

$$
\theta_{k}=(k-1) \cdot\binom{n+1}{4}, \text { for } k \geq 3 .
$$

In particular, $\theta_{k}\left(P_{n}\right) \neq \theta_{k}\left(F_{1} \times \cdots \times F_{n-1}\right)$, for $n \geq 4$ and $k \geq 4$.

The Chen Lie algebra of a RAAG

Theorem (P.-S. 2006)

For $G=G_{F}$:
(1) $\operatorname{gr}\left(G / G^{\prime \prime}\right) \cong \mathfrak{h}_{G} / \mathfrak{h}_{G}^{\prime \prime}$.
(2) Graded pieces are torsion-free, with ranks given by

$$
\sum_{k=2}^{\infty} \theta_{k} t^{k}=Q_{\Gamma}\left(\frac{t}{1-t}\right),
$$

where $Q_{\Gamma}(t)=\sum_{j \geq 2} c_{j}(\Gamma) t^{j}$ is the "cut polynomial" of Γ, with

$$
c_{j}(\Gamma)=\sum_{\mathrm{W} \subset \mathrm{~V}:|\mathrm{W}|=j} \tilde{b}_{0}\left(\Gamma_{\mathrm{W}}\right) .
$$

Idea of proof:

(1) Write $A:=H^{*}(G, \mathbb{k})=E / J_{\Gamma}$, where $E=\bigwedge_{\mathbb{k}}\left(v_{1}^{*}, \ldots, v_{n}^{*}\right)$.
(2) Write $\mathfrak{h}=\mathfrak{h}_{G} \otimes \mathbb{k}$.
(3) By Fröberg and Löfwall (2002)

$$
\left(\mathfrak{h}^{\prime} / \mathfrak{h}^{\prime \prime}\right)_{k} \cong \operatorname{Tor}_{k-1}^{E}(A, \mathbb{k})_{k}, \quad \text { for } k \geq 2
$$

4 By Aramova-Herzog-Hibi \& Aramova-Avramov-Herzog (97-99): $\sum_{k \geq 2} \operatorname{dim}_{\mathbb{k}} \operatorname{Tor}_{k-1}^{E}\left(E / J_{\Gamma}, \mathbb{k}\right)_{k}=\sum_{i \geq 1} \operatorname{dim}_{\mathbb{k}} \operatorname{Tor}_{i}^{S}\left(S / I_{\Gamma}, \mathbb{k}\right)_{i+1} \cdot\left(\frac{t}{1-t}\right)^{i+1}$, where $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ and $I_{\Gamma}=$ ideal $\left\langle x_{i} x_{j} \mid\left\{v_{i}, v_{j}\right\} \notin \mathrm{E}\right\rangle$.
(5) By Hochster (1977):

$$
\operatorname{dim}_{\mathbb{k}} \operatorname{Tor}_{i}^{S}\left(S / I_{\Gamma}, \mathbb{k}\right)_{i+1}=\sum_{\mathrm{W} \subset \mathrm{~V}:|\mathrm{W}|=i+1} \operatorname{dim}_{\mathbb{k}} \widetilde{H}_{0}\left(\Gamma_{\mathrm{W}}, \mathbb{k}\right)=c_{i+1}(\Gamma) .
$$

(6) The answer is independent of $\mathfrak{k} \Rightarrow \mathfrak{h}_{G} / \mathfrak{h}_{G}^{\prime \prime}$ is torsion-free.
(7) Using formality of G_{Γ}, together with $\mathfrak{h}_{G} / \mathfrak{h}_{G}^{\prime \prime} \otimes \mathbb{Q} \xrightarrow{\simeq} \operatorname{gr}\left(G / G^{\prime \prime}\right) \otimes \mathbb{Q}$ ends the proof.

Example

Let Γ be a pentagon, and Γ^{\prime} a square with an edge attached to a vertex. Then:

- $P_{\Gamma}=P_{\Gamma^{\prime}}=1-5 t+5 t^{2}$, and so

$$
\phi_{k}\left(G_{\Gamma}\right)=\phi_{k}\left(G_{\Gamma^{\prime}}\right), \quad \text { for all } k \geq 1 .
$$

- $Q_{\Gamma}=5 t^{2}+5 t^{3}$ but $Q_{\Gamma^{\prime}}=5 t^{2}+5 t^{3}+t^{4}$, and so

$$
\theta_{k}\left(G_{\Gamma}\right) \neq \theta_{k}\left(G_{\Gamma^{\prime}}\right), \quad \text { for } k \geq 4 .
$$

Resonance varieties

Let X be a connected CW-complex with finite k-skeleton $(k \geq 1)$.
Let \mathbb{k} be a field; if char $\mathbb{k}=2$, assume $H_{1}(X, \mathbb{Z})$ has no 2-torsion.
Let $A=H^{*}(X, \mathbb{k})$. Then: $a \in A^{1} \Rightarrow a^{2}=0$. Thus, get cochain complex

$$
(A, \cdot a): A^{0} \xrightarrow{a} A^{1} \xrightarrow{a} A^{2} \longrightarrow \cdots
$$

Definition (Falk 1997, Matei-S. 2000)

The resonance varieties of X (over \mathbb{k}) are the algebraic sets

$$
\mathcal{R}_{d}^{i}(X, \mathbb{k})=\left\{a \in A^{1} \mid \operatorname{dim}_{\mathbb{k}} H^{i}(A, a) \geq d\right\}
$$

defined for all integers $0 \leq i \leq k$ and $d>0$.

- \mathcal{R}_{d}^{i} are homogeneous subvarieties of $A^{1}=H^{1}(X, \mathbb{k})$
- $\mathcal{R}_{1}^{i} \supseteq \mathcal{R}_{2}^{i} \supseteq \cdots \supseteq \mathcal{R}_{b_{i}+1}^{i}=\emptyset$, where $b_{i}=b_{i}(X, \mathbb{k})$.
- $\mathcal{R}_{d}^{1}(X, \mathbb{k})$ depends only on $G=\pi_{1}(X)$, so denote it by $\mathcal{R}_{d}(G, \mathbb{k})$.

Resonance of toric complexes

Recall $A=H^{*}\left(T_{L}, \mathbb{k}\right)$ is the exterior Stanley-Reisner ring of L. Identify $A^{1}=\mathbb{k}^{V}$ — the \mathbb{k}-vector space with basis $\{v \mid v \in \mathrm{~V}\}$.

Theorem (Papadima-S. 2009)

$$
\mathcal{R}_{d}^{i}\left(T_{L}, \mathbb{k}\right)=\bigcup_{\sum_{\sigma \in L_{V} \backslash W}} \bigcup_{\operatorname{dim}_{k} \widetilde{H}_{i-1-|\sigma|}^{W} \mathcal{V}\left(\mathbb{k}_{L \mathbf{W}}(\sigma), \mathbb{k}\right) \geq d} \mathbb{k}^{\mathrm{W}},
$$

where L_{W} is the subcomplex induced by L on W , and $\mathrm{l}_{K}(\sigma)$ is the link of a simplex σ in a subcomplex $K \subseteq L$.

In particular:

$$
\mathcal{R}_{1}\left(G_{\Gamma}, \mathbb{k}\right)=\bigcup_{\substack{\mathrm{W} \subseteq \mathrm{~V} \\ \Gamma_{\mathrm{W}} \text { disconnected }}} \mathbb{k}^{\mathrm{W}}
$$

Example

Let Γ and Γ^{\prime} be the two graphs above. Both have

$$
P(t)=1+6 t+9 t^{2}+4 t^{3}, \quad \text { and } \quad Q(t)=t^{2}\left(6+8 t+3 t^{2}\right) .
$$

Thus, G_{Γ} and G_{Γ}, have the same LCS and Chen ranks. Each resonance variety has 3 components, of codimension 2 :

$$
\mathcal{R}_{1}\left(G_{\Gamma}, \mathbb{k}\right)=\mathbb{k}^{\overline{23}} \cup \mathbb{k}^{25} \cup \mathbb{k}^{\overline{35}}, \quad \mathcal{R}_{1}\left(G_{\Gamma^{\prime}}, \mathbb{k}\right)=\mathbb{k}^{\overline{15}} \cup \mathbb{k}^{\overline{25}} \cup \mathbb{k}^{\overline{26}} .
$$

Yet the two varieties are not isomorphic, since $\operatorname{dim}\left(\mathbb{k}^{\overline{23}} \cap \mathbb{k}^{\overline{25}} \cap \mathbb{k}^{\overline{35}}\right)=3, \quad$ but $\quad \operatorname{dim}\left(\mathbb{k}^{\overline{55}} \cap \mathbb{k}^{\overline{55}} \cap \mathbb{k}^{\overline{26}}\right)=2$.

Projective varieties

Let M be a connected, smooth, complex projective variety. Then:
(1) $H^{*}(M, \mathbb{Z})$ admits a Hodge structure
(2) Hence, the odd Betti numbers of M are even
(3) M is formal (Deligne-Griffiths-Morgan-Sullivan 1975)

This puts strong restrictions on $G=\pi_{1}(M)$:
(1) $b_{1}(G)$ is even
(2) G is 1 -formal, i.e., its Malcev Lie algebra $\mathfrak{m}(G)$ is quadratic
(3) G cannot split non-trivially as a free product (Gromov 1989)

In particular, B_{n} is not a projective group, since $b_{1}\left(B_{n}\right)=1$.

Quasi-projective varieties

Let X be a connected, smooth, quasi-projective variety. Then:

- $H^{*}(X, \mathbb{Z})$ has a mixed Hodge structure
(Deligne 1972-74)
- $X=\mathbb{C P}^{n} \backslash\{$ hyperplane arrangement $\} \Rightarrow X$ is formal
(Brieskorn 1973)
- $W_{1}\left(H^{1}(X, \mathbb{C})\right)=0 \Rightarrow \pi_{1}(X)$ is 1-formal
(Morgan 1978)
- $X=\mathbb{C P}^{n} \backslash\{$ hypersurface $\} \Rightarrow \pi_{1}(X)$ is 1-formal
(Kohno 1983)

A structure theorem

Theorem (D.-P.-S. 2009)
Let X be a smooth, quasi-projective variety, and $G=\pi_{1}(X)$. Let $\left\{L_{\alpha}\right\}_{\alpha}$ be the non-zero irred components of $\mathcal{R}_{1}(G)$. If G is 1 -formal, then
(1) Each L_{α} is a p-isotropic linear subspace of $H^{1}(G, \mathbb{C})$, with $\operatorname{dim} L_{\alpha} \geq 2 p+2$, for some $p=p(\alpha) \in\{0,1\}$.
(8) If $\alpha \neq \beta$, then $L_{\alpha} \cap L_{\beta}=\{0\}$.
(0) $\mathcal{R}_{d}(G)=\{0\} \cup \bigcup_{\alpha} L_{\alpha}$, where the union is over all α for which $\operatorname{dim} L_{\alpha}>d+p(\alpha)$.
Furthermore,
(9) If X is compact, then G is 1 -formal, and each L_{α} is 1 -isotropic.
(0) If $W_{1}\left(H^{1}(X, \mathbb{C})\right)=0$, then G is 1 -formal, and each L_{α} is 0 -isotropic.

Proof uses two basic ingredients:

- A structure theorem for $\mathcal{V}_{d}^{i}(X, \mathbb{C})$ —the jump loci for cohomology with coefficients in rank 1 local systems on a quasi-projective variety X (Arapura 1997).
- A "tangent cone theorem", equating $\operatorname{TC}_{1}\left(\mathcal{V}_{d}^{1}(G, \mathbb{C})\right)$ with $\mathcal{R}_{d}^{1}(G, \mathbb{C})$, for G a 1-formal group.

Serre's problem for RAAGs revisited

Using this theorem, together with the computation of $\mathcal{R}_{1}\left(G_{\Gamma}, \mathbb{C}\right)$, the characterization of those graphs Γ for which G_{Γ} can be realized as a (quasi-) projective fundamental group follows.

Example

Let Γ be the graph above. The maximal disconnected subgraphs are $\Gamma_{\{134\}}$ and $\Gamma_{\{124\}}$. Thus:

$$
\mathcal{R}_{1}\left(G_{\Gamma}, \mathbb{C}\right)=\mathbb{C}^{\{134\}} \cup \mathbb{C}^{\{124\}}
$$

But $\mathbb{C}{ }^{\{134\}} \cap \mathbb{C}^{\{124\}}=\mathbb{C} \mathbb{C}^{\{14\}}$, which is a non-zero subspace. But recall G_{Γ} is 1 -formal. Thus, G_{Γ} is not a quasi-projective group.

References

R A. Dimca, S. Papadima, A. Suciu, Topology and geometry of cohomology jump loci, Duke Math. Journal 148 (2009), no. 3, 405-457.
S. Papadima, A. Suciu, Algebraic invariants for right-angled Artin groups, Math. Annalen 334 (2006), no. 3, 533-555.

R , Toric complexes and Artin kernels, Advances in Math. 220 (2009), no. 2, 441-477.

