Algebra and topology of right-angled Artin groups

Alex Suciu

Northeastern University Boston, Massachusetts (visiting the University of Warwick)

> Algebra Seminar University of Leeds October 19, 2009

Outline

Artin groups

- The braid groups
- Serre's realization problem
- Artin groups associated to labeled graphs
- Serre's problem for Artin groups
- Right-angled Artin groups
- Toric complexes and right-angled Artin groups
 - Partial products of spaces
 - Toric complexes
 - Associated graded Lie algebra
 - Holonomy Lie algebra
 - Chen Lie algebra

Resonance varieties

- The resonance varieties of a space
- Resonance of toric complexes
- Resonance of smooth, quasi-projective varieties
- Serre's problem for right-angled Artin groups revisited

The braid group

Definition (E. Artin 1926/1947)

$$B_n = \left\langle \sigma_1, \dots, \sigma_{n-1} \middle| \begin{array}{c} \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} & 1 \le i \le n-2 \\ \sigma_i \sigma_j = \sigma_j \sigma_i & |i-j| > 1 \end{array} \right\rangle$$

Fits into exact sequence

$$1 \longrightarrow P_n \longrightarrow B_n \xrightarrow{\pi} S_n \longrightarrow 1 ,$$

where S_n is the symmetric group, π sends a braid to the corresponding permutation, and P_n is the group of "pure" braids.

Serre's realization problem

Problem

Which finitely presented groups G are (quasi-) projective, i.e., can be realized as $G = \pi_1(M)$, with M a connected, smooth, complex (quasi-) projective variety?

Theorem (J.-P. Serre 1958)

All finite groups are projective.

Theorem (Fox-Neuwirth 1962)

Both P_n and B_n are quasi-projective groups.

$$P_n = \pi_1(F(\mathbb{C}, n)),$$

where $F(\mathbb{C}, n) = \mathbb{C}^n \setminus \{z_i = z_j\}$ is the configuration space of *n* ordered points in \mathbb{C} , or, the complement of the braid arrangement.

$$B_n = \pi_1(C(\mathbb{C}, n)),$$

where $C(\mathbb{C}, n) = F(\mathbb{C}, n)/S_n = \mathbb{C}^n \setminus \{\Delta_n = 0\}$ is the configuration space of *n* unordered points in \mathbb{C} , or, the complement of the discriminant hypersurface.

Remark

As we shall see later, neither P_n nor B_n is a projective group.

Alex Suciu (Northeastern University)

Right-angled Artin groups

Artin groups

Let $\Gamma = (V, E)$ be a finite, simple graph, and $\ell \colon E \to \mathbb{Z}_{\geq 2}$ an edge-labeling. The associated *Artin group*:

$$G_{\Gamma,\ell} = \langle v \in V \mid \underbrace{vwv\cdots}_{\ell(e)} = \underbrace{wvw\cdots}_{\ell(e)}, \text{ for } e = \{v,w\} \in E.
angle$$

E.g.: (Γ, ℓ) Dynkin diagram of type $A_{n-1} \Rightarrow G_{\Gamma, \ell} = B_n$ The corresponding *Coxeter group*,

$$W_{\Gamma,\ell} = G_{\Gamma,\ell}/\langle v^2 = 1 \mid v \in V
angle$$

fits into exact sequence

$$1 \longrightarrow P_{\Gamma,\ell} \longrightarrow G_{\Gamma,\ell} \xrightarrow{\pi} W_{\Gamma,\ell} \longrightarrow 1$$
.

Serre's problem for Artin groups

Theorem (Brieskorn 1971) If $W_{\Gamma,\ell}$ is finite, then $G_{\Gamma,\ell}$ is quasi-projective.

Idea: let

•
$$\mathcal{A}_{\Gamma,\ell} = \text{reflection arrangement of type } W_{\Gamma,\ell}$$
 (over \mathbb{C})

•
$$X_{\Gamma,\ell} = \mathbb{C}^n \setminus \bigcup_{H \in \mathcal{A}_{\Gamma,\ell}} H$$
, where $n = |\mathcal{A}_{\Gamma,\ell}|$
• $P_{\Gamma,\ell} = \pi_1(X_{\Gamma,\ell})$

then:

$$G_{\Gamma,\ell} = \pi_1(X_{\Gamma,\ell}/W_{\Gamma,\ell}) = \pi_1(\mathbb{C}^n \setminus \{\delta_{\Gamma,\ell} = 0\})$$

Theorem (Kapovich-Millson 1998)

There exist infinitely many (Γ, ℓ) such that $G_{\Gamma, \ell}$ is not quasi-projective.

Right-angled Artin groups

Important particular case: $\ell(e) = 2$, for all $e \in E$. Simply write:

$$G_{\Gamma} = \langle v \in V \mid vw = wv \text{ if } \{v, w\} \in \mathsf{E} \rangle.$$

•
$$\Gamma = \overline{K}_n$$
 (discrete graph) $\Rightarrow G_{\Gamma} = F_n$

•
$$\Gamma = K_n$$
 (complete graph) $\Rightarrow G_{\Gamma} = \mathbb{Z}^n$

•
$$\Gamma = \Gamma' \coprod \Gamma'' \Rightarrow G_{\Gamma} = G_{\Gamma'} * G_{\Gamma''}$$

•
$$\Gamma = \Gamma' * \Gamma'' \Rightarrow G_{\Gamma} = G_{\Gamma'} \times G_{\Gamma''}$$

Theorem (Kim–Makar-Limanov–Neggers–Roush 80/Droms 87) $\Gamma \cong \Gamma' \Leftrightarrow G_{\Gamma} \cong G_{\Gamma'}$

Alex Suciu (Northeastern University)

Serre's problem for right-angled Artin groups

Theorem (Dimca–Papadima–S. 2009)

The following are equivalent:

G_Γ is a quasi-projective group
 Γ = K
_{n1} * · · · * K
_{nr}
 G_Γ = F_{n1} × · · · × F_{nr}

• G_{Γ} is a projective group • $\Gamma = K_{2r}$

$$\bigcirc \quad G_{\Gamma} = \mathbb{Z}^{2r}$$

Partial product construction

Input:

- *L*, a simplicial complex on $[n] = \{1, \ldots, n\}$.
- (*X*, *A*), a pair of topological spaces, $A \neq \emptyset$.

Output:

$$(X, A)^L = \bigcup_{\sigma \in L} (X, A)^\sigma \subset X^{ imes n}$$

where $(X, A)^{\sigma} = \{x \in X^{\times n} \mid x_i \in A \text{ if } i \notin \sigma\}.$

Interpolates between $A^{\times n}$ and $X^{\times n}$.

Converts simplicial joins to direct products:

$$(X,A)^{K*L} \cong (X,A)^K \times (X,A)^L.$$

Toric complexes

Definition

The *toric complex* associated to *L* is the space $T_L = (S^1, *)^L$.

In other words:

• Circle
$$S^1 = e^0 \cup e^1$$
, with basepoint $* = e^0$.

• Torus $T^n = (S^1)^{\times n}$, with product cell structure:

$$(k-1)$$
-simplex $\sigma = \{i_1, \ldots, i_k\} \quad \rightsquigarrow \quad k$ -cell $e^{\sigma} = e^1_{i_1} \times \cdots \times e^1_{i_k}$

•
$$T_L = \bigcup_{\sigma \in L} e^{\sigma}$$
.

Examples:

•
$$T_{\emptyset} = *$$

- *k*-cells in $T_L \longleftrightarrow (k-1)$ -simplices in *L*.
- $C^{CW}_*(T_L)$ is a subcomplex of $C^{CW}_*(T^n)$; thus, all $\partial_k = 0$, and

$$H_k(T_L,\mathbb{Z})=C_{k-1}^{\mathsf{simplicial}}(L,\mathbb{Z})=\mathbb{Z}^{\#\,(k\,-\,1) ext{-simplices of }L}$$

- $H^*(T_L, \Bbbk)$ is the *exterior Stanley-Reisner ring* $\Bbbk \langle L \rangle = E/J_L$, where
 - E = exterior algebra (over \Bbbk) on generators v_1^*, \ldots, v_n^* in degree 1;
 - J_L = ideal generated by all monomials v^{*}_{i1} ··· v^{*}_{ik} corresponding to simplices {i₁,..., i_k} ∉ L.
- Clearly, $\pi_1(T_L) = G_{\Gamma}$, where $\Gamma = L^{(1)}$.
- T_L is formal, and so G_{Γ} is 1-formal. (Notbohm–Ray 2005)
- In fact, $G_{\Gamma,\ell}$ is 1-formal.

(Kapovich-Millson)

• $K(G_{\Gamma}, 1) = T_{\Delta_{\Gamma}}$, where Δ_{Γ} is the *flag complex* of Γ . (Davis–Charney 1995, Meier–VanWyk 1995)

• Hence,
$$H^*(G_{\Gamma}, \Bbbk) = \bigwedge_{\Bbbk} (v_1^*, \dots, v_n^*) / J_{\Gamma}$$
, where
 $J_{\Gamma} = \mathsf{ideal}(v_i^* v_i^* \mid \{v_i, v_j\} \notin \mathsf{E}(\Gamma))$

Since J_Γ is a quadratic monomial ideal, A = E/J_Γ is a Koszul algebra (Fröberg 1975), i.e.,

$$\operatorname{Tor}_{i}^{\mathcal{A}}(\Bbbk, \Bbbk)_{j} = 0$$
, for all $i \neq j$.

Associated graded Lie algebra

Let G be a finitely-generated group. Define:

- LCS series: $G = G_1 \triangleright G_2 \triangleright \cdots \triangleright G_k \triangleright \cdots$, where $G_{k+1} = [G_k, G]$
- LCS quotients: $gr_k G = G_k/G_{k+1}$ (f.g. abelian groups)
- LCS ranks: $\phi_k(G) = \operatorname{rank}(\operatorname{gr}_k G)$
- Associated graded Lie algebra: gr(G) = ⊕_{k≥1} gr_k(G), with Lie bracket [,]: gr_k × gr_ℓ → gr_{k+ℓ} induced by group commutator.

Example (Witt, Magnus)

Let $G = F_n$ (free group of rank n).

Then gr $G = \text{Lie}_n$ (free Lie algebra of rank n), with LCS ranks given by

$$\prod_{k=1}^{\infty} (1-t^k)^{\phi_k} = 1 - nt.$$

Explicitly: $\phi_k(F_n) = \frac{1}{k} \sum_{d|k} \mu(d) n^{k/d}$, where μ is Möbius function.

Example (Kohno 1985)

Let $G = P_n$. Then:

$$\prod_{k=1}^{\infty} (1-t^k)^{\phi_k} = (1-t)\cdots(1-(n-1)t)$$

In other words, $\phi_k(P_n) = \phi_k(F_1 \times \cdots \times F_{n-1})$.

Holonomy Lie algebra

Definition (Chen 1977, Markl–Papadima 1992)

Let *G* be a finitely generated group, with $H_1 = H_1(G, \mathbb{Z})$ torsion-free. The *holonomy Lie algebra* of *G* is the quadratic, graded Lie algebra

 $\mathfrak{h}_{G} = \text{Lie}(H_{1})/\text{ideal}(\text{im}(\nabla)),$

where $\nabla \colon H_2(G,\mathbb{Z}) \to H_1 \land H_1 = \text{Lie}_2(H_1)$ is the comultiplication map.

Let $G = \pi_1(X)$ and $A = H^*(X, \mathbb{Q})$.

- (Löfwall 1986) $U(\mathfrak{h}_G \otimes \mathbb{Q}) \cong \bigoplus_{k \ge 1} \operatorname{Ext}_A^k(\mathbb{Q}, \mathbb{Q})_k$.
- There is a canonical epimorphism $\mathfrak{h}_G \twoheadrightarrow \mathfrak{gr}(G)$.
- (Sullivan 1977) If G is 1-formal, then $\mathfrak{h}_G \otimes \mathbb{Q} \xrightarrow{\simeq} \mathfrak{gr}(G) \otimes \mathbb{Q}$.

Example

 $G = F_n$, then clearly $\mathfrak{h}_G = \text{Lie}_n$, and so $\mathfrak{h}_G = \text{gr}(G)$.

Let $\Gamma = (V, E)$ graph, and $P_{\Gamma}(t) = \sum_{k \ge 0} f_k(\Gamma) t^k$ its clique polynomial.

Theorem (Duchamp-Krob 1992, Papadima-S. 2006)

For $G = G_{\Gamma}$:

- $gr(G) \cong \mathfrak{h}_G$.
 - **3** Graded pieces are torsion-free, with ranks given by

$$\prod_{k=1}^{\infty} (1-t^k)^{\phi_k} = P_{\Gamma}(-t).$$

Idea of proof:

- Shelton–Yuzvinsky: $U(L_{\Gamma}) = A^{!}$ (Koszul dual).
- Solution Soluti Solution Solution Solution Solution Solution Solution Solu
- Hilb($\mathfrak{h}_G \otimes \mathbb{k}, t$) independent of $\mathbb{k} \Rightarrow \mathfrak{h}_G$ torsion-free.
- So But $\mathfrak{h}_G \twoheadrightarrow \mathfrak{gr}(G)$ is iso over \mathbb{Q} (by 1-formality) \Rightarrow iso over \mathbb{Z} .
- LCS formula follows from (3) and PBW.

Alex Suciu (Northeastern University)

Chen Lie algebras

Definition (Chen 1951)

The *Chen Lie algebra* of a finitely generated group *G* is gr(G/G'), i.e., the assoc. graded Lie algebra of its maximal metabelian quotient.

Write $\theta_k(G) = \operatorname{rank} \operatorname{gr}_k(G/G'')$ for the Chen ranks. Facts:

•
$$gr(G) \twoheadrightarrow gr(G/G'')$$
, and so $\phi_k(G) \ge \theta_k(G)$, with equality for $k \le 3$.

• The map $\mathfrak{h}_G \twoheadrightarrow \mathfrak{gr}(G)$ induces epimorphism $\mathfrak{h}_G/\mathfrak{h}''_G \twoheadrightarrow \mathfrak{gr}(G/G'')$.

• (P.–S. 2004) If G is 1-formal, then $\mathfrak{h}_G/\mathfrak{h}'_G \otimes \mathbb{Q} \xrightarrow{\simeq} \operatorname{gr}(G/G'') \otimes \mathbb{Q}$.

Example (Chen 1951)

 $gr(F_n/F_n'')$ is torsion-free, with ranks $\theta_1 = n$, and

$$heta_k = (k-1) \cdot \binom{n+k-2}{k}, ext{ for } k \geq 2.$$

Example (Cohen–S. 1995)

 $\operatorname{gr}(P_n/P_n'')$ is torsion-free, with ranks $\theta_1 = \binom{n}{2}$, $\theta_2 = \binom{n}{3}$, and

$$\theta_k = (k-1) \cdot \binom{n+1}{4}, \text{ for } k \ge 3.$$

In particular, $\theta_k(P_n) \neq \theta_k(F_1 \times \cdots \times F_{n-1})$, for $n \ge 4$ and $k \ge 4$.

The Chen Lie algebra of a RAAG

Theorem (P.-S. 2006)

- For $G = G_{\Gamma}$:
 - $\ \ \, {\rm gr}(G/G'')\cong {\mathfrak h}_G/{\mathfrak h}''_G.$
 - Graded pieces are torsion-free, with ranks given by

$$\sum_{k=2}^{\infty} \theta_k t^k = Q_{\Gamma} \left(\frac{t}{1-t} \right),$$

where $Q_{\Gamma}(t) = \sum_{j \ge 2} c_j(\Gamma) t^j$ is the "cut polynomial" of Γ , with

$$c_j(\Gamma) = \sum_{\mathsf{W} \subset \mathsf{V} \colon |\mathsf{W}|=j} \tilde{b}_0(\Gamma_\mathsf{W}).$$

Idea of proof:

- Write $A := H^*(G, \mathbb{k}) = E/J_{\Gamma}$, where $E = \bigwedge_{\mathbb{k}} (v_1^*, \dots, v_n^*)$.
- **2** Write $\mathfrak{h} = \mathfrak{h}_G \otimes \mathbb{k}$.
- By Fröberg and Löfwall (2002)

$$\left(\mathfrak{h}'/\mathfrak{h}''
ight)_k\cong \mathsf{Tor}_{k-1}^E(A,\Bbbk)_k, \quad \text{for } k\geq 2$$

By Aramova–Herzog–Hibi & Aramova–Avramov–Herzog (97-99):

$$\sum_{k\geq 2} \dim_{\mathbb{K}} \operatorname{Tor}_{k-1}^{\mathcal{E}} (\mathcal{E}/J_{\Gamma}, \mathbb{k})_{k} = \sum_{i\geq 1} \dim_{\mathbb{K}} \operatorname{Tor}_{i}^{\mathcal{S}} (\mathcal{S}/I_{\Gamma}, \mathbb{k})_{i+1} \cdot \left(\frac{t}{1-t}\right)^{i+1},$$

where $S = \Bbbk[x_1, ..., x_n]$ and $I_{\Gamma} = \text{ideal} \langle x_i x_j | \{v_i, v_j\} \notin E \rangle$. So By Hochster (1977):

$$\dim_{\Bbbk} \operatorname{Tor}_{i}^{S}(S/I_{\Gamma}, \Bbbk)_{i+1} = \sum_{\mathsf{W} \subset \mathsf{V} \colon |\mathsf{W}| = i+1} \dim_{\Bbbk} \widetilde{H}_{0}(\Gamma_{\mathsf{W}}, \Bbbk) = c_{i+1}(\Gamma).$$

- The answer is independent of $\mathbb{k} \Rightarrow \mathfrak{h}_G/\mathfrak{h}''_G$ is torsion-free.
- ② Using formality of G_{Γ} , together with $\mathfrak{h}_G/\mathfrak{h}''_G \otimes \mathbb{Q} \xrightarrow{\simeq} \operatorname{gr}(G/G'') \otimes \mathbb{Q}$ ends the proof.

Alex Suciu (Northeastern University)

Example

Let Γ be a pentagon, and Γ' a square with an edge attached to a vertex. Then:

•
$$P_{\Gamma} = P_{\Gamma'} = 1 - 5t + 5t^2$$
, and so

$$\phi_k(G_{\Gamma}) = \phi_k(G_{\Gamma'}), \text{ for all } k \ge 1.$$

•
$$Q_{\Gamma} = 5t^2 + 5t^3$$
 but $Q_{\Gamma'} = 5t^2 + 5t^3 + t^4$, and so

$$heta_k(G_{\Gamma})
eq heta_k(G_{\Gamma'}), \quad ext{for } k \geq 4.$$

Resonance varieties

Let *X* be a connected CW-complex with finite *k*-skeleton ($k \ge 1$). Let \Bbbk be a field; if char $\Bbbk = 2$, assume $H_1(X, \mathbb{Z})$ has no 2-torsion. Let $A = H^*(X, \Bbbk)$. Then: $a \in A^1 \Rightarrow a^2 = 0$. Thus, get cochain complex

$$(A, \cdot a): A^0 \xrightarrow{a} A^1 \xrightarrow{a} A^2 \longrightarrow \cdots$$

Definition (Falk 1997, Matei-S. 2000)

The *resonance varieties* of X (over \Bbbk) are the algebraic sets

$$\mathcal{R}^i_d(X, \Bbbk) = \{ a \in \mathcal{A}^1 \mid \dim_{\Bbbk} \mathcal{H}^i(\mathcal{A}, a) \geq d \},$$

defined for all integers $0 \le i \le k$ and d > 0.

• \mathcal{R}^i_d are homogeneous subvarieties of $A^1 = H^1(X, \Bbbk)$

- $\mathcal{R}_1^i \supseteq \mathcal{R}_2^i \supseteq \cdots \supseteq \mathcal{R}_{b_i+1}^i = \emptyset$, where $b_i = b_i(X, \Bbbk)$.
- $\mathcal{R}^1_d(X, \Bbbk)$ depends only on $G = \pi_1(X)$, so denote it by $\mathcal{R}_d(G, \Bbbk)$.

Resonance of toric complexes

Recall $A = H^*(T_L, \Bbbk)$ is the exterior Stanley-Reisner ring of *L*. Identify $A^1 = \Bbbk^V$ — the \Bbbk -vector space with basis $\{v \mid v \in V\}$.

Theorem (Papadima–S. 2009)

 \mathcal{R}

$$\mathcal{J}_{d}^{i}(\mathcal{T}_{L},\mathbb{k}) = igcup_{\sigma \in L_{\mathrm{V}\setminus \mathrm{W}}} igcup_{\mathrm{dim}_{\mathbb{k}}} egin{array}{l} \mathcal{W} \subset \mathrm{V} \ \mathcal{H}_{i-1-|\sigma|}(\mathrm{lk}_{L_{\mathrm{W}}}(\sigma),\mathbb{k}) \geq d \end{array}$$

where L_W is the subcomplex induced by L on W, and $lk_K(\sigma)$ is the link of a simplex σ in a subcomplex $K \subseteq L$.

In particular:

$$\mathcal{R}_1(G_{\Gamma}, \Bbbk) = igcup_{\substack{\mathsf{W} \subseteq \mathsf{V} \ \Gamma_\mathsf{W} ext{ disconnected}}} \Bbbk^\mathsf{W}.$$

Example

Let Γ and Γ' be the two graphs above. Both have

$$P(t) = 1 + 6t + 9t^2 + 4t^3$$
, and $Q(t) = t^2(6 + 8t + 3t^2)$.

Thus, G_{Γ} and $G_{\Gamma'}$ have the same LCS and Chen ranks. Each resonance variety has 3 components, of codimension 2:

$$\mathcal{R}_1(\mathit{G}_{\Gamma},\Bbbk) = \Bbbk^{\overline{23}} \cup \Bbbk^{\overline{25}} \cup \Bbbk^{\overline{35}}, \qquad \mathcal{R}_1(\mathit{G}_{\Gamma'},\Bbbk) = \Bbbk^{\overline{15}} \cup \Bbbk^{\overline{25}} \cup \Bbbk^{\overline{26}}.$$

Yet the two varieties are not isomorphic, since

$$\text{dim}(\Bbbk^{\overline{23}}\cap \Bbbk^{\overline{25}}\cap \Bbbk^{\overline{35}})=3, \quad \text{but} \quad \text{dim}(\Bbbk^{\overline{15}}\cap \Bbbk^{\overline{25}}\cap \Bbbk^{\overline{26}})=2.$$

Alex Suciu (Northeastern University)

Projective varieties

Let *M* be a connected, smooth, complex projective variety. Then:

- $H^*(M,\mathbb{Z})$ admits a Hodge structure
- 2 Hence, the odd Betti numbers of *M* are even
- M is formal (Deligne–Griffiths–Morgan–Sullivan 1975)

This puts strong restrictions on $G = \pi_1(M)$:

- $b_1(G)$ is even
- **2** *G* is 1-formal, i.e., its Malcev Lie algebra $\mathfrak{m}(G)$ is quadratic
- G cannot split non-trivially as a free product (Gromov 1989)

In particular, B_n is not a projective group, since $b_1(B_n) = 1$.

Quasi-projective varieties

Let *X* be a connected, smooth, quasi-projective variety. Then:

H[∗](*X*, ℤ) has a mixed Hodge structure

(Deligne 1972-74)

•
$$X = \mathbb{CP}^n \setminus \{ \text{hyperplane arrangement} \} \Rightarrow X \text{ is formal}$$

(Brieskorn 1973)

•
$$W_1(H^1(X,\mathbb{C})) = 0 \Rightarrow \pi_1(X)$$
 is 1-forma

(Morgan 1978)

• $X = \mathbb{CP}^n \setminus \{ \text{hypersurface} \} \Rightarrow \pi_1(X) \text{ is 1-formal}$

(Kohno 1983)

A structure theorem

Theorem (D.-P.-S. 2009)

Let X be a smooth, quasi-projective variety, and $G = \pi_1(X)$. Let $\{L_\alpha\}_\alpha$ be the non-zero irred components of $\mathcal{R}_1(G)$. If G is 1-formal, then

• Each L_{α} is a p-isotropic linear subspace of $H^{1}(G, \mathbb{C})$, with dim $L_{\alpha} \geq 2p + 2$, for some $p = p(\alpha) \in \{0, 1\}$.

2 If
$$\alpha \neq \beta$$
, then $L_{\alpha} \cap L_{\beta} = \{0\}$.

So $\mathcal{R}_d(G) = \{0\} \cup \bigcup_{\alpha} L_{\alpha}$, where the union is over all α for which dim $L_{\alpha} > d + p(\alpha)$.

Furthermore,

- If X is compact, then G is 1-formal, and each L_{α} is 1-isotropic.
- S If $W_1(H^1(X, \mathbb{C})) = 0$, then G is 1-formal, and each L_α is 0-isotropic.

Proof uses two basic ingredients:

- A structure theorem for Vⁱ_d(X, ℂ)—the jump loci for cohomology with coefficients in rank 1 local systems on a quasi-projective variety X (Arapura 1997).
- A "tangent cone theorem", equating *TC*₁(*V*¹_d(*G*, ℂ)) with *R*¹_d(*G*, ℂ), for *G* a 1-formal group.

Serre's problem for RAAGs revisited

Using this theorem, together with the computation of $\mathcal{R}_1(G_{\Gamma}, \mathbb{C})$, the characterization of those graphs Γ for which G_{Γ} can be realized as a (quasi-) projective fundamental group follows.

Let Γ be the graph above. The maximal disconnected subgraphs are $\Gamma_{\{134\}}$ and $\Gamma_{\{124\}}$. Thus:

$$\mathcal{R}_1(G_{\Gamma},\mathbb{C}) = \mathbb{C}^{\{134\}} \cup \mathbb{C}^{\{124\}}.$$

But $\mathbb{C}^{\{134\}} \cap \mathbb{C}^{\{124\}} = \mathbb{C}^{\{14\}}$, which is a non-zero subspace. But recall G_{Γ} is 1-formal. Thus, G_{Γ} is not a quasi-projective group.

References

- A. Dimca, S. Papadima, A. Suciu, *Topology and geometry of cohomology jump loci*, Duke Math. Journal **148** (2009), no. 3, 405–457.
- S. Papadima, A. Suciu, *Algebraic invariants for right-angled Artin groups*, Math. Annalen **334** (2006), no. 3, 533–555.

____, Toric complexes and Artin kernels, Advances in Math. 220 (2009), no. 2, 441–477.