# Topology and combinatorics of Milnor FIBRATIONS OF HYPERPLANE ARRANGEMENTS 

## Alex Suciu

Northeastern University

Conference on Hyperplane Arrangements and Characteristic Classes

Research Institute for Mathematical Sciences, Kyoto
November 13, 2013

## REFERENCES

國 G. Denham, A. Suciu, Multinets, parallel connections, and Milnor fibrations of arrangements, arxiv:1209.3414, to appear in Proc. London Math. Soc.

R A. Suciu, Hyperplane arrangements and Milnor fibrations, arxiv:1301.4851, to appear in Ann. Fac. Sci. Toulouse Math.
(is S. Papadima, A. Suciu, The Milnor fibration of a hyperplane arrangement: from modular resonance to algebraic monodromy, arxiv:1401.0868.

## Hyperplane arrangements

- $\mathcal{A}$ : A (central) arrangement of hyperplanes in $\mathbb{C}^{\ell}$.
- Intersection lattice: $L(\mathcal{A})$.
- Complement: $M(\mathcal{A})=\mathbb{C}^{\ell} \bigcup_{H \in \mathcal{A}} H$.
- The Boolean arrangement $\mathcal{B}_{n}$
- $\mathcal{B}_{n}$ : all coordinate hyperplanes $z_{i}=0$ in $\mathbb{C}^{n}$.
- $L\left(\mathcal{B}_{n}\right)$ : lattice of subsets of $\{0,1\}^{n}$.
- $M\left(\mathcal{B}_{n}\right)$ : complex algebraic torus $\left(\mathbb{C}^{*}\right)^{n}$.
- The braid arrangement $\mathcal{A}_{n}$ (or, reflection arr. of type $\mathrm{A}_{n-1}$ )
- $\mathcal{A}_{n}$ : all diagonal hyperplanes $z_{i}-z_{j}=0$ in $\mathbb{C}^{n}$.
- $L\left(\mathcal{A}_{n}\right)$ : lattice of partitions of $[n]=\{1, \ldots, n\}$.
- $M\left(\mathcal{A}_{n}\right)$ : configuration space of $n$ ordered points in $\mathbb{C}$ (a classifying space for the pure braid group on $n$ strings).


Figure : A planar slice of the braid arrangement $\mathcal{A}_{4}$

- Let $\mathcal{A}$ be an arrangement of planes in $\mathbb{C}^{3}$. Its projectivization, $\overline{\mathcal{A}}$, is an arrangement of lines in $\mathbb{C P}^{2}$.
- $L_{1}(\mathcal{A}) \longleftrightarrow$ lines of $\overline{\mathcal{A}}, L_{2}(\mathcal{A}) \longleftrightarrow$ intersection points of $\overline{\mathcal{A}}$. Poset structure of $L_{\leqslant 2}(\mathcal{A}) \longleftrightarrow$ incidence structure of $\overline{\mathcal{A}}$.
- A flat $X \in L_{2}(\mathcal{A})$ has multiplicity $q$ if $\mathcal{A}_{X}=\{H \in \mathcal{A} \mid X \supset H\}$ has size $q$, i.e., there are exactly $q$ lines from $\overline{\mathcal{A}}$ passing through $\bar{X}$.
- If $\mathcal{A}$ is essential, then $M=M(\mathcal{A})$ is a (very affine) subvariety of $\left(\mathbb{C}^{*}\right)^{n}$, where $n=|\mathcal{A}|$.
- $M$ has the homotopy type of a connected, finite CW-complex of dimension $\ell$. In fact, $M$ admits a minimal cell structure.
- In particular, $H_{*}(M, \mathbb{Z})$ is torsion-free. The Betti numbers $b_{q}(M):=\operatorname{rank} H_{q}(M, \mathbb{Z})$ are given by

$$
\sum_{q=0}^{\ell} b_{q}(M) t^{q}=\sum_{X \in L(\mathcal{A})} \mu(X)(-t)^{\mathrm{rank}(X)} .
$$

- The Orlik-Solomon algebra $A=H^{*}(M, \mathbb{Z})$ is the quotient of the exterior algebra on generators dual to the meridians, by an ideal determined by the circuits in the matroid of $\mathcal{A}$.
- On the other hand, the group $\pi_{1}(M)$ is not determined by $L(\mathcal{A})$.


## The Milnor fibration of an arrangement

- For each $H \in \mathcal{A}$, let $f_{H}: \mathbb{C}^{\ell} \rightarrow \mathbb{C}$ be a linear form with kernel $H$
- Let $Q(\mathcal{A})=\prod_{H \in \mathcal{A}} f_{H}$, a homogeneous polynomial of degree $n$.
- The map $Q: \mathbb{C}^{\ell} \rightarrow \mathbb{C}$ restricts to a map $Q: M(\mathcal{A}) \rightarrow \mathbb{C}^{*}$.
- This is the projection of a smooth, locally trivial bundle, known as the Milnor fibration of the arrangement.
- The typical fiber, $F(\mathcal{A})=Q^{-1}(1)$, is a very affine variety, with the homotopy type of a connected, finite CW-complex of $\operatorname{dim} \ell-1$.
- The monodromy of the bundle is the diffeomorphism

$$
h: F \rightarrow F, \quad z \mapsto e^{2 \pi i / n} z .
$$

## EXAMPLE

Let $\mathcal{A}$ be a pencil of 3 lines through the origin of $\mathbb{C}^{2}$. Then $F(\mathcal{A})$ is a thrice-punctured torus, and $h$ is an automorphism of order 3:


More generally, if $\mathcal{A}$ is a pencil of $n$ lines in $\mathbb{C}^{2}$, then $F(\mathcal{A})$ is a Riemann surface of genus ( $\left.\begin{array}{c}n-1 \\ 2\end{array}\right)$, with $n$ punctures.

## ExAMPLE

Let $\mathcal{B}_{n}$ be the Boolean arrangement, with $Q=z_{1} \cdots z_{n}$. Then $M\left(\mathcal{B}_{n}\right)=\left(\mathbb{C}^{*}\right)^{n}$ and $F\left(\mathcal{B}_{n}\right)=\operatorname{ker}(\mathbb{Q}) \cong\left(\mathbb{C}^{*}\right)^{n-1}$.

Two basic questions about the Milnor fibration of an arrangement:
(Q1) Are the Betti numbers $b_{q}(F(\mathcal{A}))$ and the characteristic polynomial of the algebraic monodromy, $h_{q}: H_{q}(F(\mathcal{A}), \mathbb{C}) \rightarrow H_{q}(F(\mathcal{A}), \mathbb{C})$, determined by $L(\mathcal{A})$ ?
(Q2) Are the homology groups $H_{*}(F(\mathcal{A}), \mathbb{Z})$ torsion-free? If so, does $F(\mathcal{A})$ admit a minimal cell structure?

Recent progress on both questions:

- A partial, positive answer to (Q1).
- A negative answer to (Q2).

$$
\text { Let } \Delta_{\mathcal{A}}(t):=\operatorname{det}\left(h_{1}-t \cdot \text { id }\right) \text {. Then } b_{1}(F(\mathcal{A}))=\operatorname{deg} \Delta_{\mathcal{A}} \text {. }
$$

## THEOREM (PAPADIMA-S. 2013)

Suppose all flats $X \in L_{2}(\mathcal{A})$ have multiplicity 2 or 3. Then $\Delta_{\mathcal{A}}(t)$, and thus $b_{1}(F(\mathcal{A}))$, are combinatorially determined.

## THEOREM (DENHAM-S. 2013)

For every prime $p \geqslant 2$, there is an arrangement $\mathcal{A}$ such that $H_{q}(F(\mathcal{A}), \mathbb{Z})$ has non-zero $p$-torsion, for some $q>1$.

- In both results, we relate the cohomology jump loci of $M(\mathcal{A})$ in characteristic $p$ with those in characteristic 0 .
- In the first result, the bridge between the two goes through the representation variety $\operatorname{Hom}_{\text {Lie }}\left(\mathfrak{h}(\mathcal{A}), \mathfrak{s l}_{2}\right)$.
- A key combinatorial ingredient in both proofs is the notion of multinet.


## Resonance varieties and the $\beta_{p}$-INVARIANTS

- Let $A=H^{*}(M(\mathcal{A}), \mathbb{k})$ - an algebra that depends only on $L(\mathcal{A})$ (and the field $\mathbb{k}$ ).
- For each $a \in A^{1}$, we have $a^{2}=0$. Thus, we get a cochain complex, $(A, \cdot a): A^{0} \xrightarrow{a} A^{1} \xrightarrow{a} A^{2}$ $\qquad$
- The (degree 1) resonance varieties of $\mathcal{A}$ are the cohomology jump loci of this "Aomoto complex":

$$
\mathcal{R}_{s}(\mathcal{A}, \mathbb{k})=\left\{a \in A^{1} \mid \operatorname{dim}_{\mathbb{k}} H^{1}(A, \cdot a) \geqslant s\right\},
$$

- In particular, $a \in A^{1}$ belongs to $\mathcal{R}_{1}(\mathcal{A}, \mathbb{k})$ iff there is $b \in A^{1}$ not proportional to $a$, such that $a \cup b=0$ in $A^{2}$.
- Now assume $\mathbb{k}$ has characteristic $p>0$.
- Let $\sigma=\sum_{H \in \mathcal{A}} e_{H} \in A^{1}$ be the "diagonal" vector, and define

$$
\beta_{p}(\mathcal{A})=\operatorname{dim}_{\mathbb{k}} H^{1}(A, \cdot \sigma)
$$

That is, $\beta_{p}(\mathcal{A})=\max \left\{s \mid \sigma \in \mathcal{R}_{s}^{1}(A, \mathbb{k})\right\}$.

- Clearly, $\beta_{p}(\mathcal{A})$ depends only on $L(\mathcal{A})$ and $p$. Moreover, $0 \leqslant \beta_{p}(\mathcal{A}) \leqslant|\mathcal{A}|-2$.


## THEOREM (PS)

If $L_{2}(\mathcal{A})$ has no flats of multiplicity $3 r$ with $r>1$, then $\beta_{3}(\mathcal{A}) \leqslant 2$.

- For each $m \geqslant 1$, there is a matroid $\mathcal{M}_{m}$ with all rank 2 flats of multiplicity 3 , and such that $\beta_{3}\left(\mathcal{M}_{m}\right)=m$.
- $\mathcal{M}_{1}$ : pencil of 3 lines. $\mathcal{M}_{2}$ : Ceva arrangement.
- $\mathcal{M}_{m}$ with $m>2$ : not realizable over $\mathbb{C}$.


## The homology of the Milnor fiber

- The monodromy $h: F(\mathcal{A}) \rightarrow F(\mathcal{A})$ has order $n=|\mathcal{A}|$. Thus,

$$
\Delta_{\mathcal{A}}(t)=\prod_{d \mid n} \Phi_{d}(t)^{e_{d}(\mathcal{A})}
$$

where $\Phi_{1}=t-1, \Phi_{2}=t+1, \Phi_{3}=t^{2}+t+1, \Phi_{4}=t^{2}+1, \ldots$ are the cyclotomic polynomials, and $e_{d}(\mathcal{A}) \in \mathbb{Z}_{\geqslant 0}$.

- Easy to see: $e_{1}(\mathcal{A})=n-1$. Hence, $H_{1}(F(\mathcal{A}), \mathbb{C})$, when viewed as a module over $\mathbb{C}\left[\mathbb{Z}_{n}\right]$, decomposes as

$$
(\mathbb{C}[t] /(t-1))^{n-1} \oplus \underset{1<d \mid n}{\oplus}\left(\mathbb{C}[t] / \Phi_{d}(t)\right)^{e_{d}(\mathcal{A})}
$$

- In particular, $b_{1}(F(\mathcal{A}))=n-1+\sum_{1<d \mid n} \varphi(d) e_{d}(\mathcal{A})$.
- Thus, in degree 1, question (Q1) is equivalent to: are the integers $e_{d}(\mathcal{A})$ determined by $L_{\leqslant 2}(\mathcal{A})$ ?
- Not all divisors of $n$ appear in the above formulas: If $d$ does not divide $\left|\mathcal{A}_{X}\right|$, for some $X \in L_{2}(\mathcal{A})$, then $e_{d}(\mathcal{A})=0$ (Libgober).
- In particular, if $L_{2}(\mathcal{A})$ has only flats of multiplicity 2 and 3 , then $\Delta_{\mathcal{A}}(t)=(t-1)^{n-1}\left(t^{2}+t+1\right)^{e_{3}}$.
- If multiplicity 4 appears, then also get factor of $(t+1)^{e_{2}} \cdot\left(t^{2}+1\right)^{e_{4}}$.

THEOREM (COHEN-ORLIK 2000, PAPADIMA-S. 2010)
$e_{p^{s}}(\mathcal{A}) \leqslant \beta_{p}(\mathcal{A})$, for all $s \geqslant 1$.

## THEOREM (PS13)

Suppose $L_{2}(\mathcal{A})$ has no flats of multiplicity $3 r$, with $r>1$. Then $e_{3}(\mathcal{A})=\beta_{3}(\mathcal{A})$, and thus $e_{3}(\mathcal{A})$ is combinatorially determined.

A similar result holds for $e_{2}(\mathcal{A})$ and $e_{4}(\mathcal{A})$, under some additional hypothesis.

## Corollary

If $\overline{\mathcal{A}}$ is an arrangement of $n$ lines in $\mathbb{P}^{2}$ with only double and triple points, then $\Delta_{\mathcal{A}}(t)=(t-1)^{n-1}\left(t^{2}+t+1\right)^{\beta_{3}(\mathcal{A})}$ is combinatorially determined.

## COROLLARY (LibGOBER 2012)

If $\overline{\mathcal{A}}$ is an arrangement of $n$ lines in $\mathbb{P}^{2}$ with only double and triple points, then the question whether $\Delta_{\mathcal{A}}(t)=(t-1)^{n-1}$ or not is combinatorially determined.

## CONJECTURE

Let $\mathcal{A}$ be an essential arrangement in $\mathbb{C}^{3}$. Then

$$
\Delta_{\mathcal{A}}(t)=(t-1)^{|\mathcal{A}|-1}\left(t^{2}+t+1\right)^{\beta_{3}(\mathcal{A})}\left[(t+1)\left(t^{2}+1\right)\right]^{\beta_{2}(\mathcal{A})} .
$$

## MULTinets

## DEFINITION (FALK AND YUZVINSKY)

A multinet on $\mathcal{A}$ is a partition of the set $\mathcal{A}$ into $k \geqslant 3$ subsets $\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}$, together with an assignment of multiplicities, $m: \mathcal{A} \rightarrow \mathbb{N}$, and a subset $\mathcal{X} \subseteq L_{2}(\mathcal{A})$, called the base locus, such that:
(1) There is an integer $d$ such that $\sum_{H \in \mathcal{A}_{\alpha}} m_{H}=d$, for all $\alpha \in[k]$.
(2) If $H$ and $H^{\prime}$ are in different classes, then $H \cap H^{\prime} \in \mathcal{X}$.
(3) For each $X \in \mathcal{X}$, the sum $n_{X}=\sum_{H \in \mathcal{A}_{a}: H \supset X} m_{H}$ is independent of $\alpha$.
(4) Each set $\left(\cup_{H \in \mathcal{A}_{\alpha}} H\right) \backslash \mathcal{X}$ is connected.

- A similar definition can be made for any (rank 3) matroid.
- A multinet as above is also called a $(k, d)$-multinet, or a $k$-multinet.
- The multinet is reduced if $m_{H}=1$, for all $H \in \mathcal{A}$.
- A net is a reduced multinet with $n_{X}=1$, for all $X \in \mathcal{X}$.
- In this case, $\left|\mathcal{A}_{\alpha}\right|=|\mathcal{A}| / k=d$, for all $\alpha$.
- Moreover, $\overline{\mathcal{X}}$ has size $d^{2}$, and is encoded by a $(k-2)$-tuple of orthogonal Latin squares.

$\mathrm{A}(3,2)$-net on the $\mathrm{A}_{3}$ arrangement $\mathrm{A}(3,4)$-multinet on the $\mathrm{B}_{3}$ arrangement $\overline{\mathcal{X}}$ consists of 4 triple points $\left(n_{X}=1\right) \quad \overline{\mathcal{X}}$ consists of 4 triple points $\left(n_{X}=1\right)$ and 3 triple points $\left(n_{X}=2\right)$


A (3, 3)-net on the Ceva matroid. A $(4,3)$-net on the Hessian matroid.

- If $\mathcal{A}$ has no flats of multiplicity $k r$, for some $r>1$, then every reduced $k$-multinet is a $k$-net.
- (Kawahara): given any Latin square, there is a matroid $\mathcal{M}$ with a 3-net $\left(\mathcal{M}_{1}, \mathcal{M}_{2}, \mathcal{M}_{3}\right)$ realizing it, such that each $\mathcal{M}_{\alpha}$ is uniform.
- (Yuzvinsky and Pereira-Yuz): If $\mathcal{A}$ supports a $k$-multinet with $|\mathcal{X}|>1$, then $k=3$ or 4 ; if the multinet is not reduced, then $k=3$.
- (Wakefield \& al): The only $(4,3)$-net in $\mathbb{C P}^{2}$ is the Hessian; there are no $(4,4),(4,5)$, or $(4,6)$ nets in $\mathbb{C P}^{2}$.
- Conjecture (Yuz): The only 4-multinet is the Hessian (4,3)-net.


## LEMMA (PS)

If $\mathcal{A}$ supports a 3-net with parts $\mathcal{A}_{\alpha}$, then:
(1) $1 \leqslant \beta_{3}(\mathcal{A}) \leqslant \beta_{3}\left(\mathcal{A}_{\alpha}\right)+1$, for all $\alpha$.
(2) If $\beta_{3}\left(\mathcal{A}_{\alpha}\right)=0$, for some $\alpha$, then $\beta_{3}(\mathcal{A})=1$.
(3) If $\beta_{3}\left(\mathcal{A}_{\alpha}\right)=1$, for some $\alpha$, then $\beta_{3}(\mathcal{A})=1$ or 2 .

All possibilities do occur:

- Braid arrangement: has a (3,2)-net from the Latin square of $\mathbb{Z}_{2}$. $\beta_{3}\left(\mathcal{A}_{\alpha}\right)=0(\forall \alpha)$ and $\beta_{3}(\mathcal{A})=1$.
- Pappus arrangement: has a $(3,3)$-net from the Latin square of $\mathbb{Z}_{3}$. $\beta_{3}\left(\mathcal{A}_{1}\right)=\beta_{3}\left(\mathcal{A}_{2}\right)=0, \beta_{3}\left(\mathcal{A}_{3}\right)=1$ and $\beta_{3}(\mathcal{A})=1$.
- Ceva arrangement: has a (3,3)-net from the Latin square of $\mathbb{Z}_{3}$. $\beta_{3}\left(\mathcal{A}_{\alpha}\right)=1(\forall \alpha)$ and $\beta_{3}(\mathcal{A})=2$.


## Complex resonance varieties

Let $\mathcal{A}$ be an arrangement in $\mathbb{C}^{3}$. Work of Arapura, Falk, Cohen-S., Libgober-Yuz, Falk-Yuz completely describes the varieties $\mathcal{R}_{s}(\mathcal{A}, \mathrm{C})$ :

- $\mathcal{R}_{1}(\mathcal{A}, \mathbb{C})$ is a union of linear subspaces in $H^{1}(M(\mathcal{A}), \mathbb{C})=\mathbb{C}^{|\mathcal{A}|}$.
- Each subspace has dimension at least 2, and each pair of subspaces meets transversely at 0 .
- $\mathcal{R}_{s}(\mathcal{A}, \mathrm{C})$ is the union of those linear subspaces that have dimension at least $s+1$.
- Each flat $X \in L_{2}(\mathcal{A})$ of multiplicity $k \geqslant 3$ gives rise to a local component of $\mathcal{R}_{1}(\mathcal{A}, \mathbb{C})$, of dimension $k-1$.
- More generally, every k-multinet on a sub-arrangement $\mathcal{B} \subseteq \mathcal{A}$ gives rise to a component of dimension $k-1$, and all components of $\mathcal{R}_{1}(\mathcal{A}, \mathbb{C})$ arise in this way.
- Note: the varieties $\mathcal{R}_{1}(\mathcal{A}, \mathbb{k})$ with $\operatorname{char}(\mathbb{k})>0$ can be more complicated: components may be non-linear, and they may intersect non-transversely.


## THEOREM (PS)

Suppose $L_{2}(\mathcal{A})$ has no flats of multiplicity $3 r$, with $r>1$. Then $\mathcal{R}_{1}(\mathcal{A}, \mathbb{C})$ has at least $\left(3^{\beta_{3}(\mathcal{A})}-1\right) / 2$ essential components, all corresponding to 3-nets.

## CHARACTERISTIC VARIETIES

- Let $X$ be a connected, finite cell complex, and let $\pi=\pi_{1}\left(X, x_{0}\right)$.
- Let $\mathbb{k}$ be an algebraically closed field, and let $\operatorname{Hom}\left(\pi, \mathbb{k}^{*}\right)=H^{1}\left(X, \mathbb{k}^{*}\right)$ be the character group of $\pi$.
- The (degree 1) characteristic varieties of $X$ are the jump loci for homology with coefficients in rank-1 local systems on $X$ :

$$
\mathcal{V}_{s}(X, \mathbb{k})=\left\{\rho \in \operatorname{Hom}\left(\pi, \mathbb{k}^{*}\right) \mid \operatorname{dim}_{\mathbb{k}} H_{1}\left(X, \mathbb{k}_{\rho}\right) \geqslant s\right\} .
$$

- Let $X=M(\mathcal{A})$, and identify $\operatorname{Hom}\left(\pi, \mathbb{k}^{*}\right)=\left(\mathbb{k}^{*}\right)^{n}$, where $n=|\mathcal{A}|$.
- The characteristic varieties $\mathcal{V}_{s}(\mathcal{A}, \mathbb{k}):=\mathcal{V}_{s}(M(\mathcal{A}), \mathbb{k})$ lie in the subtorus $\left\{t \in\left(\mathbb{k}^{*}\right)^{n} \mid t_{1} \cdots t_{n}=1\right\}$.

Work of Arapura, Libgober, Cohen-S., S., Libgober-Yuz, Falk-Yuz, Dimca, Dimca-Papadima-S., Artal-Cogolludo-Matei, Budur-Wang ... provides a fairly explicit description of the varieties $\mathcal{V}_{s}(\mathcal{A}, \mathbb{C})$ :

- Each variety $\mathcal{V}_{S}(\mathcal{A}, \mathbb{C})$ is a finite union of torsion-translates of algebraic subtori of $\left(\mathbb{C}^{*}\right)^{n}$.
- If a linear subspace $L \subset \mathbb{C}^{n}$ is a component of $\mathcal{R}_{s}(\mathcal{A}, \mathbb{C})$, then the algebraic torus $T=\exp (L)$ is a component of $\mathcal{V}_{s}(\mathcal{A}, \mathbb{C})$.
- Moreover, $T=f^{*}\left(H^{1}\left(S, \mathbb{C}^{*}\right)\right)$, where $f: M(\mathcal{A}) \rightarrow S$ is an orbifold fibration, with base $S=\mathbb{C P}{ }^{1} \backslash\{k$ points $\}$, for some $k \geqslant 3$.
- All components of $\mathcal{V}_{s}(\mathcal{A}, \mathbb{C})$ passing through the origin $1 \in\left(\mathbb{C}^{*}\right)^{n}$ arise in this way (and thus, are combinatorially determined).


## BACK TO THE MILNOR FIBRATION

- The Milnor fiber $F(\mathcal{A})$ is a regular $\mathbb{Z}_{n}$-cover of the projectivized complement $U=M(\mathcal{A}) / \mathbb{C}^{*}$.
- This cover classified by the homomorphism $\delta: \pi_{1}(U) \rightarrow \mathbb{Z}_{n}$ that sends each meridian to 1.
- Let $\hat{\delta}: \operatorname{Hom}\left(\mathbb{Z}_{n}, \mathbb{k}^{*}\right) \rightarrow \operatorname{Hom}\left(\pi_{1}(U), \mathbb{k}^{*}\right)$. If $\operatorname{char}(\mathbb{k}) \nmid n$, then

$$
\operatorname{dim}_{\mathbb{k}} H_{1}(F(\mathcal{A}), \mathbb{k})=\sum_{s \geqslant 1}\left|\mathcal{V}_{s}(U, \mathbb{k}) \cap \operatorname{im}(\hat{\delta})\right| .
$$

The available information on $\mathcal{V}_{s}(U, \mathbb{C}) \cong \mathcal{V}_{s}(\mathcal{A}, \mathbb{C})$ implies:

## THEOREM

If $\mathcal{A}$ admits a reduced $k$-multinet, then $e_{k}(\mathcal{A}) \geqslant k-2$.

## THEOREM (PS)

Suppose $L_{2}(\mathcal{A})$ has no flats of multiplicity $3 r$ with $r>1$. Then, the following conditions are equivalent:
(1) $L_{\leqslant 2}(\mathcal{A})$ admits a reduced 3-multinet.
(2) $L_{\leqslant 2}(\mathcal{A})$ admits a 3-net.
(3) $\beta_{3}(\mathcal{A}) \neq 0$.
(4) $e_{3}(\mathcal{A}) \neq 0$.

Moreover, $\beta_{3}(\mathcal{A}) \leqslant 2$ and $\beta_{3}(\mathcal{A})=e_{3}(\mathcal{A})$.

- $(2) \Rightarrow(1)$ : obvious.
- $(1) \Rightarrow(4)$ : by above theorem.
- $(4) \Rightarrow(3)$ : by modular bound $e_{p}(\mathcal{A}) \leqslant \beta_{p}(\mathcal{A})$.
- $(3) \Rightarrow(2)$ : use flat, $\mathfrak{s l}_{2}$-valued connections on the OS-algebra.
- $\beta_{3}(\mathcal{A}) \leqslant 2$ : a previous theorem.
- Last assertion: put things together, and use [ACM].


## Torsion in the homology of the Milnor fiber

- Let $(\mathcal{A}, m)$ be a multi-arrangement, with defining polynomial

$$
Q_{m}(\mathcal{A})=\prod_{H \in \mathcal{A}} f_{H}^{m_{H}}
$$

- Let $F_{m}(\mathcal{A})=Q_{m}^{-1}(1)$ be the corresponding Milnor fiber.


## THEOREM (COHEN-DENHAM-S. 2003)

For every prime $p \geqslant 2$, there is a multi-arrangement $(\mathcal{A}, m)$ such that $H_{1}\left(F_{m}(\mathcal{A}), \mathbb{Z}\right)$ has non-zero $p$-torsion.

Simplest example: the arrangement of 8 hyperplanes in $\mathbb{C}^{3}$ with

$$
Q_{m}(\mathcal{A})=x^{2} y\left(x^{2}-y^{2}\right)^{3}\left(x^{2}-z^{2}\right)^{2}\left(y^{2}-z^{2}\right)
$$

Then $H_{1}\left(F_{m}(\mathcal{A}), \mathbb{Z}\right)=\mathbb{Z}^{7} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$.

We now can generalize and reinterpret these examples, as follows.

A pointed multinet on an arrangement $\mathcal{A}$ is a multinet structure, together with a distinguished hyperplane $H \in \mathcal{A}$ for which $m_{H}>1$ and $m_{H} \mid n_{X}$ for each $X \in \mathcal{X}$ such that $X \subset H$.

## THEOREM (DENHAM-S. 2013)

Suppose $\mathcal{A}$ admits a pointed multinet, with distinguished hyperplane $H$ and multiplicity $m$. Let $p$ be a prime dividing $m_{H}$. There is then a choice of multiplicities $m^{\prime}$ on the deletion $\mathcal{A}^{\prime}=\mathcal{A} \backslash\{H\}$ such that $H_{1}\left(F_{m^{\prime}}\left(\mathcal{A}^{\prime}\right), \mathbb{Z}\right)$ has non-zero $p$-torsion.

This torsion is explained by the fact that the geometry of $\mathcal{V}_{1}\left(\mathcal{A}^{\prime}, \mathbb{k}\right)$ varies with char $(\mathbb{k})$.

To produce $p$-torsion in the homology of the usual Milnor fiber, we use a "polarization" construction:



$(\mathcal{A}, m) \rightsquigarrow \mathcal{A} \| m$, an arrangement of $N=\sum_{H \in \mathcal{A}} m_{H}$ hyperplanes, of rank equal to rank $\mathcal{A}+\left|\left\{H \in \mathcal{A}: m_{H} \geqslant 2\right\}\right|$.

THEOREM (DS)
Suppose $\mathcal{A}$ admits a pointed multinet, with distinguished hyperplane $H$ and multiplicity $m$. Let $p$ be a prime dividing $m_{H}$.
There is then a choice of multiplicities $m^{\prime}$ on the deletion $\mathcal{A}^{\prime}=\mathcal{A} \backslash\{H\}$ such that $H_{q}(F(\mathcal{B}), \mathbb{Z})$ has p-torsion, where $\mathcal{B}=\mathcal{A}^{\prime} \| m^{\prime}$ and $q=1+\left|\left\{K \in \mathcal{A}^{\prime}: m_{K}^{\prime} \geqslant 3\right\}\right|$.


Simplest example: the arrangement of 27 hyperplanes in $\mathbb{C}^{8}$ with defining polynomial

$$
\begin{aligned}
& Q(\mathcal{A})= x y\left(x^{2}-y^{2}\right)\left(x^{2}-z^{2}\right)\left(y^{2}-z^{2}\right) w_{1} w_{2} w_{3} w_{4} w_{5}\left(x^{2}-w_{1}^{2}\right)\left(x^{2}-2 w_{1}^{2}\right)\left(x^{2}-3 w_{1}^{2}\right)\left(x-4 w_{1}\right) . \\
& \quad\left((x-y)^{2}-w_{2}^{2}\right)\left((x+y)^{2}-w_{3}^{2}\right)\left((x-z)^{2}-w_{4}^{2}\right)\left((x-z)^{2}-2 w_{4}^{2}\right) \cdot\left((x+z)^{2}-w_{5}^{2}\right)\left((x+z)^{2}-2 w_{5}^{2}\right) .
\end{aligned}
$$

Then $H_{6}(F(\mathcal{A}), \mathbb{Z})$ has 2-torsion (of rank 108).

