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HYPERPLANE ARRANGEMENTS

HYPERPLANE ARRANGEMENTS

A: A (central) arrangement of hyperplanes in C`.

Intersection lattice: L(A).

Complement: M(A) = C`z
Ť

HPA H.

The Boolean arrangement Bn
Bn: all coordinate hyperplanes zi = 0 in Cn.
L(Bn): lattice of subsets of t0,1un.
M(Bn): complex algebraic torus (C˚)n.

The braid arrangement An (or, reflection arr. of type An´1)
An: all diagonal hyperplanes zi ´ zj = 0 in Cn.
L(An): lattice of partitions of [n] = t1, . . . ,nu.
M(An): configuration space of n ordered points in C (a classifying
space for the pure braid group on n strings).
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HYPERPLANE ARRANGEMENTS

‚ ‚

‚

‚

x2 ´ x4 x1 ´ x2

x1 ´ x4

x2 ´ x3

x1 ´ x3 x3 ´ x4

FIGURE : A planar slice of the braid arrangement A4

Let A be an arrangement of planes in C3. Its projectivization, Ā, is
an arrangement of lines in CP2.

L1(A)ÐÑ lines of Ā, L2(A)ÐÑ intersection points of Ā.
Poset structure of Lď2(A)ÐÑ incidence structure of Ā.

A flat X P L2(A) has multiplicity q if AX = tH P A | X Ą Hu has
size q, i.e., there are exactly q lines from Ā passing through X̄ .
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HYPERPLANE ARRANGEMENTS

If A is essential, then M = M(A) is a (very affine) subvariety of
(C˚)n, where n = |A|.

M has the homotopy type of a connected, finite CW-complex of
dimension `. In fact, M admits a minimal cell structure.

In particular, H˚(M,Z) is torsion-free. The Betti numbers
bq(M) := rank Hq(M,Z) are given by

ÿ̀

q=0

bq(M)tq =
ÿ

XPL(A)

µ(X )(´t)rank(X ).

The Orlik–Solomon algebra A = H˚(M,Z) is the quotient of the
exterior algebra on generators dual to the meridians, by an ideal
determined by the circuits in the matroid of A.

On the other hand, the group π1(M) is not determined by L(A).
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THE MILNOR FIBRATION OF AN ARRANGEMENT

THE MILNOR FIBRATION OF AN ARRANGEMENT

For each H P A, let fH : C` Ñ C be a linear form with kernel H

Let Q(A) =
ś

HPA fH , a homogeneous polynomial of degree n.

The map Q : C` Ñ C restricts to a map Q : M(A)Ñ C˚.

This is the projection of a smooth, locally trivial bundle, known as
the Milnor fibration of the arrangement.

The typical fiber, F (A) = Q´1(1), is a very affine variety, with the
homotopy type of a connected, finite CW-complex of dim `´ 1.

The monodromy of the bundle is the diffeomorphism

h : F Ñ F , z ÞÑ e2πi/nz.
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THE MILNOR FIBRATION OF AN ARRANGEMENT

EXAMPLE

Let A be a pencil of 3 lines through the origin of C2. Then F (A) is a
thrice-punctured torus, and h is an automorphism of order 3:

A

F (A)

h

F (A)

More generally, if A is a pencil of n lines in C2, then F (A) is a
Riemann surface of genus (n´1

2 ), with n punctures.

EXAMPLE

Let Bn be the Boolean arrangement, with Q = z1 ¨ ¨ ¨ zn. Then
M(Bn) = (C˚)n and F (Bn) = ker(Q) – (C˚)n´1.
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THE MILNOR FIBRATION OF AN ARRANGEMENT

Two basic questions about the Milnor fibration of an arrangement:

(Q1) Are the Betti numbers bq(F (A)) and the characteristic polynomial
of the algebraic monodromy, hq : Hq(F (A),C)Ñ Hq(F (A),C),
determined by L(A)?

(Q2) Are the homology groups H˚(F (A),Z) torsion-free?
If so, does F (A) admit a minimal cell structure?

Recent progress on both questions:
A partial, positive answer to (Q1).
A negative answer to (Q2).
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THE MILNOR FIBRATION OF AN ARRANGEMENT

Let ∆A(t) := det(h1 ´ t ¨ id). Then b1(F (A)) = deg ∆A.

THEOREM (PAPADIMA–S. 2013)

Suppose all flats X P L2(A) have multiplicity 2 or 3. Then ∆A(t), and
thus b1(F (A)), are combinatorially determined.

THEOREM (DENHAM–S. 2013)
For every prime p ě 2, there is an arrangement A such that
Hq(F (A),Z) has non-zero p-torsion, for some q ą 1.

In both results, we relate the cohomology jump loci of M(A) in
characteristic p with those in characteristic 0.

In the first result, the bridge between the two goes through the
representation variety HomLie(h(A), sl2).

A key combinatorial ingredient in both proofs is the notion of
multinet.
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RESONANCE VARIETIES

RESONANCE VARIETIES AND THE βp-INVARIANTS

Let A = H˚(M(A),k) — an algebra that depends only on L(A)
(and the field k).

For each a P A1, we have a2 = 0. Thus, we get a cochain
complex, (A, ¨a) : A0 a // A1 a // A2 // ¨ ¨ ¨

The (degree 1) resonance varieties of A are the cohomology jump
loci of this “Aomoto complex":

Rs(A,k) = ta P A1 | dimk H1(A, ¨a) ě su,

In particular, a P A1 belongs to R1(A,k) iff there is b P A1 not
proportional to a, such that aY b = 0 in A2.
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RESONANCE VARIETIES

Now assume k has characteristic p ą 0.

Let σ =
ř

HPA eH P A1 be the “diagonal" vector, and define

βp(A) = dimk H1(A, ¨σ).

That is, βp(A) = maxts | σ P R1
s(A,k)u.

Clearly, βp(A) depends only on L(A) and p. Moreover,
0 ď βp(A) ď |A| ´ 2.

THEOREM (PS)

If L2(A) has no flats of multiplicity 3r with r ą 1, then β3(A) ď 2.

For each m ě 1, there is a matroid Mm with all rank 2 flats of
multiplicity 3, and such that β3(Mm) = m.
M1: pencil of 3 lines. M2: Ceva arrangement.
Mm with m ą 2: not realizable over C.
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THE HOMOLOGY OF THE MILNOR FIBER

THE HOMOLOGY OF THE MILNOR FIBER

The monodromy h : F (A)Ñ F (A) has order n = |A|. Thus,

∆A(t) =
ź

d |n

Φd (t)ed (A),

where Φ1 = t ´ 1, Φ2 = t + 1, Φ3 = t2 + t + 1, Φ4 = t2 + 1, . . .
are the cyclotomic polynomials, and ed (A) P Zě0.

Easy to see: e1(A) = n´ 1. Hence, H1(F (A),C), when viewed
as a module over C[Zn], decomposes as

(C[t ]/(t ´ 1))n´1 ‘
à

1ăd |n
(C[t ]/Φd (t))ed (A).

In particular, b1(F (A)) = n´ 1 +
ř

1ăd |n ϕ(d)ed (A).
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THE HOMOLOGY OF THE MILNOR FIBER

Thus, in degree 1, question (Q1) is equivalent to: are the integers
ed (A) determined by Lď2(A)?

Not all divisors of n appear in the above formulas: If d does not
divide |AX |, for some X P L2(A), then ed (A) = 0 (Libgober).

In particular, if L2(A) has only flats of multiplicity 2 and 3, then
∆A(t) = (t ´ 1)n´1(t2 + t + 1)e3 .

If multiplicity 4 appears, then also get factor of (t + 1)e2 ¨ (t2 + 1)e4 .

THEOREM (COHEN–ORLIK 2000, PAPADIMA–S. 2010)

eps(A) ď βp(A), for all s ě 1.
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THE HOMOLOGY OF THE MILNOR FIBER

THEOREM (PS13)

Suppose L2(A) has no flats of multiplicity 3r , with r ą 1. Then
e3(A) = β3(A), and thus e3(A) is combinatorially determined.

A similar result holds for e2(A) and e4(A), under some additional
hypothesis.

COROLLARY

If Ā is an arrangement of n lines in P2 with only double and triple
points, then ∆A(t) = (t ´ 1)n´1(t2 + t + 1)β3(A) is combinatorially
determined.

COROLLARY (LIBGOBER 2012)

If Ā is an arrangement of n lines in P2 with only double and triple
points, then the question whether ∆A(t) = (t ´ 1)n´1 or not is
combinatorially determined.
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THE HOMOLOGY OF THE MILNOR FIBER

CONJECTURE

Let A be an essential arrangement in C3. Then

∆A(t) = (t ´ 1)|A|´1(t2 + t + 1)β3(A)[(t + 1)(t2 + 1)]β2(A).
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MULTINETS

MULTINETS

DEFINITION (FALK AND YUZVINSKY)

A multinet on A is a partition of the set A into k ě 3 subsets
A1, . . . ,Ak , together with an assignment of multiplicities, m : AÑ N,
and a subset X Ď L2(A), called the base locus, such that:

1 There is an integer d such that
ř

HPAα
mH = d , for all α P [k ].

2 If H and H 1 are in different classes, then H XH 1 P X .
3 For each X P X , the sum nX =

ř

HPAα :HĄX mH is independent of α.
4 Each set

(
Ť

HPAα
H
)
zX is connected.

A similar definition can be made for any (rank 3) matroid.

A multinet as above is also called a (k ,d)-multinet, or a k -multinet.

The multinet is reduced if mH = 1, for all H P A.
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MULTINETS

A net is a reduced multinet with nX = 1, for all X P X .
In this case, |Aα| = |A|/k = d , for all α.
Moreover, X̄ has size d2, and is encoded by a (k ´ 2)-tuple of
orthogonal Latin squares.

‚ ‚

‚

‚

2

2

2

A (3,2)-net on the A3 arrangement A (3,4)-multinet on the B3 arrangement
X̄ consists of 4 triple points (nX = 1) X̄ consists of 4 triple points (nX = 1)

and 3 triple points (nX = 2)
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MULTINETS

A (3,3)-net on the Ceva matroid. A (4,3)-net on the Hessian matroid.
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MULTINETS

If A has no flats of multiplicity kr , for some r ą 1, then every
reduced k -multinet is a k -net.

(Kawahara): given any Latin square, there is a matroid M with a
3-net (M1,M2,M3) realizing it, such that each Mα is uniform.

(Yuzvinsky and Pereira–Yuz): If A supports a k -multinet with
|X | ą 1, then k = 3 or 4; if the multinet is not reduced, then k = 3.

(Wakefield & al): The only (4,3)-net in CP2 is the Hessian; there
are no (4,4), (4,5), or (4,6) nets in CP2.

Conjecture (Yuz): The only 4-multinet is the Hessian (4,3)-net.
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MULTINETS

LEMMA (PS)

If A supports a 3-net with parts Aα, then:
1 1 ď β3(A) ď β3(Aα) + 1, for all α.
2 If β3(Aα) = 0, for some α, then β3(A) = 1.
3 If β3(Aα) = 1, for some α, then β3(A) = 1 or 2.

All possibilities do occur:
Braid arrangement: has a (3,2)-net from the Latin square of Z2.
β3(Aα) = 0 (@α) and β3(A) = 1.

Pappus arrangement: has a (3,3)-net from the Latin square of Z3.
β3(A1) = β3(A2) = 0, β3(A3) = 1 and β3(A) = 1.

Ceva arrangement: has a (3,3)-net from the Latin square of Z3.
β3(Aα) = 1 (@α) and β3(A) = 2.
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COMPLEX RESONANCE VARIETIES

COMPLEX RESONANCE VARIETIES

Let A be an arrangement in C3. Work of Arapura, Falk, Cohen–S.,
Libgober–Yuz, Falk–Yuz completely describes the varieties Rs(A,C):

R1(A,C) is a union of linear subspaces in H1(M(A),C) = C|A|.

Each subspace has dimension at least 2, and each pair of
subspaces meets transversely at 0.

Rs(A,C) is the union of those linear subspaces that have
dimension at least s + 1.
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COMPLEX RESONANCE VARIETIES

Each flat X P L2(A) of multiplicity k ě 3 gives rise to a local
component of R1(A,C), of dimension k ´ 1.

More generally, every k -multinet on a sub-arrangement B Ď A
gives rise to a component of dimension k ´ 1, and all components
of R1(A,C) arise in this way.

Note: the varieties R1(A,k) with char(k) ą 0 can be more
complicated: components may be non-linear, and they may
intersect non-transversely.

THEOREM (PS)

Suppose L2(A) has no flats of multiplicity 3r , with r ą 1. Then
R1(A,C) has at least (3β3(A) ´ 1)/2 essential components, all
corresponding to 3-nets.
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CHARACTERISTIC VARIETIES

CHARACTERISTIC VARIETIES

Let X be a connected, finite cell complex, and let π = π1(X , x0).

Let k be an algebraically closed field, and let
Hom(π,k˚) = H1(X ,k˚) be the character group of π.

The (degree 1) characteristic varieties of X are the jump loci for
homology with coefficients in rank-1 local systems on X :

Vs(X , k) = tρ P Hom(π,k˚) | dimk H1(X , kρ) ě su.

Let X = M(A), and identify Hom(π, k˚) = (k˚)n, where n = |A|.

The characteristic varieties Vs(A,k) := Vs(M(A),k) lie in the
subtorus tt P (k˚)n | t1 ¨ ¨ ¨ tn = 1u.
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CHARACTERISTIC VARIETIES

Work of Arapura, Libgober, Cohen–S., S., Libgober–Yuz, Falk–Yuz,
Dimca, Dimca–Papadima–S., Artal–Cogolludo–Matei, Budur–Wang ...
provides a fairly explicit description of the varieties Vs(A,C):

Each variety Vs(A,C) is a finite union of torsion-translates of
algebraic subtori of (C˚)n.

If a linear subspace L Ă Cn is a component of Rs(A,C), then the
algebraic torus T = exp(L) is a component of Vs(A,C).

Moreover, T = f ˚(H1(S,C˚)), where f : M(A)Ñ S is an orbifold
fibration, with base S = CP1

ztk pointsu, for some k ě 3.

All components of Vs(A,C) passing through the origin 1 P (C˚)n

arise in this way (and thus, are combinatorially determined).
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BACK TO THE MILNOR FIBRATION

BACK TO THE MILNOR FIBRATION

The Milnor fiber F (A) is a regular Zn-cover of the projectivized
complement U = M(A)/C˚.

This cover classified by the homomorphism δ : π1(U)� Zn that
sends each meridian to 1.

Let pδ : Hom(Zn, k˚)Ñ Hom(π1(U), k˚). If char(k) - n, then

dimk H1(F (A),k) =
ÿ

sě1

ˇ

ˇ

ˇ
Vs(U,k)X im(pδ)

ˇ

ˇ

ˇ
.

The available information on Vs(U,C) – Vs(A,C) implies:

THEOREM

If A admits a reduced k-multinet, then ek (A) ě k ´ 2.
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BACK TO THE MILNOR FIBRATION

THEOREM (PS)

Suppose L2(A) has no flats of multiplicity 3r with r ą 1. Then, the
following conditions are equivalent:

1 Lď2(A) admits a reduced 3-multinet.

2 Lď2(A) admits a 3-net.

3 β3(A) ‰ 0.

4 e3(A) ‰ 0.
Moreover, β3(A) ď 2 and β3(A) = e3(A).

(2) ñ (1): obvious.
(1) ñ (4): by above theorem.
(4) ñ (3): by modular bound ep(A) ď βp(A).
(3) ñ (2): use flat, sl2-valued connections on the OS-algebra.
β3(A) ď 2: a previous theorem.
Last assertion: put things together, and use [ACM].
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TORSION IN THE HOMOLOGY OF THE MILNOR FIBER

TORSION IN THE HOMOLOGY OF THE MILNOR FIBER

Let (A,m) be a multi-arrangement, with defining polynomial

Qm(A) =
ź

HPA
f mH
H ,

Let Fm(A) = Q´1
m (1) be the corresponding Milnor fiber.

THEOREM (COHEN–DENHAM–S. 2003)

For every prime p ě 2, there is a multi-arrangement (A,m) such that
H1(Fm(A),Z) has non-zero p-torsion.

Simplest example: the arrangement of 8 hyperplanes in C3 with

Qm(A) = x2y(x2 ´ y2)3(x2 ´ z2)2(y2 ´ z2)

Then H1(Fm(A),Z) = Z7 ‘Z2 ‘Z2.
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TORSION IN THE HOMOLOGY OF THE MILNOR FIBER

We now can generalize and reinterpret these examples, as follows.

A pointed multinet on an arrangement A is a multinet structure,
together with a distinguished hyperplane H P A for which mH ą 1 and
mH | nX for each X P X such that X Ă H.

THEOREM (DENHAM–S. 2013)

Suppose A admits a pointed multinet, with distinguished hyperplane H
and multiplicity m. Let p be a prime dividing mH . There is then a
choice of multiplicities m1 on the deletion A1 = AztHu such that
H1(Fm1(A1),Z) has non-zero p-torsion.

This torsion is explained by the fact that the geometry of V1(A1,k)
varies with char(k).
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TORSION IN THE HOMOLOGY OF THE MILNOR FIBER

To produce p-torsion in the homology of the usual Milnor fiber, we use
a “polarization" construction:

}  

(A,m) A }m, an arrangement of N =
ř

HPA mH hyperplanes, of
rank equal to rankA+ |tH P A : mH ě 2u|.

THEOREM (DS)

Suppose A admits a pointed multinet, with distinguished hyperplane H
and multiplicity m. Let p be a prime dividing mH .
There is then a choice of multiplicities m1 on the deletion A1 = AztHu
such that Hq(F (B),Z) has p-torsion, where B = A1}m1 and
q = 1 +

ˇ

ˇ

 

K P A1 : m1
K ě 3

(ˇ

ˇ.
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TORSION IN THE HOMOLOGY OF THE MILNOR FIBER

Simplest example: the arrangement of 27 hyperplanes in C8 with
defining polynomial

Q(A) = xy(x2´ y2)(x2´ z2)(y2´ z2)w1w2w3w4w5(x2´w2
1 )(x

2´ 2w2
1 )(x

2´ 3w2
1 )(x ´ 4w1)¨

((x ´ y)2´w2
2 )((x + y)2´w2

3 )((x ´ z)2´w2
4 )((x ´ z)2´ 2w2

4 ) ¨ ((x + z)2´w2
5 )((x + z)2´ 2w2

5 ).

Then H6(F (A),Z) has 2-torsion (of rank 108).
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