TOPOLOGY AND COMBINATORICS OF MILNOR FIBRATIONS OF HYPERPLANE ARRANGEMENTS

Alex Suciu

Northeastern University

Conference on Hyperplane Arrangements and Characteristic Classes

Research Institute for Mathematical Sciences, Kyoto November 13, 2013

- G. Denham, A. Suciu, *Multinets, parallel connections, and Milnor fibrations of arrangements*, <u>arxiv:1209.3414</u>, to appear in Proc. London Math. Soc.
- A. Suciu, *Hyperplane arrangements and Milnor fibrations*, <u>arxiv:1301.4851</u>, to appear in Ann. Fac. Sci. Toulouse Math.
- S. Papadima, A. Suciu, *The Milnor fibration of a hyperplane arrangement: from modular resonance to algebraic monodromy*, <u>arxiv:1401.0868</u>.

HYPERPLANE ARRANGEMENTS

- \mathcal{A} : A (central) arrangement of hyperplanes in \mathbb{C}^{ℓ} .
- Intersection lattice: L(A).
- Complement: $M(\mathcal{A}) = \mathbb{C}^{\ell} \setminus \bigcup_{H \in \mathcal{A}} H.$
- The Boolean arrangement B_n
 - \mathcal{B}_n : all coordinate hyperplanes $z_i = 0$ in \mathbb{C}^n .
 - $L(\mathcal{B}_n)$: lattice of subsets of $\{0, 1\}^n$.
 - $M(\mathcal{B}_n)$: complex algebraic torus $(\mathbb{C}^*)^n$.
- The braid arrangement A_n (or, reflection arr. of type A_{n-1})
 - A_n : all diagonal hyperplanes $z_i z_j = 0$ in \mathbb{C}^n .
 - $L(A_n)$: lattice of partitions of $[n] = \{1, ..., n\}$.
 - *M*(*A_n*): configuration space of *n* ordered points in ℂ (a classifying space for the pure braid group on *n* strings).

 ${\rm Figure}: A \ planar \ slice \ of \ the \ braid \ arrangement \ {\cal A}_4$

- Let A be an arrangement of planes in C³. Its projectivization, A
 is an arrangement of lines in CP².
- L₁(A) ↔ lines of Ā, L₂(A) ↔ intersection points of Ā.
 Poset structure of L_{≤2}(A) ↔ incidence structure of Ā.
- A flat X ∈ L₂(A) has multiplicity q if A_X = {H ∈ A | X ⊃ H} has size q, i.e., there are exactly q lines from Ā passing through X̄.

- If \mathcal{A} is essential, then $M = M(\mathcal{A})$ is a (very affine) subvariety of $(\mathbb{C}^*)^n$, where $n = |\mathcal{A}|$.
- *M* has the homotopy type of a connected, finite CW-complex of dimension ℓ. In fact, *M* admits a minimal cell structure.
- In particular, *H*_{*}(*M*, ℤ) is torsion-free. The Betti numbers *b_q*(*M*) := rank *H_q*(*M*, ℤ) are given by

$$\sum_{q=0}^{\ell} b_q(M) t^q = \sum_{X \in L(\mathcal{A})} \mu(X) (-t)^{\operatorname{rank}(X)}.$$

- The Orlik–Solomon algebra $A = H^*(M, \mathbb{Z})$ is the quotient of the exterior algebra on generators dual to the meridians, by an ideal determined by the circuits in the matroid of A.
- On the other hand, the group $\pi_1(M)$ is not determined by L(A).

THE MILNOR FIBRATION OF AN ARRANGEMENT

- For each $H \in \mathcal{A}$, let $f_H : \mathbb{C}^{\ell} \to \mathbb{C}$ be a linear form with kernel H
- Let $Q(A) = \prod_{H \in A} f_H$, a homogeneous polynomial of degree *n*.
- The map $Q: \mathbb{C}^{\ell} \to \mathbb{C}$ restricts to a map $Q: M(\mathcal{A}) \to \mathbb{C}^*$.
- This is the projection of a smooth, locally trivial bundle, known as the *Milnor fibration* of the arrangement.
- The typical fiber, *F*(*A*) = *Q*⁻¹(1), is a very affine variety, with the homotopy type of a connected, finite CW-complex of dim ℓ − 1.
- The monodromy of the bundle is the diffeomorphism

$$h: F \to F, \quad z \mapsto e^{2\pi i/n} z.$$

EXAMPLE

Let \mathcal{A} be a pencil of 3 lines through the origin of \mathbb{C}^2 . Then $F(\mathcal{A})$ is a thrice-punctured torus, and *h* is an automorphism of order 3:

More generally, if \mathcal{A} is a pencil of *n* lines in \mathbb{C}^2 , then $F(\mathcal{A})$ is a Riemann surface of genus $\binom{n-1}{2}$, with *n* punctures.

EXAMPLE Let \mathcal{B}_n be the Boolean arrangement, with $Q = z_1 \cdots z_n$. Then $M(\mathcal{B}_n) = (\mathbb{C}^*)^n$ and $F(\mathcal{B}_n) = \ker(\mathbb{Q}) \cong (\mathbb{C}^*)^{n-1}$. Two basic questions about the Milnor fibration of an arrangement:

- (Q1) Are the Betti numbers $b_q(F(\mathcal{A}))$ and the characteristic polynomial of the algebraic monodromy, $h_q: H_q(F(\mathcal{A}), \mathbb{C}) \to H_q(F(\mathcal{A}), \mathbb{C})$, determined by $L(\mathcal{A})$?
- (Q2) Are the homology groups $H_*(F(\mathcal{A}), \mathbb{Z})$ torsion-free? If so, does $F(\mathcal{A})$ admit a minimal cell structure?

Recent progress on both questions:

- A partial, positive answer to (Q1).
- A negative answer to (Q2).

Let $\Delta_{\mathcal{A}}(t) := \det(h_1 - t \cdot id)$. Then $b_1(F(\mathcal{A})) = \deg \Delta_{\mathcal{A}}$.

THEOREM (PAPADIMA-S. 2013)

Suppose all flats $X \in L_2(\mathcal{A})$ have multiplicity 2 or 3. Then $\Delta_{\mathcal{A}}(t)$, and thus $b_1(F(\mathcal{A}))$, are combinatorially determined.

THEOREM (DENHAM-S. 2013)

For every prime $p \ge 2$, there is an arrangement A such that $H_q(F(A), \mathbb{Z})$ has non-zero p-torsion, for some q > 1.

- In both results, we relate the cohomology jump loci of *M*(*A*) in characteristic *p* with those in characteristic 0.
- In the first result, the bridge between the two goes through the representation variety Hom_{Lie}(h(A), sl₂).
- A key combinatorial ingredient in both proofs is the notion of multinet.

RESONANCE VARIETIES AND THE β_p -invariants

- Let A = H*(M(A), k) an algebra that depends only on L(A) (and the field k).
- For each a ∈ A¹, we have a² = 0. Thus, we get a cochain complex, (A, ⋅a): A⁰ → A¹ → A² → ···
- The (degree 1) *resonance varieties* of *A* are the cohomology jump loci of this "Aomoto complex":

$$\mathcal{R}_{s}(\mathcal{A}, \Bbbk) = \{ a \in \mathcal{A}^{1} \mid \dim_{\Bbbk} \mathcal{H}^{1}(\mathcal{A}, \cdot a) \geq s \},\$$

In particular, a ∈ A¹ belongs to R₁(A, k) iff there is b ∈ A¹ not proportional to a, such that a ∪ b = 0 in A².

- Now assume k has characteristic p > 0.
- Let $\sigma = \sum_{H \in \mathcal{A}} e_H \in A^1$ be the "diagonal" vector, and define

 $\beta_{\boldsymbol{\rho}}(\mathcal{A}) = \dim_{\mathbb{K}} H^{1}(\boldsymbol{A}, \boldsymbol{\sigma}).$

That is, $\beta_{\rho}(\mathcal{A}) = \max\{s \mid \sigma \in \mathcal{R}^{1}_{s}(\mathcal{A}, \Bbbk)\}.$

• Clearly, $\beta_p(\mathcal{A})$ depends only on $L(\mathcal{A})$ and p. Moreover, $0 \leq \beta_p(\mathcal{A}) \leq |\mathcal{A}| - 2$.

THEOREM (PS)

If $L_2(\mathcal{A})$ has no flats of multiplicity 3r with r > 1, then $\beta_3(\mathcal{A}) \leq 2$.

- For each m ≥ 1, there is a matroid M_m with all rank 2 flats of multiplicity 3, and such that β₃(M_m) = m.
- \mathcal{M}_1 : pencil of 3 lines. \mathcal{M}_2 : Ceva arrangement.
- \mathcal{M}_m with m > 2: not realizable over \mathbb{C} .

THE HOMOLOGY OF THE MILNOR FIBER

• The monodromy $h: F(\mathcal{A}) \to F(\mathcal{A})$ has order $n = |\mathcal{A}|$. Thus,

$$\Delta_{\mathcal{A}}(t) = \prod_{d|n} \Phi_d(t)^{e_d(\mathcal{A})},$$

where $\Phi_1 = t - 1$, $\Phi_2 = t + 1$, $\Phi_3 = t^2 + t + 1$, $\Phi_4 = t^2 + 1$, ... are the cyclotomic polynomials, and $e_d(\mathcal{A}) \in \mathbb{Z}_{\geq 0}$.

Easy to see: e₁(A) = n − 1. Hence, H₁(F(A), C), when viewed as a module over C[Z_n], decomposes as

$$(\mathbb{C}[t]/(t-1))^{n-1} \oplus \bigoplus_{1 < d \mid n} (\mathbb{C}[t]/\Phi_d(t))^{e_d(\mathcal{A})}.$$

• In particular, $b_1(F(A)) = n - 1 + \sum_{1 < d \mid n} \varphi(d) e_d(A)$.

- Thus, in degree 1, question (Q1) is equivalent to: are the integers *e_d*(*A*) determined by *L*_{≤2}(*A*)?
- Not all divisors of *n* appear in the above formulas: If *d* does not divide |A_X|, for some X ∈ L₂(A), then e_d(A) = 0 (Libgober).
- In particular, if $L_2(\mathcal{A})$ has only flats of multiplicity 2 and 3, then $\Delta_{\mathcal{A}}(t) = (t-1)^{n-1}(t^2+t+1)^{e_3}$.
- If multiplicity 4 appears, then also get factor of $(t+1)^{e_2} \cdot (t^2+1)^{e_4}$.

THEOREM (COHEN–ORLIK 2000, PAPADIMA–S. 2010) $e_{p^s}(\mathcal{A}) \leq \beta_p(\mathcal{A})$, for all $s \geq 1$.

THEOREM (PS13)

Suppose $L_2(\mathcal{A})$ has no flats of multiplicity 3r, with r > 1. Then $e_3(\mathcal{A}) = \beta_3(\mathcal{A})$, and thus $e_3(\mathcal{A})$ is combinatorially determined.

A similar result holds for $e_2(\mathcal{A})$ and $e_4(\mathcal{A})$, under some additional hypothesis.

COROLLARY

If \overline{A} is an arrangement of *n* lines in \mathbb{P}^2 with only double and triple points, then $\Delta_{\mathcal{A}}(t) = (t-1)^{n-1}(t^2+t+1)^{\beta_3(\mathcal{A})}$ is combinatorially determined.

COROLLARY (LIBGOBER 2012)

If \overline{A} is an arrangement of *n* lines in \mathbb{P}^2 with only double and triple points, then the question whether $\Delta_{\mathcal{A}}(t) = (t-1)^{n-1}$ or not is combinatorially determined.

Conjecture

Let \mathcal{A} be an essential arrangement in \mathbb{C}^3 . Then

$$\Delta_{\mathcal{A}}(t) = (t-1)^{|\mathcal{A}|-1}(t^2+t+1)^{\beta_3(\mathcal{A})}[(t+1)(t^2+1)]^{\beta_2(\mathcal{A})}$$

MULTINETS

DEFINITION (FALK AND YUZVINSKY)

A *multinet* on \mathcal{A} is a partition of the set \mathcal{A} into $k \ge 3$ subsets $\mathcal{A}_1, \ldots, \mathcal{A}_k$, together with an assignment of multiplicities, $m: \mathcal{A} \to \mathbb{N}$, and a subset $\mathcal{X} \subseteq L_2(\mathcal{A})$, called the base locus, such that:

- **(1)** There is an integer *d* such that $\sum_{H \in A_{\alpha}} m_H = d$, for all $\alpha \in [k]$.
- ② If *H* and *H'* are in different classes, then $H \cap H' \in \mathcal{X}$.
- ③ For each *X* ∈ *X*, the sum $n_X = \sum_{H ∈ A_\alpha : H ⊃ X} m_H$ is independent of *α*.
- (Each set $(\bigcup_{H \in A_{\alpha}} H) \setminus \mathcal{X}$ is connected.
 - A similar definition can be made for any (rank 3) matroid.
 - A multinet as above is also called a (k, d)-multinet, or a k-multinet.
 - The multinet is *reduced* if $m_H = 1$, for all $H \in A$.

MULTINETS

- A *net* is a reduced multinet with $n_X = 1$, for all $X \in \mathcal{X}$.
- In this case, $|A_{\alpha}| = |A| / k = d$, for all α .
- Moreover, X
 has size d², and is encoded by a (k 2)-tuple of orthogonal Latin squares.

A (3, 2)-net on the A₃ arrangement A (3, 4)-multinet on the B₃ arrangement $\bar{\mathcal{X}}$ consists of 4 triple points ($n_X = 1$) $\bar{\mathcal{X}}$ consists of 4 triple points ($n_X = 1$) and 3 triple points ($n_X = 2$)

MULTINETS

A (3, 3)-net on the Ceva matroid. A (4, 3)-net on the Hessian matroid.

- If A has no flats of multiplicity kr, for some r > 1, then every reduced k-multinet is a k-net.
- (Kawahara): given any Latin square, there is a matroid \mathcal{M} with a 3-net $(\mathcal{M}_1, \mathcal{M}_2, \mathcal{M}_3)$ realizing it, such that each \mathcal{M}_{α} is uniform.
- (Yuzvinsky and Pereira–Yuz): If A supports a k-multinet with $|\mathcal{X}| > 1$, then k = 3 or 4; if the multinet is not reduced, then k = 3.
- (Wakefield & al): The only (4, 3)-net in CP² is the Hessian; there are no (4, 4), (4, 5), or (4, 6) nets in CP².
- Conjecture (Yuz): The only 4-multinet is the Hessian (4, 3)-net.

LEMMA (PS)

If A supports a 3-net with parts A_{α} , then:

- **1** $\leq \beta_3(\mathcal{A}) \leq \beta_3(\mathcal{A}_{\alpha}) + 1$, for all α .
- 2) If $\beta_3(\mathcal{A}_{\alpha}) = 0$, for some α , then $\beta_3(\mathcal{A}) = 1$.
- (3) If $\beta_3(\mathcal{A}_{\alpha}) = 1$, for some α , then $\beta_3(\mathcal{A}) = 1$ or 2.

All possibilities do occur:

- Braid arrangement: has a (3, 2)-net from the Latin square of \mathbb{Z}_2 . $\beta_3(\mathcal{A}_{\alpha}) = 0$ ($\forall \alpha$) and $\beta_3(\mathcal{A}) = 1$.
- Pappus arrangement: has a (3,3)-net from the Latin square of \mathbb{Z}_3 . $\beta_3(\mathcal{A}_1) = \beta_3(\mathcal{A}_2) = 0, \beta_3(\mathcal{A}_3) = 1 \text{ and } \beta_3(\mathcal{A}) = 1.$
- Ceva arrangement: has a (3, 3)-net from the Latin square of \mathbb{Z}_3 . $\beta_3(\mathcal{A}_{\alpha}) = 1$ ($\forall \alpha$) and $\beta_3(\mathcal{A}) = 2$.

COMPLEX RESONANCE VARIETIES

Let \mathcal{A} be an arrangement in \mathbb{C}^3 . Work of Arapura, Falk, Cohen–S., Libgober–Yuz, Falk–Yuz completely describes the varieties $\mathcal{R}_s(\mathcal{A}, \mathbb{C})$:

• $\mathcal{R}_1(\mathcal{A}, \mathbb{C})$ is a union of linear subspaces in $H^1(M(\mathcal{A}), \mathbb{C}) = \mathbb{C}^{|\mathcal{A}|}$.

- Each subspace has dimension at least 2, and each pair of subspaces meets transversely at 0.
- *R*_s(A, C) is the union of those linear subspaces that have dimension at least s + 1.

- Each flat X ∈ L₂(A) of multiplicity k ≥ 3 gives rise to a *local* component of R₁(A, C), of dimension k − 1.
- More generally, every *k*-multinet on a sub-arrangement $\mathcal{B} \subseteq \mathcal{A}$ gives rise to a component of dimension k 1, and all components of $\mathcal{R}_1(\mathcal{A}, \mathbb{C})$ arise in this way.
- Note: the varieties R₁(A, k) with char(k) > 0 can be more complicated: components may be non-linear, and they may intersect non-transversely.

THEOREM (PS)

Suppose $L_2(\mathcal{A})$ has no flats of multiplicity 3r, with r > 1. Then $\mathcal{R}_1(\mathcal{A}, \mathbb{C})$ has at least $(3^{\beta_3(\mathcal{A})} - 1)/2$ essential components, all corresponding to 3-nets.

CHARACTERISTIC VARIETIES

- Let X be a connected, finite cell complex, and let $\pi = \pi_1(X, x_0)$.
- Let k be an algebraically closed field, and let Hom(π, k*) = H¹(X, k*) be the character group of π.
- The (degree 1) *characteristic varieties* of *X* are the jump loci for homology with coefficients in rank-1 local systems on *X*:

 $\mathcal{V}_{\boldsymbol{s}}(\boldsymbol{X}, \Bbbk) = \{ \rho \in \operatorname{Hom}(\pi, \Bbbk^*) \mid \dim_{\Bbbk} H_1(\boldsymbol{X}, \Bbbk_{\rho}) \geq \boldsymbol{s} \}.$

- Let $X = M(\mathcal{A})$, and identify $\text{Hom}(\pi, \mathbb{k}^*) = (\mathbb{k}^*)^n$, where $n = |\mathcal{A}|$.
- The characteristic varieties V_s(A, k) := V_s(M(A), k) lie in the subtorus {t ∈ (k*)ⁿ | t₁ ··· t_n = 1}.

Work of Arapura, Libgober, Cohen–S., S., Libgober–Yuz, Falk–Yuz, Dimca, Dimca–Papadima–S., Artal–Cogolludo–Matei, Budur–Wang ... provides a fairly explicit description of the varieties $\mathcal{V}_s(\mathcal{A}, \mathbb{C})$:

- Each variety V_s(A, C) is a finite union of torsion-translates of algebraic subtori of (C^{*})ⁿ.
- If a linear subspace L ⊂ Cⁿ is a component of R_s(A, C), then the algebraic torus T = exp(L) is a component of V_s(A, C).
- Moreover, $T = f^*(H^1(S, \mathbb{C}^*))$, where $f: M(\mathcal{A}) \to S$ is an orbifold fibration, with base $S = \mathbb{CP}^1 \setminus \{k \text{ points}\}$, for some $k \ge 3$.
- All components of V_s(A, C) passing through the origin 1 ∈ (C*)ⁿ arise in this way (and thus, are combinatorially determined).

BACK TO THE MILNOR FIBRATION

- The Milnor fiber *F*(*A*) is a regular Z_n-cover of the projectivized complement *U* = *M*(*A*)/ℂ*.
- This cover classified by the homomorphism δ: π₁(U) → Z_n that sends each meridian to 1.
- Let $\hat{\delta}$: Hom $(\mathbb{Z}_n, \mathbb{k}^*) \to$ Hom $(\pi_1(U), \mathbb{k}^*)$. If char $(\mathbb{k}) \nmid n$, then

$$\dim_{\Bbbk} H_1(F(\mathcal{A}), \Bbbk) = \sum_{s \ge 1} \left| \mathcal{V}_s(U, \Bbbk) \cap \operatorname{im}(\widehat{\delta}) \right|.$$

The available information on $\mathcal{V}_s(U, \mathbb{C}) \cong \mathcal{V}_s(\mathcal{A}, \mathbb{C})$ implies:

THEOREM

If A admits a reduced *k*-multinet, then $e_k(A) \ge k - 2$.

ALEX SUCIU (NORTHEASTERN) MILNOR FIBRATIONS OF ARRANGEMENTS RIMS CONFERENCE 2013 25 / 30

THEOREM (PS)

Suppose $L_2(\mathcal{A})$ has no flats of multiplicity 3r with r > 1. Then, the following conditions are equivalent:

- ① $L_{\leq 2}(A)$ admits a reduced 3-multinet.
- 2 $L_{\leq 2}(A)$ admits a 3-net.

Moreover, $\beta_3(\mathcal{A}) \leq 2$ and $\beta_3(\mathcal{A}) = e_3(\mathcal{A})$.

- (2) \Rightarrow (1): obvious.
- (1) \Rightarrow (4): by above theorem.
- (4) \Rightarrow (3): by modular bound $e_p(\mathcal{A}) \leq \beta_p(\mathcal{A})$.
- (3) \Rightarrow (2): use flat, \mathfrak{sl}_2 -valued connections on the OS-algebra.
- $\beta_3(\mathcal{A}) \leq 2$: a previous theorem.
- Last assertion: put things together, and use [ACM].

TORSION IN THE HOMOLOGY OF THE MILNOR FIBER

• Let (\mathcal{A}, m) be a multi-arrangement, with defining polynomial

$$Q_m(\mathcal{A})=\prod_{H\in\mathcal{A}}f_H^{m_H},$$

• Let $F_m(\mathcal{A}) = Q_m^{-1}(1)$ be the corresponding Milnor fiber.

THEOREM (COHEN–DENHAM–S. 2003)

For every prime $p \ge 2$, there is a multi-arrangement (\mathcal{A}, m) such that $H_1(F_m(\mathcal{A}), \mathbb{Z})$ has non-zero *p*-torsion.

Simplest example: the arrangement of 8 hyperplanes in \mathbb{C}^3 with

$$Q_m(\mathcal{A}) = x^2 y (x^2 - y^2)^3 (x^2 - z^2)^2 (y^2 - z^2)$$

Then $H_1(F_m(\mathcal{A}), \mathbb{Z}) = \mathbb{Z}^7 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$.

We now can generalize and reinterpret these examples, as follows.

A *pointed multinet* on an arrangement \mathcal{A} is a multinet structure, together with a distinguished hyperplane $H \in \mathcal{A}$ for which $m_H > 1$ and $m_H \mid n_X$ for each $X \in \mathcal{X}$ such that $X \subset H$.

THEOREM (DENHAM-S. 2013)

Suppose \mathcal{A} admits a pointed multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_H . There is then a choice of multiplicities m' on the deletion $\mathcal{A}' = \mathcal{A} \setminus \{H\}$ such that $H_1(F_{m'}(\mathcal{A}'), \mathbb{Z})$ has non-zero p-torsion.

This torsion is explained by the fact that the geometry of $\mathcal{V}_1(\mathcal{A}', \Bbbk)$ varies with char(\Bbbk).

To produce *p*-torsion in the homology of the usual Milnor fiber, we use a "polarization" construction:

 $(\mathcal{A}, m) \rightsquigarrow \mathcal{A} \parallel m$, an arrangement of $N = \sum_{H \in \mathcal{A}} m_H$ hyperplanes, of rank equal to rank $\mathcal{A} + |\{H \in \mathcal{A} : m_H \ge 2\}|$.

THEOREM (DS)

Suppose A admits a pointed multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_H .

There is then a choice of multiplicities m' on the deletion $\mathcal{A}' = \mathcal{A} \setminus \{H\}$ such that $H_q(F(\mathcal{B}), \mathbb{Z})$ has p-torsion, where $\mathcal{B} = \mathcal{A}' || m'$ and $q = 1 + |\{K \in \mathcal{A}' : m'_K \ge 3\}|.$

Simplest example: the arrangement of 27 hyperplanes in \mathbb{C}^8 with defining polynomial

 $\textit{Q}(\mathcal{A}) = xy(x^2 - y^2)(x^2 - z^2)(y^2 - z^2)\textit{w}_1\textit{w}_2\textit{w}_3\textit{w}_4\textit{w}_5(x^2 - \textit{w}_1^2)(x^2 - 2\textit{w}_1^2)(x^2 - 3\textit{w}_1^2)(x - 4\textit{w}_1) \cdot (x^2 - 2m_1^2)(x^2 - 3m_1^2)(x - 4m_1) \cdot (x^2 - 2m_1^2)(x^2 - 3m_1^2)(x - 4m_1) \cdot (x^2 - 3m_1^2)(x - 3m_1^2)($

 $((x-y)^2 - w_2^2)((x+y)^2 - w_3^2)((x-z)^2 - w_4^2)((x-z)^2 - 2w_4^2) \cdot ((x+z)^2 - w_5^2)((x+z)^2 - 2w_5^2).$

Then $H_6(F(\mathcal{A}), \mathbb{Z})$ has 2-torsion (of rank 108).