DUALITY, FINITENESS, AND COHOMOLOGY JUMP LOCI

Alex Suciu

Northeastern University

Conference in Algebraic Geometry for Alexandru Dimca's retirement

Ischia, Italy
October 12, 2021

Resonance varieties

- Let $A=\left(A^{\bullet}, \mathrm{d}_{A}\right)$ be a connected, locally finite, graded-commutative, differential graded algebra (cdga) over a field \mathbb{k}, and let $M=\left(M^{\bullet}, \mathrm{d}_{M}\right)$ be an A-cdgm.
- Since $A^{0}=\mathbb{k}$, we have $Z^{1}(A) \cong H^{1}(A)$.
- Set $\mathcal{Q}(A)=\left\{a \in Z^{1}(A) \mid a^{2}=0 \in A^{2}\right\}$. For each $a \in \mathcal{Q}(A)$, we have a cochain complex,

$$
\left(M^{\bullet}, \delta_{a}\right): M^{0} \xrightarrow{\delta_{a}^{0}} M^{1} \xrightarrow{\delta_{a}^{1}} M^{2} \xrightarrow{\delta_{a}^{2}} \cdots,
$$

with differentials $\delta_{a}^{i}(m)=a \cdot m+\mathrm{d}_{M}(m)$, for all $m \in M^{i}$.

- The resonance varieties of M (in degree $i \geq 0$ and depth $k \geq 0$):

$$
\mathcal{R}_{k}^{i}(M)=\left\{a \in \mathcal{Q}(A) \mid \operatorname{dim}_{\mathbb{k}} H^{i}\left(M^{\bullet}, \delta_{a}\right) \geq k\right\}
$$

- Assume char $\mathbb{k} \neq 2$. Since $a^{2}=-a^{2}$ for all $a \in A^{1}$, we have $\mathcal{Q}(A)=Z^{1}(A)$, and so $\mathcal{R}_{k}^{i}(A)$ are subvarieties of $H^{1}(A)$.

Resonance varieties of graded algebras

- Assume further that $d=0$ (i.e., A is a cga). Then the resonance varieties of A are homogenous subvarieties of $H^{1}(A)=A^{1}$.
- An element $a \in A^{1}$ belongs to $\mathcal{R}_{k}^{i}(A)$ if and only if there exist $u_{1}, \ldots, u_{k} \in A^{i}$ such that $a u_{1}=\cdots=a u_{k}=0$ in A^{i+1}, and the set $\left\{a u, u_{1}, \ldots, u_{k}\right\}$ is linearly independent in A^{i}, for all $u \in A^{i-1}$.
- Set $b_{j}=b_{j}(A)$. For each $i \geq 0$, we have a descending filtration,

$$
A^{1}=\mathcal{R}_{0}^{i}(A) \supseteq \mathcal{R}_{1}^{i}(A) \supseteq \cdots \supseteq \mathcal{R}_{b_{i}}^{i}(A)=\{0\} \supset \mathcal{R}_{b_{i+1}}^{i}(A)=\varnothing .
$$

- A linear subspace $U \subset A^{1}$ is isotropic if the restriction of $A^{1} \wedge A^{1} \rightarrow A^{2}$ to $U \wedge U$ is the zero map (i.e., $a b=0, \forall a, b \in U$).
- If $U \subseteq A^{1}$ is isotropic and $\operatorname{dim} U=k$, then $U \subseteq \mathcal{R}_{k-1}^{1}(A)$.
- $\mathcal{R}_{1}^{1}(A)$ is the union of all isotropic planes in A^{1}.
- If $\mathbb{k} \subset \mathbb{K}$ is a field extension, then the \mathbb{k}-points on $\mathcal{R}_{k}^{i}\left(A \otimes_{\mathbb{k}} \mathbb{K}\right)$ coincide with $\mathcal{R}_{k}^{i}(A)$.

The BGG correspondence

- Let (A, d) be a connected, finite-type \mathbb{k}-cdga, where $\operatorname{char}(\mathbb{k}) \neq 2$.
- Fix a \mathbb{k}-basis $\left\{e_{1}, \ldots, e_{n}\right\}$ for $H^{1}(A) \cong Z^{1}(A)$, and let $\left\{x_{1}, \ldots, x_{n}\right\}$ be the dual basis for $H_{1}(A)=\left(H^{1}(A)\right)^{\vee}$.
- Identify $\operatorname{Sym}\left(H_{1}(A)\right)$ with $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$, the coordinate ring of the affine space $H^{1}(A)$.
- A BGG-type correspondence yields a cochain complex of finitely generated, free S-modules, $\left(A^{\bullet} \otimes S, \delta_{A}\right)$,

$$
\cdots \longrightarrow A^{i} \otimes S \xrightarrow{\delta_{A}^{i}} A^{i+1} \otimes S \xrightarrow{\delta_{A}^{i+1}} A^{i+2} \otimes S \longrightarrow \cdots,
$$

where $\quad \delta_{A}^{i}(u \otimes s)=\sum_{j=1}^{r} e_{j} u \otimes s x_{j}+d u \otimes s$.

- The specialization of this complex at $a \in Z^{1}(A)$ is $\left(A, \delta_{a}\right)$.
- Hence, $\mathcal{R}_{k}^{i}(A)$ is the zero-set of the ideal generated by all minors of size $b_{i}(A)-k+1$ of the block-matrix $\delta_{A}^{i+1} \oplus \delta_{A}^{i}$.

CHARACTERISTIC VARIETIES

- Let X be a connected CW-complex with finite q-skeleton ($q \geq 1$). Let $G=\pi_{1}(X)$, and set $n=\operatorname{rank}\left(G_{\mathrm{ab}}\right)=b_{1}(X)$.
- Let $\mathbb{T}_{G}:=\operatorname{Hom}\left(G, C^{*}\right)$ be the character group of $G=\pi_{1}(X)$, also denoted by $\operatorname{Char}(X):=H^{1}\left(X, \mathbb{C}^{*}\right)$. Then \mathbb{T}_{G} is an algebraic group with coordinate ring $\mathbb{C}\left[G_{\mathrm{ab}}\right]$, and $\mathbb{T}_{G} \cong\left(\mathbb{C}^{*}\right)^{n} \times \operatorname{Tors}\left(G_{\mathrm{ab}}\right)$.
- The characteristic varieties of X are the sets

$$
\mathcal{V}_{k}^{i}(X)=\left\{\rho \in \mathbb{T}_{G} \mid \operatorname{dim}_{\mathbb{C}} H_{i}\left(X, \mathbb{C}_{\rho}\right) \geq k\right\} .
$$

- These sets are Zariski closed for all $i \leq q$ and all $k \geq 0$.
- We may define similarly $\mathcal{V}_{k}^{i}(X, \mathbb{k}) \subset H^{1}\left(X, \mathbb{k}^{*}\right)$ for any field \mathbb{k}.
- These constructions are compatible with restriction and extension of the base field. Namely, if $\mathfrak{k} \subset \mathbb{L}$ is a field extension, then

$$
\begin{gathered}
\mathcal{V}_{k}^{i}(X, \mathbb{k})=\mathcal{V}_{k}^{i}(X, \mathbb{L}) \cap H^{1}\left(X, \mathbb{k}^{\times}\right), \\
\mathcal{V}_{k}^{i}(X, \mathbb{L})=\mathcal{V}_{k}^{i}(X, \mathbb{k}) \times_{\mathbb{k}} \mathbb{L} .
\end{gathered}
$$

\rightarrow Let exp: $\mathbb{C}^{n} \rightarrow\left(\mathbb{C}^{*}\right)^{n}$. Given a subvariety $W \subset\left(\mathbb{C}^{*}\right)^{n}$, define its exponential tangent cone at 1 (identity of $\left.\left(\mathbb{C}^{*}\right)^{n}\right)$ as

$$
\tau_{1}(W)=\left\{z \in \mathbb{C}^{n} \mid \exp (\lambda z) \in W, \forall \lambda \in \mathbb{C}\right\}
$$

- (Dimca-Papadima-S. 2009) $\tau_{1}(W)$ is a finite union of rationally defined linear subspaces.
- Given a subfield $\mathbb{k} \subset \mathbb{C}$, we write $\tau_{1}^{\mathbb{k}}(W)=\tau_{1}(W) \cap \mathbb{k}^{n}$.

Let A and B be two \mathbb{k}-cdgas. We say $A \simeq B$ if there is a zig-zag of quasi-isomorphisms connecting A to B. If those maps are isos in degrees $\leq q$ and injective in degree $q+1$, we say $A \simeq{ }_{q} B$.

- A is formal (or just q-formal) if it is (q-) equiv. to $\left(H^{\bullet}(A), d=0\right.$).
- Given any (path-connected) space X, there is an associated Sullivan Q-cdga, $A_{\text {PL }}(X)$, such that $H^{\bullet}\left(A_{\text {PL }}(X)\right)=H^{\bullet}(X, \mathbb{Q})$.
- An algebraic (q-)model for X (over $\mathbb{k} \supseteq \mathbb{Q}$) is a \mathbb{k}-cgda (A, d) which is $(q-)$ equivalent to $A_{\mathrm{PL}}(X) \otimes_{\mathbb{Q}} \mathbb{k}$.

The Tangent cone theorem

- Let X be a connected CW-complex with finite q-skeleton, and suppose X admits a q-finite q-model A (e.g., X-formal).
\rightarrow Set $\mathcal{R}_{k}^{i}(X, \mathbb{k}):=\mathcal{R}_{k}^{i}\left(H^{\bullet}(X, \mathbb{k})\right)$ and $\mathcal{R}_{k}^{i}(X):=\mathcal{R}_{k}^{i}(X, \mathbb{C})$.

Theorem

For all $i \leq q$ and all $k \geq 0$:

- (Dimca-Papadima-S. 2009, Dimca-Papadima 2014)

$$
\mathcal{V}_{k}^{i}(X)_{(1)} \cong \mathcal{R}_{k}^{i}(A)_{(0)} .
$$

In particular, if X is q-formal, then $\mathcal{V}_{k}^{i}(X)_{(1)} \cong \mathcal{R}_{k}^{i}(X)_{(0)}$.

- (Budur-Wang 2017) All the irreducible components of $\mathcal{V}_{k}^{i}(X)$ passing through the origin of $\operatorname{Char}(X)$ are algebraic subtori.
- Consequently,

$$
\tau_{1}\left(\mathcal{V}_{k}^{i}(X)\right)=\mathrm{TC}_{1}\left(\mathcal{V}_{k}^{i}(X)\right)=\mathcal{R}_{k}^{i}(A)
$$

Bieri-Neumann-Strebel-Renz invariants

- Let G be a finitely generated group, $n=b_{1}(G)>0$. Let $S(G)=S^{n-1}$ be the unit sphere in $\operatorname{Hom}(G, \mathbb{R})=\mathbb{R}^{n}$.
- (Bieri-Neumann-Strebel 1987)

$$
\Sigma^{1}(G)=\left\{\chi \in S(G) \mid \mathrm{Cay}_{\chi}(G) \text { is connected }\right\},
$$

where $\operatorname{Cay}_{\chi}(G)$ is the induced subgraph of $\operatorname{Cay}(G)$ on vertex set $G_{\chi}=\{g \in G \mid \chi(g) \geq 0\}$.

- (Bieri-Renz 1988)

$$
\Sigma^{q}(G, \mathbb{Z})=\left\{\chi \in S(G) \mid \text { the monoid } G_{\chi} \text { is of type } \mathrm{FP}_{q}\right\}
$$

i.e., there is a projective $\mathbb{Z} G_{\chi}$-resolution $P_{0} \rightarrow \mathbb{Z}$, with P_{i} finitely generated for all $i \leq q$. Moreover, $\Sigma^{1}(G, \mathbb{Z})=-\Sigma^{1}(G)$.

- The BNSR-invariants of G form a descending chain of open subsets of $S(G)$.
- The Σ-invariants control the finiteness properties of normal subgroups $N \triangleleft G$ for which G / N is free abelian:

$$
N \text { is of type } \mathrm{FP}_{q} \Longleftrightarrow S(G, N) \subseteq \Sigma^{q}(G, \mathbb{Z})
$$

where $S(G, N)=\{\chi \in S(G) \mid \chi(N)=0\}$. In particular, $\operatorname{ker}(\chi: G \rightarrow \mathbb{Z})$ is f.g. $\Longleftrightarrow\{ \pm \chi\} \subseteq \Sigma^{1}(G)$.

- More generally, let X be a connected CW-complex with finite q-skeleton, for some $q \geq 1$.
- Let $G=\pi_{1}\left(X, x_{0}\right)$. For each $\chi \in S(X):=S(G)$, let

$$
\widehat{\mathbb{Z}}_{\chi}=\left\{\lambda \in \mathbb{Z}^{G} \mid\{g \in \operatorname{supp} \lambda \mid \chi(g) \geq c\} \text { is finite, } \forall c \in \mathbb{R}\right\}
$$

be the Novikov-Sikorav completion of $\mathbb{Z} G$.

- (Farber-Geoghegan-Schütz 2010)

$$
\Sigma^{q}(X, \mathbb{Z})=\left\{\chi \in S(X) \mid H_{i}(X, \widehat{\mathbb{Z} G}-\chi)=0, \forall i \leq q\right\} .
$$

(Bieri 2007) If G is $F P_{k}$, then $\Sigma^{q}(G, \mathbb{Z})=\Sigma^{q}(K(G, 1), \mathbb{Z}), \forall q \leq k$.

TROPICAL VARIETIES

- Let $\mathbb{K}=\mathbb{C}\{\{t\}\}=U_{n \geq 1} \mathbb{C}\left(\left(t^{1 / n}\right)\right)$ be the field of Puiseux series.
- Elements of $\mathbb{K}^{*}: c(t)=c_{1} t^{a_{1}}+c_{2} t^{a_{2}}+\cdots$, where $c_{i} \in \mathbb{C}^{*}$ and $a_{1}<a_{2}<\cdots$ are rationals with a common denominator.
- \mathbb{K} is an algebraically closed field; it admits a non-Archimedean valuation, $v: \mathbb{K}^{*} \rightarrow \mathrm{Q}$, given by $v(c(t))=a_{1}$.
- Let $v:\left(\mathbb{K}^{*}\right)^{n} \rightarrow \mathbb{Q}^{n} \subset \mathbb{R}^{n}$ be the n-fold product of the valuation.
- The tropicalization of a subvariety $W \subset\left(\mathbb{K}^{*}\right)^{n}$, denoted $\operatorname{Trop}(W)$, is the closure (in the Euclidean topology) of $v(W)$ in \mathbb{R}^{n}.
- This is a rational polyhedral complex in \mathbb{R}^{n}. For instance, if W is a curve, then $\operatorname{Trop}(W)$ is a graph with rational edge directions.
- For a variety $W \subset\left(\mathbb{C}^{*}\right)^{n}$, we may define its tropicalization by setting $\operatorname{Trop}(W)=\operatorname{Trop}\left(W \times_{\mathbb{C}} \mathbb{K}\right)$. This is a polyhedral fan in \mathbb{R}^{n}.

Tropicalizing THE CHARACTERISTIC VARIETIES

- Let X be a space as above, and set $n=b_{1}(X)$. We define $v_{X}: \operatorname{Char}_{\mathbb{K}}(X) \rightarrow \mathbb{Q}^{n} \subset \mathbb{R}^{n}$ to be the composite

$$
H^{1}\left(X, \mathbb{K}^{*}\right) \xrightarrow{v_{*}} H^{1}(X, \mathbb{Q}) \longrightarrow H^{1}(X, \mathbb{R}) .
$$

- Given an algebraic subvariety $W \subset H^{1}\left(X, C^{*}\right)$ we define its tropicalization as the closure in $H^{1}(X, \mathbb{R}) \cong \mathbb{R}^{n}$ of the image of $W \times_{\mathbb{C}} \mathbb{K} \subset H^{1}\left(X, \mathbb{K}^{*}\right)$ under v_{X} :

$$
\operatorname{Trop}(W):=\overline{v_{X}\left(W \times \times_{C} \mathbb{K}\right)} .
$$

- Applying this definition to the varieties $\mathcal{V}^{i}(X):=\mathcal{V}_{1}^{i}(X)$ and recalling that $\mathcal{V}^{i}(X, \mathbb{K})=\mathcal{V}^{i}(X) \times_{\mathbb{C}} \mathbb{K}$, we get

$$
\operatorname{Trop}\left(\mathcal{V}^{i}(X)\right)=\overline{v_{X}\left(\mathcal{V}^{i}(X, \mathbb{K})\right)} .
$$

LEMMA

Let $W \subset\left(\mathbb{C}^{*}\right)^{n}$ be an algebraic variety. Then $\tau_{1}^{\mathbb{R}}(W) \subseteq \operatorname{Trop}(W)$.

A tropical bound for the Σ-INVARIANTS

Theorem (Papadima-S.-2010, S-2021)
Let $\rho: \pi_{1}(X) \rightarrow \mathbb{k}^{*}$ be a character such that $\rho \in \mathcal{V} \leq q(X, \mathbb{k})$. Let $v: \mathbb{k}^{*} \rightarrow \mathbb{R}$ be the homomorphism defined by a valuation on \mathbb{k}, and write $\chi=v \circ \rho$. If the homomorphism $\chi: \pi_{1}(X) \rightarrow \mathbb{R}$ is non-zero, then $\chi \notin \Sigma^{q}(X, \mathbb{Z})$.

THEOREM (S-2021)

$$
\Sigma^{q}(X, \mathbb{Z}) \subseteq S\left(\operatorname{Trop}\left(\mathcal{V}^{\leq q}(X)\right)\right)^{\text {c }}
$$

Hence:

- (Papadima-S.-2010) $\Sigma^{q}(X, \mathbb{Z}) \subseteq S\left(\tau_{1}^{\mathbb{R}}(\mathcal{V} \leq q(X))\right)^{\text {b }}$
- If X is q-formal, then $\Sigma^{i}(X, \mathbb{Z}) \subseteq S\left(\mathcal{R}^{\leq i}(X)\right)^{\mathrm{c}}$ for all $i \leq q$.
- If $\mathcal{V} \leq q(X)$ contains a component of $\operatorname{Char}(X)$, then $\Sigma^{q}(X, \mathbb{Z})=\varnothing$.

KÄHLER MANIFOLDS

- Let M be a compact Kähler manifold. Then M is formal.
- (Beauville, Catanese, Green-Lazarsfeld, Simpson, Arapura, Budur, B. Wang) The varieties $\mathcal{V}_{k}^{i}(M)$ are finite unions of torsion translates of algebraic subtori of $H^{1}\left(M, C^{*}\right)$.

Theorem (Delzant 2010)

$$
\Sigma^{1}(M)=S(M) \backslash \bigcup_{\alpha} S\left(f_{\alpha}^{*}\left(H^{1}\left(C_{\alpha}, \mathbb{R}\right)\right)\right),
$$

where the union is taken over those orbifold fibrations $f_{\alpha}: M \rightarrow C_{\alpha}$ with the property that either $\chi\left(C_{\alpha}\right)<0$, or $\chi\left(C_{\alpha}\right)=0$ and f_{α} has some multiple fiber.

In degree 1, we may recast this result in the tropical setting, as follows.
Corollary

$$
\Sigma^{1}(M)=S\left(\operatorname{Trop}\left(\mathcal{V}^{1}(M)\right)^{\mathrm{C}} .\right.
$$

Hyperplane arrangements

- Let $\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\}$ be an (essential, central) arrangement of hyperplanes in \mathbb{C}^{d}, with intersection lattice $L(\mathcal{A})$.
- The complement, $M(\mathcal{A}):=\left(\mathbb{C}^{*}\right)^{d} \backslash \bigcup_{i=1}^{n} H_{i}$, is a smooth, quasi-projective Stein manifold; thus, it has the homotopy type of a finite, d-dimensional CW-complex.
- (Orlik-Solomon) The cohomology ring $H^{*}(M(\mathcal{A}), \mathbb{Z})$ is determined by $L(\mathcal{A})$.
- Thus, the resonance varieties $\mathcal{R}^{i}(\mathcal{A}):=\mathcal{R}^{i}(M(\mathcal{A})) \subset \mathbb{C}^{n}$ depend only on $L(\mathcal{A})$.
- (Arapura) The characteristic varieties $\mathcal{V}^{i}(\mathcal{A}):=\mathcal{V}^{i}(M(\mathcal{A})) \subset\left(\mathbb{C}^{*}\right)^{n}$ are unions of translated subtori.
- Consequently, $\operatorname{Trop}\left(\mathcal{V}^{i}(\mathcal{A})\right)=-\operatorname{Trop}\left(\mathcal{V}^{i}(\mathcal{A})\right)$.
- (Denham-S.-Yuzvinsky 2016/17) $M(\mathcal{A})$ is an "abelian duality space", and so $\mathcal{V}^{1}(\mathcal{A}) \subseteq \mathcal{V}^{2}(\mathcal{A}) \subseteq \cdots \subseteq \mathcal{V}^{d-1}(\mathcal{A})$.
- (Arnol'd, Brieskorn) $M(\mathcal{A})$ is formal. Thus, $\tau_{1}\left(\mathcal{V}^{i}(\mathcal{A})\right)=\mathcal{R}^{i}(\mathcal{A})$.

THEOREM

Let M be the complement of an arrangement of n hyperplanes in \mathbb{C}^{d}. Then, for each $1 \leq q \leq d-1$:

- $\operatorname{Trop}\left(\mathcal{V}^{a}(M)\right)$ is the union of a subspace arrangement in \mathbb{R}^{n}.
$-\Sigma^{q}(M, \mathbb{Z}) \subseteq S\left(\operatorname{Trop}\left(\mathcal{V}^{q}(M)\right)\right)^{\text {C }}$.

QUESTION (MFO Miniworkshop 2007)
Given an arrangement \mathcal{A}, do we have

$$
\begin{equation*}
\Sigma^{1}(M(\mathcal{A}))=S\left(\mathcal{R}^{1}(\mathcal{A}, \mathbb{R})\right)^{c^{c}} ? \tag{*}
\end{equation*}
$$

Example (Koban-McCammond-Meier 2013)

- Let \mathcal{A} be the braid arrangement in \mathbb{C}^{n}, defined by $\Pi_{1 \leq i<j \leq n}\left(z_{i}-z_{j}\right)=0$. Then $M(\mathcal{A})=\operatorname{Conf}(n, \mathbb{C}) \simeq K\left(P_{n}, 1\right)$.
- Answer to (\star) is yes: $\Sigma^{1}(M(\mathcal{A}))$ is the complement of the union of $\binom{n}{3}+\binom{n}{4}$ planes in $\mathbb{C}^{\binom{n}{2} \text {, intersected with the unit sphere. }}$

Example

- Let \mathcal{A} be the "deleted B_{3} " arrangement, defined by $z_{1} z_{2}\left(z_{1}^{2}-z_{2}^{2}\right)\left(z_{1}^{2}-z_{3}^{2}\right)\left(z_{2}^{2}-z_{3}^{2}\right)=0$.
- (S. 2002) $\mathcal{V}^{1}(\mathcal{A})$ contains a (1-dimensional) translated torus $\rho \cdot T$.
- Thus, $\operatorname{Trop}(\rho \cdot T)=\operatorname{Trop}(T)$ is a line in \mathbb{C}^{8} which is not contained in $\mathcal{R}^{1}(\mathcal{A}, \mathbb{R})$. Hence, the answer to (\star) is no.

Question (Revised)

$$
\begin{equation*}
\Sigma^{1}(M(\mathcal{A}))=S\left(\operatorname{Trop}\left(\mathcal{V}^{1}(\mathcal{A})\right)^{\mathrm{C}} ?\right. \tag{**}
\end{equation*}
$$

CLASSIFICATION OF ALTERNATING FORMS

(Following J. Schouten, G. Gurevich, D. Djoković, A. Cohen-A. Helminck, ...)

- Let V be a \mathbb{k}-vector space of dimension n. The group $\mathrm{GL}(V)$ acts on $\wedge^{m}\left(V^{*}\right)$ by $(g \cdot \mu)\left(a_{1} \wedge \cdots \wedge a_{m}\right)=\mu\left(g^{-1} a_{1} \wedge \cdots \wedge g^{-1} a_{m}\right)$.
- The orbits of this action are the equivalence classes of alternating m-forms on V. (We write $\mu \sim \mu^{\prime}$ if $\mu^{\prime}=g \cdot \mu$.)
- Over $\overline{\mathbb{k}}$, the closures of these orbits are affine algebraic varieties.
- There are finitely many orbits over $\mathbb{\mathbb { k }}$ only if $n^{2} \geq\binom{ n}{m}$, that is, $m \leq 2$ or $m=3$ and $n \leq 8$.
- For $\overline{\mathbb{k}}=\mathbb{C}$, each complex orbit has only finitely many real forms.
- When $m=3$, and $n=8$, there are 23 complex orbits, which split into either 1, 2, or 3 real orbits, for a total of 35 real orbits.

POINCARÉ DUALITY ALGEBRAS

- Let A be a connected, locally finite \mathbb{k}-cga.
- A is a Poincaré duality \mathbb{k}-algebra of dimension m if there is a \mathbb{k}-linear map $\varepsilon: A^{m} \rightarrow \mathbb{k}$ (called an orientation) such that all the bilinear forms $A^{i} \otimes_{\mathfrak{k}} A^{m-i} \rightarrow \mathbb{k}, a \otimes b \mapsto \varepsilon(a b)$ are non-singular.
- If A is a PD_{m} algebra, then:
- $b_{i}(A)=b_{m-i}(A)$, and $A^{i}=0$ for $i>m$.
- ε is an isomorphism.
- The maps PD: $A^{i} \rightarrow\left(A^{m-i}\right)^{*}, \operatorname{PD}(a)(b)=\varepsilon(a b)$ are isomorphisms.
- Each $a \in A^{i}$ has a Poincaré dual, $a^{\vee} \in A^{m-i}$, such that $\varepsilon\left(a a^{\vee}\right)=1$.
- The orientation class is $\omega_{A}:=1^{\vee}$. We have $\varepsilon\left(\omega_{A}\right)=1$, and thus $a a^{\vee}=\omega_{A}$.

THE ASSOCIATED ALTERNATING FORM

- Associated to a \mathbb{k} - PD_{m} algebra there is an alternating m-form,

$$
\mu_{A}: \wedge^{m} A^{1} \rightarrow \mathbb{k}, \quad \mu_{A}\left(a_{1} \wedge \cdots \wedge a_{m}\right)=\varepsilon\left(a_{1} \cdots a_{m}\right) .
$$

- A and B are isomorphic as PD_{m} algebras if and only if they are isomorphic as graded algebras, in which case $\mu_{A} \sim \mu_{B}$.
- Assume now that $m=3$, and set $n=b_{1}(A)$. Fix a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ for A^{1}, and let $\left\{e_{1}^{\vee}, \ldots, e_{n}^{\vee}\right\}$ be the dual basis for A^{2}.
- The multiplication in A, then, is given on basis elements by

$$
e_{i} e_{j}=\sum_{k=1}^{r} \mu_{i j k} e_{k}^{\vee}, \quad e_{i} e_{j}^{\vee}=\delta_{i j} \omega,
$$

where $\mu_{j j k}=\mu\left(e_{i} \wedge e_{j} \wedge e_{k}\right)$.

- Two PD_{3} algebras A and B are isomorphic if and only if $\mu_{A} \sim \mu_{B}$. We thus have a bijection, A tms μ_{A}, between isomorphism classes of PD_{3} algebras and equivalence classes of alternating 3-forms.

Poincaré duality in orientable manifolds

- If M is a compact, connected, orientable, m-dimensional manifold, then the cohomology ring $A=H^{\cdot}(M, \mathbb{k})$ is a PD_{m} algebra over \mathbb{k}.
- Sullivan (1975): for every finite-dimensional Q-vector space V and every alternating 3 -form $\mu \in \Lambda^{3} V^{*}$, there is a closed 3 -manifold M with $H^{1}(M, \mathbb{Q})=V$ and cup-product form $\mu_{M}=\mu$.
- Such a 3-manifold can be constructed via "Borromean surgery."

- E.g., 0 -surgery on the Borromean rings in S^{3} yields $M=T^{3}$, with $\mu_{M}=e^{1} e^{2} e^{3}$.
- If M is the link of an isolated surface singularity (e.g., if $M=\Sigma(p, q, r)$ is a Brieskorn manifold), then $\mu_{M}=0$.

Resonance varieties of PD-ALGebras

- Let A be a PD_{m} algebra. For $0 \leq i \leq m$ and $a \in A^{1}$, we have

$$
\left(H^{i}\left(A, \delta_{a}\right)\right)^{\vee} \cong H^{m-i}\left(A, \delta_{-a}\right) .
$$

- Hence, $\mathcal{R}_{k}^{i}(A)=\mathcal{R}_{k}^{m-i}(A)$ for all i and k, In particular, $\mathcal{R}_{1}^{m}(A)=\mathcal{R}_{k}^{0}(A)=\{0\}$.

Theorem

Let A be a PD_{3} algebra with $b_{1}(A)=n$. Then $\mathcal{R}_{k}^{i}(A)=\varnothing$, except for:

1) $\mathcal{R}_{0}^{i}(A)=A^{1}$ for all $i \geq 0$.
2) $\mathcal{R}_{1}^{3}(A)=\mathcal{R}_{1}^{0}(A)=\{0\}$ and $\mathcal{R}_{n}^{2}(A)=\mathcal{R}_{n}^{1}(A)=\{0\}$.
3) $\mathcal{R}_{k}^{2}(A)=\mathcal{R}_{k}^{1}(A)$ for $0<k<n$.

Moreover, $\mathcal{R}_{k}^{1}(A)=A^{1}$ for all $k<\operatorname{corank} \mu_{A}$
(The rank of $\mu: \Lambda^{3} V \rightarrow \mathbb{k}$ is the minimum dimension of a linear subspace $W \subset V$ such that μ factors through $\wedge^{3} W$.)

- A linear subspace $U \subset V$ is 2-singular with respect to a 3-form $\mu: \wedge^{3} V \rightarrow \mathbb{k}$ if $\mu(a \wedge b \wedge c)=0$ for all $a, b \in U$ and $c \in V$.
- If $\operatorname{dim} U=2$, we simply say U is a singular plane.
- The nullity of μ, denoted null (μ), is the maximum dimension of a 2-singular subspace $U \subset V$.
- Clearly, V contains a singular plane if and only if null $(\mu) \geq 2$.
- Let A be a PD_{3} algebra. A linear subspace $U \subset A^{1}$ is 2 -singular (with respect to μ_{A}) if and only if U is isotropic.
- Using a result of A. Sikora [2005], we obtain:

THEOREM

Let A be a PD_{3} algebra over an algebraically closed field \mathbb{k} with $\operatorname{char}(\mathbb{k}) \neq 2$, and let $v=\operatorname{null}\left(\mu_{A}\right)$. If $b_{1}(A) \geq 4$, then

$$
\operatorname{dim} \mathcal{R}_{v-1}^{1}(A) \geq v \geq 2
$$

In particular, $\operatorname{dim} \mathcal{R}_{1}^{1}(A) \geq v$.

REAL FORMS AND RESONANCE

- Sikora made the following conjecture: If $\mu: \Lambda^{3} V \rightarrow \mathbb{k}$ is a 3-form with $\operatorname{dim} V \geq 4$ and if $\operatorname{char}(\mathbb{k}) \neq 2$, then $\operatorname{null}(\mu) \geq 2$.
- Conjecture holds if $n:=\operatorname{dim} V$ is even or equal to 5 , or if $\mathbb{k}=\overline{\mathbb{k}}$.
- Work of J. Draisma and R. Shaw [2010, 2014] implies that the conjecture does not hold for $\mathbb{k}=\mathbb{R}$ and $n=7$. We obtain:

THEOREM

Let A be a PD_{3} algebra over \mathbb{R}. Then $\mathcal{R}_{1}^{1}(A) \neq\{0\}$, except when

- $n=1, \mu_{A}=0$.
- $n=3, \mu_{A}=e^{1} e^{2} e^{3}$.
- $n=7, \mu_{A}=-e^{1} e^{3} e^{5}+e^{1} e^{4} e^{6}+e^{2} e^{3} e^{6}+e^{2} e^{4} e^{5}+e^{1} e^{2} e^{7}+e^{3} e^{4} e^{7}+e^{5} e^{6} e^{7}$.

Sketch: If $\mathcal{R}_{1}^{1}(A)=\{0\}$, then the formula $(x \times y) \cdot z=\mu_{A}(x, y, z)$ defines a cross-product on $A^{1}=\mathbb{R}^{n}$, and thus a division algebra structure on \mathbb{R}^{n+1}, forcing $n=1,3$ or 7 by Bott-Milnor/Kervaire [1958].

PFAFFIANS AND RESONANCE

- For a $\mathbb{k}-\mathrm{PD}_{3}$ algebra A, the complex $\left(A \otimes_{\mathbb{k}} S, \delta_{A}\right)$ looks like

$$
A^{0} \otimes_{\mathbb{k}} S \xrightarrow{\delta_{A}^{0}} A^{1} \otimes_{\mathbb{k}} S \xrightarrow{\delta_{A}^{1}} A^{2} \otimes_{\mathbb{k}} S \xrightarrow{\delta_{A}^{2}} A^{3} \otimes_{\mathbb{k}} S,
$$

where $\delta_{A}^{0}=\left(x_{1} \cdots x_{n}\right)$ and $\delta_{A}^{2}=\left(\delta_{A}^{0}\right)^{\top}$, while δ_{A}^{1} is the skewsymmetric matrix whose are entries linear forms in S given by

$$
\delta_{A}^{1}\left(e_{i}\right)=\sum_{j=1}^{n} \sum_{k=1}^{n} \mu_{j i k} e_{k}^{\vee} \otimes x_{j}
$$

- Recall that $\mathcal{R}_{k}^{1}(A)=V\left(I_{n-k}\left(\delta_{A}^{1}\right)\right)$. Using work of Buchsbaum and Eisenbud [1977] on Pfaffians of skew-symmetric matrices, we get:

THEOREM

$$
\mathcal{R}_{2 k}^{1}(A)=\mathcal{R}_{2 k+1}^{1}(A)=V\left(\operatorname{Pf}_{n-2 k}\left(\delta_{A}^{1}\right)\right), \quad \text { if } n \text { is even, }
$$

$$
\mathcal{R}_{2 k-1}^{1}(A)=\mathcal{R}_{2 k}^{1}(A)=V\left(\operatorname{Pf}_{n-2 k+1}\left(\delta_{A}^{1}\right)\right), \quad \text { if } n \text { is odd. }
$$

THEOREM

If μ_{A} has maximal rank $n \geq 3$, then

$$
\mathcal{R}_{n-2}^{1}(A)=\mathcal{R}_{n-1}^{1}(A)=\mathcal{R}_{n}^{1}(A)=\{0\}
$$

Lemma (Turaev 2002)

Suppose $n \geq 3$. There is then a polynomial $\operatorname{Det}\left(\mu_{A}\right) \in \operatorname{Sym}\left(A_{1}\right)$ such that, if $\delta_{A}^{1}(i ; j)$ is the sub-matrix obtained from δ_{A}^{1} by deleting the i-th row and j-th column, then $\operatorname{det} \delta_{A}^{1}(i ; j)=(-1)^{i+j} x_{i} x_{j} \operatorname{Det}\left(\mu_{A}\right)$.
Moreover, if n is even, then $\operatorname{Det}\left(\mu_{A}\right)=0$, while if n is odd, then $\operatorname{Det}\left(\mu_{A}\right)=\operatorname{Pf}\left(\mu_{A}\right)^{2}$, where $\operatorname{pf}\left(\delta_{A}^{1}(i ; i)\right)=(-1)^{i+1} x_{i} \operatorname{Pf}\left(\mu_{A}\right)$.

Suppose $\operatorname{dim}_{k} V=2 g+1>1$. We say $\mu: \Lambda^{3} V \rightarrow \mathbb{k}$ is generic (in the sense of Berceanu-Papadima [1994]) if there is a $v \in V$ such that the 2-form $\gamma_{v} \in V^{\vee} \wedge V^{\vee}$ given by $\gamma_{v}(a \wedge b)=\mu_{A}(a \wedge b \wedge v)$ for $a, b \in V$ has rank $2 g$, that is, $\gamma_{v}^{g} \neq 0$ in $\wedge^{2 g} V^{\vee}$.

Theorem

Let A be a PD_{3} algebra with $b_{1}(A)=n$. Then

$$
\mathcal{R}_{1}^{1}(A)= \begin{cases}\varnothing & \text { if } n=0 ; \\ \{0\} & \text { if } n=1 \text { or } n=3 \text { and } \mu \text { has rank } 3 ; \\ V\left(\operatorname{Pf}\left(\mu_{A}\right)\right) & \text { if } n \text { is odd, } n>3, \text { and } \mu_{A} \text { is } B P \text {-generic; } \\ A^{1} & \text { otherwise. }\end{cases}
$$

As a corollary, we recover a closely related result, proved by Draisma and Shaw [2010] by very different methods.

COROLLARY
Let V be a \mathbb{k}-vector space of odd dimension $n \geq 5$ and let $\mu \in \Lambda^{3} V^{\vee}$. Then the union of all singular planes is either all of V or a hypersurface defined by a homogeneous polynomial in $\mathbb{k}[V]$ of degree $(n-3) / 2$.

For $\mu \in \Lambda^{3} V^{\vee}$, there is another genericity condition, due to P . De Poi, D. Faenzi, E. Mezzetti, and K. Ranestad [2017]: $\operatorname{rank}\left(\gamma_{v}\right)>2$, for all non-zero $v \in V$. We may interpret some of their results, as follows.

THEOREM (DFMR)

Let A be a PD_{3} algebra over \mathbb{C}, and suppose μ_{A} is generic. Then:

- If n is odd, then $\mathcal{R}_{1}^{1}(A)$ is a hypersurface of degree $(n-3) / 2$ which is smooth if $n \leq 7$, and singular in codimension 5 if $n \geq 9$.
- If n is even, then $\mathcal{R}_{2}^{1}(A)$ has codim 3 and degree $\frac{1}{4}\binom{n-2}{3}+1$; it is smooth if $n \leq 10$, and singular in codimension 7 if $n \geq 12$.

ALEXANDER POLYNOMIALS OF 3-MANIFOLDS

- Let $H=H_{1}(X, \mathbb{Z}) /$ Tors. Let $X^{H} \rightarrow X$ be the maximal torsion-free abelian cover of X, with cellular chain complex $C_{0}\left(X^{H}, \partial^{H}\right)$.
- The Alexander polynomial $\Delta_{X} \in \mathbb{Z}[H]$ is the god of the codimension 1 minors of the Alexander matrix ∂_{1}^{H}.
Set $\mathcal{W}_{1}^{1}(M)=\mathcal{V}_{1}^{1}(M) \cap \operatorname{Char}^{\circ}(M)$. Using work of McMullen [2002] and Turaev [2002], as well as Dimca-Papadima-S. [2008], we find:

```
Proposition
Let M be a closed, orientable, 3-dimensional manifold. Then
\mathcal{W}
and so \mathcal{W}
```


A TANGENT CONE THEOREM FOR 3-MANIFOLDS

 Let M be a closed, orientable, 3-manifold, and set $n=b_{1}(M)$.
THEOREM

1) If either $n \leq 1$, or n is odd, $n \geq 3$, and μ_{M} is $B P$-generic, then

$$
\mathrm{TC}_{1}\left(\mathcal{V}_{1}^{1}(M)\right)=\mathcal{R}_{1}^{1}(M) .
$$

2) If n is even, $n \geq 2$, then $\mathcal{R}^{1}(M)=H^{1}(M, C)$. Moreover,

$$
\mathrm{TC}_{1}\left(\mathcal{V}_{1}^{1}(M)\right)=\mathcal{R}_{1}^{1}(M) \Longleftrightarrow \Delta_{M}=0 .
$$

REMARK

For n even, the equality $\mathcal{R}^{1}(M)=H^{1}(M, C)$ was first proved in [Dimca-S, 2009], where it was used to show that the only 3 -manifold groups which are also Kähler groups are the finite subgroups of $\mathrm{O}(4)$.

THEOREM

1) If $n \leq 1$, then M is formal, and $M \simeq_{Q} S^{3}$ or $S^{1} \times S^{2}$.
2) If n is even, $n \geq 2$, and $\Delta_{M} \neq 0$, then M is not 1 -formal.
3) If $\Delta_{M} \neq 0$, yet $\Delta_{M}(1)=0$ and $T C_{1}\left(V\left(\Delta_{M}\right)\right)$ is not a finite union of Q-linear subspaces, then M admits no 1 -finite 1 -model.

- (BNS 1987) The BNS invariant of $G=\pi_{1}(M)$ is the projection onto $S(G)$ of the open fibered faces of the Thurston norm ball B_{T}; in particular, $\Sigma^{1}(G)=-\Sigma^{1}(G)$.

THEOREM

Let M be a compact, connected, orientable, 3-manifold with empty or toroidal boundary. Set $G=\pi_{1}(M)$ and assume $b_{1}(M) \geq 2$. Then

1) $\operatorname{Trop}\left(\mathcal{V}^{1}(G) \cap \mathbb{T}_{G}^{0}\right)$ is the positive-codimension skeleton of $\mathcal{F}\left(B_{A}\right)$, the face fan of the unit ball in the Alexander norm.
2) $\Sigma^{1}(G)$ is contained in the union of the open cones on the facets of B_{A}.

REFERENCES

R. A.I. Suciu, Poincaré duality and resonance varieties, Proceedings of the Royal Society of Edinburgh Section A: Mathematics 150 (2020), nr. 6, 3001-3027. doi:10.1017/prm.2019.55
: A.I. Suciu, Cohomology jump loci of 3-manifolds, Manuscripta Mathematica, doi:10.1007/s00229-020-01264-5

㐭 A.I. Suciu, Sigma-invariants and tropical varieties, Mathematische Annalen 380 (2021), 1427-1463. doi:10.1007/s00208-021-02172-z

