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Artin groups The braid groups

The braid group

Definition (E. Artin 1926/1947)

Bn =

〈
σ1, . . . , σn−1

∣∣∣∣∣ σiσi+1σi = σi+1σiσi+1 1 ≤ i ≤ n − 2
σiσj = σjσi |i − j | > 1

〉

Fits into exact sequence

1 // Pn // Bn
π // Sn // 1 ,

where Sn is the symmetric group, π sends a braid to the corresponding
permutation, and Pn is the group of “pure" braids.
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Artin groups Serre’s realization problem

Serre’s realization problem

Problem
Which finitely presented groups G are (quasi-) projective, i.e., can be
realized as G = π1(M), with M a connected, smooth, complex (quasi-)
projective variety?

Theorem (J.-P. Serre 1958)
All finite groups are projective.
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Artin groups Serre’s realization problem

Theorem (Fox–Neuwirth 1962)
Both Pn and Bn are quasi-projective groups.

Pn = π1(F (C,n)),

where F (C,n) = Cn \ {zi = zj} is the configuration space of n ordered
points in C, or, the complement of the braid arrangement.

Bn = π1(C(C,n)),

where C(C,n) = F (C,n)/Sn = Cn \ {∆n = 0} is the configuration
space of n unordered points in C, or, the complement of the
discriminant hypersurface.

Remark
As we shall see later, neither Pn nor Bn is a projective group.
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Artin groups Artin groups associated to labeled graphs

Artin groups
Let Γ = (V ,E) be a finite, simple graph, and ` : E → Z≥2 an
edge-labeling. The associated Artin group:

GΓ,` = 〈v ∈ V | vwv · · ·︸ ︷︷ ︸
`(e)

= wvw · · ·︸ ︷︷ ︸
`(e)

, for e = {v ,w} ∈ E .〉

E.g.: (Γ, `) Dynkin diagram of type An−1 ⇒ GΓ,` = Bn

The corresponding Coxeter group,

WΓ,` = GΓ,`/〈v2 = 1 | v ∈ V 〉

fits into exact sequence

1 // PΓ,` // GΓ,`
π // WΓ,` // 1 .
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Artin groups Serre’s problem for Artin groups

Serre’s problem for Artin groups

Theorem (Brieskorn 1971)
If WΓ,` is finite, then GΓ,` is quasi-projective.

Idea: let
AΓ,` = reflection arrangement of type WΓ,` (over C)
XΓ,` = Cn \

⋃
H∈AΓ,`

H, where n = |AΓ,`|
PΓ,` = π1(XΓ,`)

then:
GΓ,` = π1(XΓ,`/WΓ,`) = π1(Cn \ {δΓ,` = 0})

Theorem (Kapovich–Millson 1998)
There exist infinitely many (Γ, `) such that GΓ,` is not quasi-projective.
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Artin groups Right-angled Artin groups

Right-angled Artin groups

Important particular case: `(e) = 2, for all e ∈ E . Simply write:

GΓ = 〈v ∈ V | vw = wv if {v ,w} ∈ E〉.

Γ = K n (discrete graph)⇒ GΓ = Fn

Γ = Kn (complete graph)⇒ GΓ = Zn

Γ = Γ′
∐

Γ′′ ⇒ GΓ = GΓ′ ∗GΓ′′

Γ = Γ′ ∗ Γ′′ ⇒ GΓ = GΓ′ ×GΓ′′

Theorem (Kim–Makar-Limanov–Neggers–Roush 80/Droms 87)
Γ ∼= Γ′ ⇔ GΓ

∼= GΓ′
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Artin groups Right-angled Artin groups

Serre’s problem for right-angled Artin groups

Theorem (Dimca–Papadima–S. 2009)
The following are equivalent:

1 GΓ is a quasi-projective group
2 Γ = K n1 ∗ · · · ∗ K nr

3 GΓ = Fn1 × · · · × Fnr

1 GΓ is a projective group
2 Γ = K2r

3 GΓ = Z2r
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Toric complexes and right-angled Artin groups Partial products of spaces

Partial product construction

Input:
L, a simplicial complex on [n] = {1, . . . ,n}.
(X ,A), a pair of topological spaces, A 6= ∅.

Output:
(X ,A)L =

⋃
σ∈L

(X ,A)σ ⊂ X×n

where (X ,A)σ = {x ∈ X×n | xi ∈ A if i /∈ σ}.

Interpolates between A×n and X×n.

Converts simplicial joins to direct products:

(X ,A)K∗L ∼= (X ,A)K × (X ,A)L.
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Toric complexes and right-angled Artin groups Toric complexes

Toric complexes
Definition
The toric complex associated to L is the space TL = (S1, ∗)L.

In other words:
Circle S1 = e0 ∪ e1, with basepoint ∗ = e0.
Torus T n = (S1)×n, with product cell structure:

(k − 1)-simplex σ = {i1, . . . , ik}  k -cell eσ = e1
i1 × · · · × e1

ik

TL =
⋃
σ∈L eσ.

Examples:
T∅ = ∗
Tn points =

∨n S1

T∂∆n−1 = (n − 1)-skeleton of T n

T∆n−1 = T n
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Toric complexes and right-angled Artin groups Toric complexes

k -cells in TL ←→ (k − 1)-simplices in L.

CCW
∗ (TL) is a subcomplex of CCW

∗ (T n); thus, all ∂k = 0, and

Hk (TL,Z) = Csimplicial
k−1 (L,Z) = Z# (k − 1)-simplices of L.

H∗(TL,k) is the exterior Stanley-Reisner ring k〈L〉 = E/JL, where
I E = exterior algebra (over k) on generators v∗

1 , . . . , v
∗
n in degree 1;

I JL = ideal generated by all monomials v∗
i1 · · · v

∗
ik corresponding to

simplices {i1, . . . , ik} /∈ L.

Clearly, π1(TL) = GΓ, where Γ = L(1).

TL is formal, and so GΓ is 1-formal. (Notbohm–Ray 2005)

In fact, GΓ,` is 1-formal. (Kapovich–Millson)
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Toric complexes and right-angled Artin groups Toric complexes

K (GΓ,1) = T∆Γ
, where ∆Γ is the flag complex of Γ.

(Davis–Charney 1995, Meier–VanWyk 1995)

Hence, H∗(GΓ,k) =
∧

k(v∗1 , . . . , v
∗
n )/JΓ, where

JΓ = ideal(v∗i v∗j | {vi , vj} /∈ E(Γ))

Since JΓ is a quadratic monomial ideal, A = E/JΓ is a Koszul
algebra (Fröberg 1975), i.e.,

TorA
i (k,k)j = 0, for all i 6= j .
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Toric complexes and right-angled Artin groups Associated graded Lie algebra

Associated graded Lie algebra

Let G be a finitely-generated group. Define:

LCS series: G = G1 .G2 . · · · .Gk . · · · , where Gk+1 = [Gk ,G]

LCS quotients: grk G = Gk/Gk+1 (f.g. abelian groups)

LCS ranks: φk (G) = rank(grk G)

Associated graded Lie algebra: gr(G) =
⊕

k≥1 grk (G), with Lie
bracket [ , ] : grk ×gr` → grk+` induced by group commutator.
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Toric complexes and right-angled Artin groups Associated graded Lie algebra

Example (Witt, Magnus)
Let G = Fn (free group of rank n).
Then gr G = Lien (free Lie algebra of rank n), with LCS ranks given by

∞∏
k=1

(1− tk )φk = 1− nt .

Explicitly: φk (Fn) = 1
k
∑

d |k µ(d)nk/d , where µ is Möbius function.

Example (Kohno 1985)
Let G = Pn. Then:

∞∏
k=1

(1− tk )φk = (1− t) · · · (1− (n − 1)t)

In other words, φk (Pn) = φk (F1 × · · · × Fn−1).
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Toric complexes and right-angled Artin groups Holonomy Lie algebra

Holonomy Lie algebra
Definition (Chen 1977, Markl–Papadima 1992)
Let G be a finitely generated group, with H1 = H1(G,Z) torsion-free.
The holonomy Lie algebra of G is the quadratic, graded Lie algebra

hG = Lie(H1)/ideal(im(∇)),

where ∇ : H2(G,Z)→ H1 ∧ H1 = Lie2(H1) is the comultiplication map.

Let G = π1(X ) and A = H∗(X ,Q).

(Löfwall 1986) U(hG ⊗Q) ∼=
⊕

k≥1 ExtkA(Q,Q)k .
There is a canonical epimorphism hG � gr(G).

(Sullivan 1977) If G is 1-formal, then hG ⊗Q '−→ gr(G)⊗Q.

Example
G = Fn, then clearly hG = Lien, and so hG = gr(G).
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Toric complexes and right-angled Artin groups Holonomy Lie algebra

Let Γ = (V,E) graph, and PΓ(t) =
∑

k≥0 fk (Γ)tk its clique polynomial.

Theorem (Duchamp–Krob 1992, Papadima–S. 2006)
For G = GΓ:

1 gr(G) ∼= hG.
2 Graded pieces are torsion-free, with ranks given by

∞∏
k=1

(1− tk )φk = PΓ(−t).

Idea of proof:
1 A =

∧
k V ∗/JΓ ⇒ hG ⊗ k = LΓ := Lie(V)/([v ,w ] = 0 if {v ,w} ∈ E).

2 Shelton–Yuzvinsky: U(LΓ) = A! (Koszul dual).
3 Koszul duality: Hilb(A!, t) · Hilb(A,−t) = 1.
4 Hilb(hG ⊗ k, t) independent of k⇒ hG torsion-free.
5 But hG � gr(G) is iso over Q (by 1-formality)⇒ iso over Z.
6 LCS formula follows from (3) and PBW.
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Toric complexes and right-angled Artin groups Chen Lie algebra

Chen Lie algebras

Definition (Chen 1951)
The Chen Lie algebra of a finitely generated group G is gr(G/G′′), i.e.,
the assoc. graded Lie algebra of its maximal metabelian quotient.

Write θk (G) = rank grk (G/G′′) for the Chen ranks. Facts:

gr(G)� gr(G/G′′), and so φk (G) ≥ θk (G), with equality for k ≤ 3.

The map hG � gr(G) induces epimorphism hG/h
′′
G � gr(G/G′′).

(P.–S. 2004) If G is 1-formal, then hG/h
′′
G ⊗Q '−→ gr(G/G′′)⊗Q.
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Toric complexes and right-angled Artin groups Chen Lie algebra

Example (Chen 1951)
gr(Fn/F ′′n ) is torsion-free, with ranks θ1 = n, and

θk = (k − 1) ·
(

n + k − 2
k

)
, for k ≥ 2.

Example (Cohen–S. 1995)
gr(Pn/P ′′n ) is torsion-free, with ranks θ1 =

(n
2

)
, θ2 =

(n
3

)
, and

θk = (k − 1) ·
(

n + 1
4

)
, for k ≥ 3.

In particular, θk (Pn) 6= θk (F1 × · · · × Fn−1), for n ≥ 4 and k ≥ 4.
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Toric complexes and right-angled Artin groups Chen Lie algebra

The Chen Lie algebra of a RAAG

Theorem (P.–S. 2006)
For G = GΓ:

1 gr(G/G′′) ∼= hG/h
′′
G.

2 Graded pieces are torsion-free, with ranks given by

∞∑
k=2

θk tk = QΓ

(
t

1− t

)
,

where QΓ(t) =
∑

j≥2 cj(Γ)t j is the “cut polynomial" of Γ, with

cj(Γ) =
∑

W⊂V : |W|=j

b̃0(ΓW).
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Toric complexes and right-angled Artin groups Chen Lie algebra

Idea of proof:
1 Write A := H∗(G, k) = E/JΓ, where E =

∧
k(v∗1 , . . . , v

∗
n ).

2 Write h = hG ⊗ k.
3 By Fröberg and Löfwall (2002)(

h′/h′′
)

k
∼= TorE

k−1(A,k)k , for k ≥ 2

4 By Aramova–Herzog–Hibi & Aramova–Avramov–Herzog (97-99):∑
k≥2

dimk TorE
k−1(E/JΓ,k)k =

∑
i≥1

dimk TorS
i (S/IΓ, k)i+1·

(
t

1− t

)i+1

,

where S = k[x1, . . . , xn] and IΓ = ideal 〈xixj | {vi , vj} /∈ E〉.
5 By Hochster (1977):

dimk TorS
i (S/IΓ,k)i+1 =

∑
W⊂V : |W|=i+1

dimk H̃0(ΓW, k) = ci+1(Γ).

6 The answer is independent of k⇒ hG/h
′′
G is torsion-free.

7 Using formality of GΓ, together with hG/h
′′
G ⊗Q '−→ gr(G/G′′)⊗Q

ends the proof.
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Toric complexes and right-angled Artin groups Chen Lie algebra

Example
Let Γ be a pentagon, and Γ′ a square with an edge attached to a
vertex. Then:

PΓ = PΓ′ = 1− 5t + 5t2, and so

φk (GΓ) = φk (GΓ′), for all k ≥ 1.

QΓ = 5t2 + 5t3 but QΓ′ = 5t2 + 5t3 + t4, and so

θk (GΓ) 6= θk (GΓ′), for k ≥ 4.
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Resonance varieties The resonance varieties of a space

Resonance varieties
Let X be a connected CW-complex with finite k -skeleton (k ≥ 1).
Let k be a field; if char k = 2, assume H1(X ,Z) has no 2-torsion.
Let A = H∗(X , k). Then: a ∈ A1 ⇒ a2 = 0. Thus, get cochain complex

(A, ·a) : A0 a // A1 a // A2 // · · ·

Definition (Falk 1997, Matei–S. 2000)

The resonance varieties of X (over k) are the algebraic sets

Ri
d (X ,k) = {a ∈ A1 | dimk H i(A,a) ≥ d},

defined for all integers 0 ≤ i ≤ k and d > 0.

Ri
d are homogeneous subvarieties of A1 = H1(X ,k)

Ri
1 ⊇ Ri

2 ⊇ · · · ⊇ Ri
bi +1 = ∅, where bi = bi(X ,k).

R1
d (X ,k) depends only on G = π1(X ), so denote it by Rd (G,k).
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Resonance varieties Resonance of toric complexes

Resonance of toric complexes

Recall A = H∗(TL,k) is the exterior Stanley-Reisner ring of L.
Identify A1 = kV — the k-vector space with basis {v | v ∈ V}.

Theorem (Papadima–S. 2009)

Ri
d (TL,k) =

⋃
W⊂VP

σ∈LV\W
dimk eHi−1−|σ|(lkLW

(σ),k)≥d

kW,

where LW is the subcomplex induced by L on W, and lkK (σ) is the link
of a simplex σ in a subcomplex K ⊆ L.

In particular:
R1(GΓ,k) =

⋃
W⊆V

ΓW disconnected

kW.
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Resonance varieties Resonance of toric complexes

@
@
@
@

�
�

�
� @
@
�
�s ss ss

s
1

2 3

4 5 6

@
@
@
@

@
@
@
@s s s

s s s1 2 3

4 5 6

Example
Let Γ and Γ′ be the two graphs above. Both have

P(t) = 1 + 6t + 9t2 + 4t3, and Q(t) = t2(6 + 8t + 3t2).

Thus, GΓ and GΓ′ have the same LCS and Chen ranks.
Each resonance variety has 3 components, of codimension 2:

R1(GΓ, k) = k23 ∪ k25 ∪ k35 , R1(GΓ′ , k) = k15 ∪ k25 ∪ k26 .

Yet the two varieties are not isomorphic, since

dim(k23 ∩ k25 ∩ k35) = 3, but dim(k15 ∩ k25 ∩ k26) = 2.
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Resonance varieties Resonance of smooth, quasi-projective varieties

Projective varieties
Let M be a connected, smooth, complex projective variety. Then:

1 H∗(M,Z) admits a Hodge structure

2 Hence, the odd Betti numbers of M are even

3 M is formal (Deligne–Griffiths–Morgan–Sullivan 1975)

This puts strong restrictions on G = π1(M):

1 b1(G) is even

2 G is 1-formal, i.e., its Malcev Lie algebra m(G) is quadratic

3 G cannot split non-trivially as a free product (Gromov 1989)

In particular, Bn is not a projective group, since b1(Bn) = 1.
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Resonance varieties Resonance of smooth, quasi-projective varieties

Quasi-projective varieties

Let X be a connected, smooth, quasi-projective variety. Then:

H∗(X ,Z) has a mixed Hodge structure
(Deligne 1972–74)

X = CPn \ {hyperplane arrangement} ⇒ X is formal
(Brieskorn 1973)

W1(H1(X ,C)) = 0⇒ π1(X ) is 1-formal
(Morgan 1978)

X = CPn \ {hypersurface} ⇒ π1(X ) is 1-formal
(Kohno 1983)
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Resonance varieties Resonance of smooth, quasi-projective varieties

A structure theorem

Theorem (D.–P.–S. 2009)
Let X be a smooth, quasi-projective variety, and G = π1(X ). Let {Lα}α
be the non-zero irred components of R1(G). If G is 1-formal, then

1 Each Lα is a p-isotropic linear subspace of H1(G,C), with
dim Lα ≥ 2p + 2, for some p = p(α) ∈ {0,1}.

2 If α 6= β, then Lα ∩ Lβ = {0}.
3 Rd (G) = {0} ∪

⋃
α Lα, where the union is over all α for which

dim Lα > d + p(α).
Furthermore,

4 If X is compact, then G is 1-formal, and each Lα is 1-isotropic.
5 If W1(H1(X ,C)) = 0, then G is 1-formal, and each Lα is

0-isotropic.
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Resonance varieties Resonance of smooth, quasi-projective varieties

Proof uses two basic ingredients:
A structure theorem for V i

d (X ,C)—the jump loci for cohomology
with coefficients in rank 1 local systems on a quasi-projective
variety X (Arapura 1997).

A “tangent cone theorem", equating TC1(V1
d (G,C)) with R1

d (G,C),
for G a 1-formal group.
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Resonance varieties Serre’s problem for right-angled Artin groups revisited

Serre’s problem for RAAGs revisited
Using this theorem, together with the computation of R1(GΓ,C), the
characterization of those graphs Γ for which GΓ can be realized as a
(quasi-) projective fundamental group follows.

Example
1��	�

�� 2��	�

�� 3��	�

�� 4��	�

��

Let Γ be the graph above. The maximal disconnected subgraphs are
Γ{134} and Γ{124}. Thus:

R1(GΓ,C) = C{134} ∪ C{124}.

But C{134} ∩ C{124} = C{14}, which is a non-zero subspace.
But recall GΓ is 1-formal. Thus, GΓ is not a quasi-projective group.
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Resonance varieties Serre’s problem for right-angled Artin groups revisited
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