DUALITY, FINITENESS, AND COHOMOLOGY JUMP LOCI

Alex Suciu

Northeastern University

Conference in Algebraic Geometry for Alexandru Dimca's retirement

> Ischia, Italy October 12, 2021

RESONANCE VARIETIES

- Let A = (A[●], d_A) be a connected, locally finite, graded-commutative, differential graded algebra (cdga) over a field k, and let M = (M[●], d_M) be an A-cdgm.
- Since $A^0 = \Bbbk$, we have $Z^1(A) \cong H^1(A)$.
- ▶ Set $Q(A) = \{a \in Z^1(A) \mid a^2 = 0 \in A^2\}$. For each $a \in Q(A)$, we have a cochain complex,

$$(M^{\bullet}, \delta_a): M^0 \xrightarrow{\delta_a^0} M^1 \xrightarrow{\delta_a^1} M^2 \xrightarrow{\delta_a^2} \cdots,$$

with differentials $\delta_a^i(m) = a \cdot m + d_M(m)$, for all $m \in M^i$.

▶ The resonance varieties of *M* (in degree $i \ge 0$ and depth $k \ge 0$):

 $\mathcal{R}_{k}^{i}(\boldsymbol{M}) = \{\boldsymbol{a} \in \mathcal{Q}(\boldsymbol{A}) \mid \dim_{\Bbbk} \boldsymbol{H}^{i}(\boldsymbol{M}^{\bullet}, \delta_{\boldsymbol{a}}) \geq k\}.$

▶ Assume char $\Bbbk \neq 2$. Since $a^2 = -a^2$ for all $a \in A^1$, we have $Q(A) = Z^1(A)$, and so $\mathcal{R}_k^i(A)$ are subvarieties of $H^1(A)$.

RESONANCE VARIETIES OF GRADED ALGEBRAS

- Assume further that d = 0 (i.e., A is a cga). Then the resonance varieties of A are homogenous subvarieties of $H^1(A) = A^1$.
- ▶ An element $a \in A^1$ belongs to $\mathcal{R}_k^i(A)$ if and only if there exist $u_1, \ldots, u_k \in A^i$ such that $au_1 = \cdots = au_k = 0$ in A^{i+1} , and the set $\{au, u_1, \ldots, u_k\}$ is linearly independent in A^i , for all $u \in A^{i-1}$.
- ▶ Set $b_j = b_j(A)$. For each $i \ge 0$, we have a descending filtration, $A^1 = \mathcal{R}_0^i(A) \supseteq \mathcal{R}_1^i(A) \supseteq \cdots \supseteq \mathcal{R}_{b_i}^i(A) = \{0\} \supset \mathcal{R}_{b_{i+1}}^i(A) = \emptyset$.
- ▶ A linear subspace $U \subset A^1$ is *isotropic* if the restriction of $A^1 \land A^1 \xrightarrow{\cdot} A^2$ to $U \land U$ is the zero map (i.e., $ab = 0, \forall a, b \in U$).
- ▶ If $U \subseteq A^1$ is isotropic and dim U = k, then $U \subseteq \mathcal{R}^1_{k-1}(A)$.
- > $\mathcal{R}_1^1(A)$ is the union of all isotropic planes in A^1 .
- If k ⊂ K is a field extension, then the k-points on Rⁱ_k(A ⊗_k K) coincide with Rⁱ_k(A).

THE BGG CORRESPONDENCE

- ▶ Let (*A*, *d*) be a connected, finite-type \Bbbk -cdga, where char(\Bbbk) \neq 2.
- ► Fix a k-basis $\{e_1, \ldots, e_n\}$ for $H^1(A) \cong Z^1(A)$, and let $\{x_1, \ldots, x_n\}$ be the dual basis for $H_1(A) = (H^1(A))^{\vee}$.
- Identify Sym(*H*₁(*A*)) with *S* = k[x₁,..., x_n], the coordinate ring of the affine space *H*¹(*A*).
- A BGG-type correspondence yields a cochain complex of finitely generated, free *S*-modules, (*A*[•] ⊗ *S*, δ_A),

$$\cdots \longrightarrow A^{i} \otimes S \xrightarrow{\delta^{i}_{A}} A^{i+1} \otimes S \xrightarrow{\delta^{i+1}_{A}} A^{i+2} \otimes S \longrightarrow \cdots,$$

where $\delta_A^i(u \otimes s) = \sum_{j=1}^r e_j u \otimes s x_j + d u \otimes s$.

- The specialization of this complex at $a \in Z^1(A)$ is (A, δ_a) .
- Hence, Rⁱ_k(A) is the zero-set of the ideal generated by all minors of size b_i(A) − k + 1 of the block-matrix δⁱ⁺¹_A ⊕ δⁱ_A.

CHARACTERISTIC VARIETIES

- ► Let *X* be a connected CW-complex with finite *q*-skeleton ($q \ge 1$). Let $G = \pi_1(X)$, and set $n = \operatorname{rank}(G_{ab}) = b_1(X)$.
- Let T_G := Hom(G, C^{*}) be the character group of G = π₁(X), also denoted by Char(X) := H¹(X, C^{*}). Then T_G is an algebraic group with coordinate ring C[G_{ab}], and T_G ≅ (C^{*})ⁿ × Tors(G_{ab}).
- The characteristic varieties of X are the sets

 $\mathcal{V}_{k}^{i}(X) = \{ \rho \in \mathbb{T}_{G} \mid \dim_{\mathbb{C}} H_{i}(X, \mathbb{C}_{\rho}) \geq k \}.$

- These sets are Zariski closed for all $i \leq q$ and all $k \geq 0$.
- ▶ We may define similarly $\mathcal{V}_k^i(X, \Bbbk) \subset H^1(X, \Bbbk^*)$ for any field \Bbbk .
- ► These constructions are compatible with restriction and extension of the base field. Namely, if k ⊂ L is a field extension, then

$$\mathcal{V}_{k}^{i}(X, \Bbbk) = \mathcal{V}_{k}^{i}(X, \mathbb{L}) \cap H^{1}(X, \Bbbk^{\times}),$$
$$\mathcal{V}_{k}^{i}(X, \mathbb{L}) = \mathcal{V}_{k}^{i}(X, \Bbbk) \times_{\Bbbk} \mathbb{L}.$$

DUALITY, FINITENESS & JUMP LOC

Let exp: Cⁿ → (C^{*})ⁿ. Given a subvariety W ⊂ (C^{*})ⁿ, define its exponential tangent cone at 1 (identity of (C^{*})ⁿ) as

 $\tau_1(W) = \{ z \in \mathbb{C}^n \mid \exp(\lambda z) \in W, \ \forall \lambda \in \mathbb{C} \}.$

- (Dimca–Papadima–S. 2009) τ₁(W) is a finite union of rationally defined linear subspaces.
- Given a subfield $\Bbbk \subset \mathbb{C}$, we write $\tau_1^{\Bbbk}(W) = \tau_1(W) \cap \Bbbk^n$.
- Let A and B be two k-cdgas. We say A ≃ B if there is a zig-zag of quasi-isomorphisms connecting A to B. If those maps are isos in degrees ≤ q and injective in degree q + 1, we say A ≃_q B.
- A is formal (or just *q*-formal) if it is (q) equiv. to $(H^{\bullet}(A), d = 0)$.
- ► Given any (path-connected) space X, there is an associated Sullivan Q-cdga, A_{PL}(X), such that H[•](A_{PL}(X)) = H[•](X, Q).
- An algebraic (q-)model for X (over k ⊇ Q) is a k-cgda (A, d) which is (q-) equivalent to A_{PL}(X) ⊗_Q k.

ALEX SUCIU (NORTHEASTERN)

DUALITY, FINITENESS & JUMP LOC

THE TANGENT CONE THEOREM

- Let X be a connected CW-complex with finite q-skeleton, and suppose X admits a q-finite q-model A (e.g., X q-formal).
- Set $\mathcal{R}^i_k(X, \Bbbk) \coloneqq \mathcal{R}^i_k(H^{\bullet}(X, \Bbbk))$ and $\mathcal{R}^i_k(X) \coloneqq \mathcal{R}^i_k(X, \mathbb{C})$.

THEOREM

For all $i \leq q$ and all $k \geq 0$:

(Dimca–Papadima–S. 2009, Dimca–Papadima 2014)

 $\mathcal{V}_k^i(\boldsymbol{X})_{(1)} \cong \mathcal{R}_k^i(\boldsymbol{A})_{(0)}.$

In particular, if X is q-formal, then $\mathcal{V}_k^i(X)_{(1)} \cong \mathcal{R}_k^i(X)_{(0)}$.

▶ (Budur–Wang 2017) All the irreducible components of $V_k^i(X)$ passing through the origin of Char(X) are algebraic subtori.

Consequently,

$$\tau_1(\mathcal{V}_k^i(X)) = \mathsf{TC}_1(\mathcal{V}_k^i(X)) = \mathcal{R}_k^i(A).$$

BIERI-NEUMANN-STREBEL-RENZ INVARIANTS

- ▶ Let *G* be a finitely generated group, $n = b_1(G) > 0$. Let $S(G) = S^{n-1}$ be the unit sphere in Hom $(G, \mathbb{R}) = \mathbb{R}^n$.
- (Bieri–Neumann–Strebel 1987)

 $\Sigma^{1}(G) = \{\chi \in S(G) \mid \mathsf{Cay}_{\chi}(G) \text{ is connected}\},\$

where $Cay_{\chi}(G)$ is the induced subgraph of Cay(G) on vertex set $G_{\chi} = \{g \in G \mid \chi(g) \ge 0\}.$

(Bieri–Renz 1988)

 $\Sigma^q(G, \mathbb{Z}) = \{\chi \in S(G) \mid \text{the monoid } G_{\chi} \text{ is of type } FP_q\},\$

i.e., there is a projective $\mathbb{Z}G_{\chi}$ -resolution $P_{\bullet} \to \mathbb{Z}$, with P_i finitely generated for all $i \leq q$. Moreover, $\Sigma^1(G, \mathbb{Z}) = -\Sigma^1(G)$.

► The BNSR-invariants of *G* form a descending chain of open subsets of *S*(*G*).

► The Σ -invariants control the finiteness properties of normal subgroups $N \triangleleft G$ for which G/N is free abelian:

$$\begin{split} & \textit{N} \text{ is of type } \mathsf{FP}_q \Longleftrightarrow \mathcal{S}(G,\textit{N}) \subseteq \Sigma^q(G,\mathbb{Z}) \\ & \text{where } \mathcal{S}(G,\textit{N}) = \{\chi \in \mathcal{S}(G) \mid \chi(\textit{N}) = 0\}. \text{ In particular,} \\ & \ker(\chi \colon G \twoheadrightarrow \mathbb{Z}) \text{ is f.g.} \iff \{\pm\chi\} \subseteq \Sigma^1(G). \end{split}$$

- More generally, let X be a connected CW-complex with finite q-skeleton, for some q ≥ 1.
- ► Let $G = \pi_1(X, x_0)$. For each $\chi \in S(X) := S(G)$, let $\widehat{\mathbb{Z}G}_{\chi} = \left\{ \lambda \in \mathbb{Z}^G \mid \{g \in \operatorname{supp} \lambda \mid \chi(g) \ge c\} \text{ is finite, } \forall c \in \mathbb{R} \right\}$

be the Novikov–Sikorav completion of $\mathbb{Z}G$.

► (Farber–Geoghegan–Schütz 2010) $\Sigma^q(X, \mathbb{Z}) = \{\chi \in S(X) \mid H_i(X, \widehat{\mathbb{Z}G}_{-\chi}) = 0, \forall i \leq q\}.$

► (Bieri 2007) If *G* is FP_k , then $\Sigma^q(G, \mathbb{Z}) = \Sigma^q(K(G, 1), \mathbb{Z}), \forall q \leq k$.

TROPICAL VARIETIES

- ▶ Let $\mathbb{K} = \mathbb{C}\{\{t\}\} = \bigcup_{n>1} \mathbb{C}((t^{1/n}))$ be the field of Puiseux series.
- ► Elements of \mathbb{K}^* : $c(t) = c_1 t^{a_1} + c_2 t^{a_2} + \cdots$, where $c_i \in \mathbb{C}^*$ and $a_1 < a_2 < \cdots$ are rationals with a common denominator.
- ▶ **K** is an algebraically closed field; it admits a non-Archimedean valuation, $v : \mathbb{K}^* \to \mathbb{Q}$, given by $v(c(t)) = a_1$.
- ▶ Let $v: (\mathbb{K}^*)^n \to \mathbb{Q}^n \subset \mathbb{R}^n$ be the *n*-fold product of the valuation.
- ► The *tropicalization* of a subvariety $W \subset (\mathbb{K}^*)^n$, denoted Trop(W), is the closure (in the Euclidean topology) of v(W) in \mathbb{R}^n .
- ► This is a rational polyhedral complex in ℝⁿ. For instance, if W is a curve, then Trop(W) is a graph with rational edge directions.
- For a variety W ⊂ (C*)ⁿ, we may define its tropicalization by setting Trop(W) = Trop(W×CK). This is a polyhedral fan in Rⁿ.

TROPICALIZING THE CHARACTERISTIC VARIETIES

▶ Let *X* be a space as above, and set $n = b_1(X)$. We define ν_X : Char_K(*X*) → $\mathbb{Q}^n \subset \mathbb{R}^n$ to be the composite

$$H^1(X, \mathbb{K}^*) \xrightarrow{v_*} H^1(X, \mathbb{Q}) \longrightarrow H^1(X, \mathbb{R}).$$

Given an algebraic subvariety W ⊂ H¹(X, C*) we define its tropicalization as the closure in H¹(X, ℝ) ≅ ℝⁿ of the image of W ×_C ℝ ⊂ H¹(X, ℝ*) under ν_X:

$$\mathsf{Trop}(W) := \overline{\nu_X(W \times_{\mathbb{C}} \mathbb{K})}.$$

Applying this definition to the varieties Vⁱ(X) := Vⁱ₁(X) and recalling that Vⁱ(X, K) = Vⁱ(X) ×_C K, we get

$$\operatorname{Trop}(\mathcal{V}^{i}(\boldsymbol{X})) = \overline{\nu_{\boldsymbol{X}}(\mathcal{V}^{i}(\boldsymbol{X},\mathbb{K}))}.$$

LEMMA

Let $W \subset (\mathbb{C}^*)^n$ be an algebraic variety. Then $\tau_1^{\mathbb{R}}(W) \subseteq \operatorname{Trop}(W)$.

A tropical bound for the Σ -invariants

THEOREM (PAPADIMA-S.-2010, S-2021)

Let $\rho: \pi_1(X) \to \Bbbk^*$ be a character such that $\rho \in \mathcal{V}^{\leq q}(X, \Bbbk)$. Let $v: \Bbbk^* \to \mathbb{R}$ be the homomorphism defined by a valuation on \Bbbk , and write $\chi = v \circ \rho$. If the homomorphism $\chi: \pi_1(X) \to \mathbb{R}$ is non-zero, then $\chi \notin \Sigma^q(X, \mathbb{Z})$.

THEOREM (S-2021)

$$\Sigma^{q}(X,\mathbb{Z})\subseteq \mathcal{S}(\mathsf{Trop}(\mathcal{V}^{\leq q}(X)))^{\complement}$$

Hence:

- ► (Papadima-S.-2010) $\Sigma^q(X, \mathbb{Z}) \subseteq S(\tau_1^{\mathbb{R}}(\mathcal{V}^{\leq q}(X)))^{c}$
- ▶ If X is q-formal, then $\Sigma^i(X, \mathbb{Z}) \subseteq S(\mathcal{R}^{\leq i}(X))^{\complement}$ for all $i \leq q$.

▶ If $\mathcal{V}^{\leq q}(X)$ contains a component of $\operatorname{Char}(X)$, then $\Sigma^{q}(X, \mathbb{Z}) = \emptyset$.

KÄHLER MANIFOLDS

- Let *M* be a compact Kähler manifold. Then *M* is formal.
- ► (Beauville, Catanese, Green–Lazarsfeld, Simpson, Arapura, Budur, B. Wang) The varieties Vⁱ_k(M) are finite unions of torsion translates of algebraic subtori of H¹(M, C*).

THEOREM (DELZANT 2010)

$$\Sigma^{1}(M) = \mathcal{S}(M) \setminus \bigcup_{\alpha} \mathcal{S}(f^{*}_{\alpha}(H^{1}(C_{\alpha},\mathbb{R}))),$$

where the union is taken over those orbifold fibrations $f_{\alpha} \colon M \to C_{\alpha}$ with the property that either $\chi(C_{\alpha}) < 0$, or $\chi(C_{\alpha}) = 0$ and f_{α} has some multiple fiber.

In degree 1, we may recast this result in the tropical setting, as follows.

COROLLARY

$$\Sigma^{1}(\boldsymbol{M}) = \boldsymbol{S}(\operatorname{Trop}(\mathcal{V}^{1}(\boldsymbol{M}))^{\complement}.$$

ALEX SUCIU (NORTHEASTERN)

DUALITY, FINITENESS & JUMP LOC

ISCHIA, OCTOBER 12, 2021 13 / 30

HYPERPLANE ARRANGEMENTS

- Let A = {H₁,..., H_n} be an (essential, central) arrangement of hyperplanes in C^d, with intersection lattice L(A).
- The complement, *M*(*A*) := (ℂ*)^d \ ∪ⁿ_{i=1} *H_i*, is a smooth, quasi-projective Stein manifold; thus, it has the homotopy type of a finite, *d*-dimensional CW-complex.
- ► (Orlik–Solomon) The cohomology ring H^{*}(M(A), Z) is determined by L(A).
- Thus, the resonance varieties Rⁱ(A) := Rⁱ(M(A)) ⊂ Cⁿ depend only on L(A).
- (Arapura) The characteristic varieties $\mathcal{V}^{i}(\mathcal{A}) := \mathcal{V}^{i}(\mathcal{M}(\mathcal{A})) \subset (\mathbb{C}^{*})^{n}$ are unions of translated subtori.
- Consequently, $\operatorname{Trop}(\mathcal{V}^{i}(\mathcal{A})) = -\operatorname{Trop}(\mathcal{V}^{i}(\mathcal{A})).$
- ▶ (Denham–S.–Yuzvinsky 2016/17) $M(\mathcal{A})$ is an "abelian duality space", and so $\mathcal{V}^1(\mathcal{A}) \subseteq \mathcal{V}^2(\mathcal{A}) \subseteq \cdots \subseteq \mathcal{V}^{d-1}(\mathcal{A})$.
- ► (Arnol'd, Brieskorn) M(A) is formal. Thus, $\tau_1(\mathcal{V}^i(A)) = \mathcal{R}^i(A)$.

ALEX SUCIU (NORTHEASTERN)

DUALITY, FINITENESS & JUMP LOC

THEOREM

Let M be the complement of an arrangement of n hyperplanes in \mathbb{C}^d . Then, for each $1 \le q \le d-1$:

▶ $\operatorname{Trop}(\mathcal{V}^q(M))$ is the union of a subspace arrangement in \mathbb{R}^n .

 $\blacktriangleright \Sigma^q(M,\mathbb{Z}) \subseteq S(\operatorname{Trop}(\mathcal{V}^q(M)))^{\complement}.$

QUESTION (MFO MINIWORKSHOP 2007)

Given an arrangement \mathcal{A} , do we have

 $\Sigma^{1}(\boldsymbol{M}(\mathcal{A})) = \boldsymbol{S}(\mathcal{R}^{1}(\mathcal{A},\mathbb{R}))^{\complement}?$

(*)

EXAMPLE (KOBAN-MCCAMMOND-MEIER 2013)

- ▶ Let \mathcal{A} be the braid arrangement in \mathbb{C}^n , defined by $\prod_{1 \le i < j \le n} (z_i - z_j) = 0$. Then $M(\mathcal{A}) = \text{Conf}(n, \mathbb{C}) \simeq \mathcal{K}(P_n, 1)$.
- Answer to (*) is yes: $\Sigma^1(M(\mathcal{A}))$ is the complement of the union of $\binom{n}{3} + \binom{n}{4}$ planes in $\mathbb{C}^{\binom{n}{2}}$, intersected with the unit sphere.

EXAMPLE

- ► Let \mathcal{A} be the "deleted B₃" arrangement, defined by $z_1 z_2 (z_1^2 z_2^2) (z_1^2 z_3^2) (z_2^2 z_3^2) = 0.$
- ► (S. 2002) $\mathcal{V}^1(\mathcal{A})$ contains a (1-dimensional) translated torus $\rho \cdot T$.
- Thus, Trop(ρ · T) = Trop(T) is a line in C⁸ which is *not* contained in R¹(A, ℝ). Hence, the answer to (⋆) is no.

QUESTION (REVISED)

$$\Sigma^1(M(\mathcal{A})) = \mathcal{S}(\operatorname{Trop}(\mathcal{V}^1(\mathcal{A}))^{\complement})$$

ALEX SUCIU (NORTHEASTERN)

 $(\star\star)$

CLASSIFICATION OF ALTERNATING FORMS

(Following J. Schouten, G. Gurevich, D. Djoković, A. Cohen-A. Helminck, ...)

- ▶ Let *V* be a k-vector space of dimension *n*. The group GL(V) acts on $\bigwedge^m(V^*)$ by $(g \cdot \mu)(a_1 \land \cdots \land a_m) = \mu (g^{-1}a_1 \land \cdots \land g^{-1}a_m)$.
- The orbits of this action are the equivalence classes of alternating *m*-forms on *V*. (We write μ ∼ μ' if μ' = g ⋅ μ.)
- Over \overline{k} , the closures of these orbits are affine algebraic varieties.
- ▶ There are finitely many orbits over \overline{k} only if $n^2 \ge {n \choose m}$, that is, $m \le 2$ or m = 3 and $n \le 8$.
- For $\overline{k} = \mathbb{C}$, each complex orbit has only finitely many real forms.
- When *m* = 3, and *n* = 8, there are 23 complex orbits, which split into either 1, 2, or 3 real orbits, for a total of 35 real orbits.

POINCARÉ DUALITY ALGEBRAS

- Let A be a connected, locally finite k-cga.
- ► *A* is a *Poincaré duality* \Bbbk -*algebra* of dimension *m* if there is a \Bbbk -linear map ε : $A^m \to \Bbbk$ (called an *orientation*) such that all the bilinear forms $A^i \otimes_{\Bbbk} A^{m-i} \to \Bbbk$, $a \otimes b \mapsto \varepsilon(ab)$ are non-singular.
- ▶ If A is a PD_m algebra, then:
 - $b_i(A) = b_{m-i}(A)$, and $A^i = 0$ for i > m.
 - ε is an isomorphism.
 - The maps PD: $A^i \to (A^{m-i})^*$, PD $(a)(b) = \varepsilon(ab)$ are isomorphisms.
- ► Each $a \in A^i$ has a *Poincaré dual*, $a^{\vee} \in A^{m-i}$, such that $\varepsilon(aa^{\vee}) = 1$.
- The orientation class is ω_A := 1[∨]. We have ε(ω_A) = 1, and thus aa[∨] = ω_A.

THE ASSOCIATED ALTERNATING FORM

Associated to a \Bbbk -PD_m algebra there is an alternating m-form,

 $\mu_{A}: \bigwedge^{m} A^{1} \to \mathbb{k}, \quad \mu_{A}(a_{1} \wedge \cdots \wedge a_{m}) = \varepsilon(a_{1} \cdots a_{m}).$

- ► *A* and *B* are isomorphic as PD_m algebras if and only if they are isomorphic as graded algebras, in which case $\mu_A \sim \mu_B$.
- ▶ Assume now that m = 3, and set $n = b_1(A)$. Fix a basis $\{e_1, \ldots, e_n\}$ for A^1 , and let $\{e_1^{\lor}, \ldots, e_n^{\lor}\}$ be the dual basis for A^2 .
- The multiplication in A, then, is given on basis elements by

$$\boldsymbol{e}_i \boldsymbol{e}_j = \sum_{k=1}^r \mu_{ijk} \, \boldsymbol{e}_k^{\vee}, \quad \boldsymbol{e}_i \boldsymbol{e}_j^{\vee} = \delta_{ij} \omega,$$

where $\mu_{ijk} = \mu(\boldsymbol{e}_i \wedge \boldsymbol{e}_j \wedge \boldsymbol{e}_k)$.

Two PD₃ algebras A and B are isomorphic if and only if μ_A ~ μ_B. We thus have a bijection, A ↔ μ_A, between isomorphism classes of PD₃ algebras and equivalence classes of alternating 3-forms.

ALEX SUCIU (NORTHEASTERN)

DUALITY, FINITENESS & JUMP LOC

POINCARÉ DUALITY IN ORIENTABLE MANIFOLDS

- ▶ If *M* is a compact, connected, orientable, *m*-dimensional manifold, then the cohomology ring $A = H^{\bullet}(M, \Bbbk)$ is a PD_{*m*} algebra over \Bbbk .
- Sullivan (1975): for every finite-dimensional Q-vector space V and every alternating 3-form $\mu \in \bigwedge^3 V^*$, there is a closed 3-manifold M with $H^1(M, \mathbb{Q}) = V$ and cup-product form $\mu_M = \mu$.
- Such a 3-manifold can be constructed via "Borromean surgery."

- ► E.g., 0-surgery on the Borromean rings in S^3 yields $M = T^3$, with $\mu_M = e^1 e^2 e^3$.
- If *M* is the link of an isolated surface singularity (e.g., if *M* = Σ(*p*, *q*, *r*) is a Brieskorn manifold), then μ_M = 0.

ALEX SUCIU (NORTHEASTERN)

DUALITY, FINITENESS & JUMP LOCI

RESONANCE VARIETIES OF PD-ALGEBRAS

▶ Let *A* be a PD_m algebra. For $0 \le i \le m$ and $a \in A^1$, we have

$$\left(H^{i}(\boldsymbol{A},\delta_{\boldsymbol{a}})\right)^{\vee}\cong H^{m-i}(\boldsymbol{A},\delta_{-\boldsymbol{a}}).$$

► Hence, $\mathcal{R}_k^i(A) = \mathcal{R}_k^{m-i}(A)$ for all *i* and *k*, In particular, $\mathcal{R}_1^m(A) = \mathcal{R}_k^0(A) = \{0\}.$

THEOREM

Let *A* be a PD₃ algebra with $b_1(A) = n$. Then $\mathcal{R}_k^i(A) = \emptyset$, except for:

1)
$$\mathcal{R}'_0(A) = A^1$$
 for all $i \ge 0$.

2)
$$\mathcal{R}_1^3(A) = \mathcal{R}_1^0(A) = \{0\}$$
 and $\mathcal{R}_n^2(A) = \mathcal{R}_n^1(A) = \{0\}.$

3)
$$\mathcal{R}_{k}^{2}(A) = \mathcal{R}_{k}^{1}(A)$$
 for $0 < k < n$.

Moreover, $\mathcal{R}_k^1(A) = A^1$ for all $k < \operatorname{corank} \mu_A$

(The *rank* of μ : $\bigwedge^{3} V \to \Bbbk$ is the minimum dimension of a linear subspace $W \subset V$ such that μ factors through $\bigwedge^{3} W$.)

- ▶ A linear subspace $U \subset V$ is 2-*singular* with respect to a 3-form $\mu: \wedge^3 V \to \Bbbk$ if $\mu(a \wedge b \wedge c) = 0$ for all $a, b \in U$ and $c \in V$.
- If dim U = 2, we simply say U is a singular plane.
- The nullity of µ, denoted null(µ), is the maximum dimension of a 2-singular subspace U ⊂ V.
- ▶ Clearly, *V* contains a singular plane if and only if $null(\mu) \ge 2$.
- Let A be a PD₃ algebra. A linear subspace U ⊂ A¹ is 2-singular (with respect to µ_A) if and only if U is isotropic.
- Using a result of A. Sikora [2005], we obtain:

THEOREM

Let *A* be a PD₃ algebra over an algebraically closed field \Bbbk with char(\Bbbk) \neq 2, and let $\nu = \text{null}(\mu_A)$. If $b_1(A) \ge 4$, then

 $\dim \mathcal{R}^1_{\nu-1}(A) \geq \nu \geq 2.$

In particular, dim $\mathcal{R}_1^1(\mathbf{A}) \geq v$.

ALEX SUCIU (NORTHEASTERN)

REAL FORMS AND RESONANCE

- Sikora made the following conjecture: If µ: ∧³V → k is a 3-form with dim V ≥ 4 and if char(k) ≠ 2, then null(µ) ≥ 2.
- Conjecture holds if $n := \dim V$ is even or equal to 5, or if $k = \overline{k}$.
- ▶ Work of J. Draisma and R. Shaw [2010, 2014] implies that the conjecture does not hold for $\Bbbk = \mathbb{R}$ and n = 7. We obtain:

THEOREM

Let A be a PD₃ algebra over \mathbb{R} . Then $\mathcal{R}_1^1(A) \neq \{0\}$, except when

- ▶ $n = 1, \mu_A = 0.$
- ▶ n = 3, $\mu_A = e^1 e^2 e^3$.

▶ n = 7, $\mu_A = -e^1 e^3 e^5 + e^1 e^4 e^6 + e^2 e^3 e^6 + e^2 e^4 e^5 + e^1 e^2 e^7 + e^3 e^4 e^7 + e^5 e^6 e^7$.

Sketch: If $\mathcal{R}_1^1(A) = \{0\}$, then the formula $(x \times y) \cdot z = \mu_A(x, y, z)$ defines a cross-product on $A^1 = \mathbb{R}^n$, and thus a division algebra structure on \mathbb{R}^{n+1} , forcing n = 1, 3 or 7 by Bott–Milnor/Kervaire [1958].

ALEX SUCIU (NORTHEASTERN)

DUALITY, FINITENESS & JUMP LOC

23/30

PFAFFIANS AND RESONANCE

► For a \Bbbk -PD₃ algebra *A*, the complex $(A \otimes_{\Bbbk} S, \delta_A)$ looks like

$$A^0 \otimes_{\Bbbk} S \xrightarrow{\delta^0_A} A^1 \otimes_{\Bbbk} S \xrightarrow{\delta^1_A} A^2 \otimes_{\Bbbk} S \xrightarrow{\delta^2_A} A^3 \otimes_{\Bbbk} S$$

where $\delta_A^0 = (x_1 \cdots x_n)$ and $\delta_A^2 = (\delta_A^0)^\top$, while δ_A^1 is the skewsymmetric matrix whose are entries linear forms in *S* given by $\delta_A^1(e_i) = \sum_{j=1}^n \sum_{k=1}^n \mu_{jik} e_k^\vee \otimes x_j$.

► Recall that R¹_k(A) = V(I_{n-k}(δ¹_A)). Using work of Buchsbaum and Eisenbud [1977] on Pfaffians of skew-symmetric matrices, we get:

THEOREM

$$\begin{aligned} &\mathcal{R}_{2k}^{1}(A) = \mathcal{R}_{2k+1}^{1}(A) = V(\mathsf{Pf}_{n-2k}(\delta_{A}^{1})), & \text{if } n \text{ is even,} \\ &\mathcal{R}_{2k-1}^{1}(A) = \mathcal{R}_{2k}^{1}(A) = V(\mathsf{Pf}_{n-2k+1}(\delta_{A}^{1})), & \text{if } n \text{ is odd.} \end{aligned}$$

THEOREM

If μ_A has maximal rank $n \ge 3$, then $\mathcal{R}_{n-2}^1(A) = \mathcal{R}_{n-1}^1(A) = \mathcal{R}_n^1(A) = \{0\}.$

ALEX SUCIU (NORTHEASTERN)

LEMMA (TURAEV 2002)

Suppose $n \ge 3$. There is then a polynomial $\text{Det}(\mu_A) \in \text{Sym}(A_1)$ such that, if $\delta^1_A(i;j)$ is the sub-matrix obtained from δ^1_A by deleting the *i*-th row and *j*-th column, then det $\delta^1_A(i;j) = (-1)^{i+j} x_i x_j \text{Det}(\mu_A)$.

Moreover, if n is even, then $Det(\mu_A) = 0$, while if n is odd, then $Det(\mu_A) = Pf(\mu_A)^2$, where $pf(\delta_A^1(i; i)) = (-1)^{i+1} x_i Pf(\mu_A)$.

Suppose dim_k V = 2g + 1 > 1. We say $\mu : \bigwedge^3 V \to k$ is *generic* (in the sense of Berceanu–Papadima [1994]) if there is a $v \in V$ such that the 2-form $\gamma_v \in V^{\vee} \land V^{\vee}$ given by $\gamma_v(a \land b) = \mu_A(a \land b \land v)$ for $a, b \in V$ has rank 2*g*, that is, $\gamma_v^g \neq 0$ in $\bigwedge^{2g} V^{\vee}$.

THEOREM

Let *A* be a PD₃ algebra with $b_1(A) = n$. Then

$$\mathcal{R}_{1}^{1}(A) = \begin{cases} \emptyset & \text{if } n = 0; \\ \{0\} & \text{if } n = 1 \text{ or } n = 3 \text{ and } \mu \text{ has rank } 3; \\ V(\mathsf{Pf}(\mu_{A})) & \text{if } n \text{ is odd, } n > 3, \text{ and } \mu_{A} \text{ is BP-generic;} \\ A^{1} & \text{otherwise.} \end{cases}$$

As a corollary, we recover a closely related result, proved by Draisma and Shaw [2010] by very different methods.

COROLLARY

Let V be a k-vector space of odd dimension $n \ge 5$ and let $\mu \in \bigwedge^3 V^{\vee}$. Then the union of all singular planes is either all of V or a hypersurface defined by a homogeneous polynomial in $\Bbbk[V]$ of degree (n-3)/2.

For $\mu \in \bigwedge^{3} V^{\vee}$, there is another genericity condition, due to P. De Poi, D. Faenzi, E. Mezzetti, and K. Ranestad [2017]: rank(γ_{v}) > 2, for all non-zero $v \in V$. We may interpret some of their results, as follows.

THEOREM (DFMR)

Let A be a PD₃ algebra over \mathbb{C} , and suppose μ_A is generic. Then:

▶ If *n* is odd, then $\mathcal{R}_1^1(A)$ is a hypersurface of degree (n-3)/2 which is smooth if $n \le 7$, and singular in codimension 5 if $n \ge 9$.

▶ If *n* is even, then $\mathcal{R}_2^1(A)$ has codim 3 and degree $\frac{1}{4}\binom{n-2}{3} + 1$; it is smooth if $n \le 10$, and singular in codimension 7 if $n \ge 12$.

ALEXANDER POLYNOMIALS OF **3**-MANIFOLDS

- ▶ Let $H = H_1(X, \mathbb{Z})/\text{Tors}$. Let $X^H \to X$ be the maximal torsion-free abelian cover of X, with cellular chain complex $C_{\bullet}(X^H, \partial^H)$.
- The Alexander polynomial ∆_X ∈ ℤ[H] is the gcd of the codimension 1 minors of the Alexander matrix ∂^H₁.

Set $\mathcal{W}_1^1(M) = \mathcal{V}_1^1(M) \cap \text{Char}^0(M)$. Using work of McMullen [2002] and Turaev [2002], as well as Dimca–Papadima–S. [2008], we find:

PROPOSITION

Let *M* be a closed, orientable, 3-dimensional manifold. Then $\mathcal{W}_1^1(M) = V(\Delta_M) \cup \{1\}$. If, moreover, $b_1(M) \ge 4$, then $\Delta_M(1) = 0$, and so $\mathcal{W}_1^1(M) = V(\Delta_M)$.

A TANGENT CONE THEOREM FOR **3**-MANIFOLDS

Let *M* be a closed, orientable, 3-manifold, and set $n = b_1(M)$.

THEOREM

- 1) If either $n \leq 1$, or n is odd, $n \geq 3$, and μ_M is BP-generic, then $TC_1(\mathcal{V}_1^1(M)) = \mathcal{R}_1^1(M).$
- 2) If *n* is even, $n \ge 2$, then $\mathcal{R}^1(M) = H^1(M, \mathbb{C})$. Moreover,

 $\mathsf{TC}_1(\mathcal{V}_1^1(M)) = \mathcal{R}_1^1(M) \Longleftrightarrow \Delta_M = \mathbf{0}.$

Remark

For *n* even, the equality $\mathcal{R}^1(M) = H^1(M, \mathbb{C})$ was first proved in [Dimca–S, 2009], where it was used to show that the only 3-manifold groups which are also Kähler groups are the finite subgroups of O(4).

THEOREM

- 1) If $n \leq 1$, then M is formal, and $M \simeq_{\mathbb{Q}} S^3$ or $S^1 \times S^2$.
- 2) If *n* is even, $n \ge 2$, and $\Delta_M \ne 0$, then *M* is not 1-formal.
- 3) If $\Delta_M \neq 0$, yet $\Delta_M(1) = 0$ and $\mathsf{TC}_1(V(\Delta_M))$ is not a finite union of \mathbb{Q} -linear subspaces, then M admits no 1-finite 1-model.
- (BNS 1987) The BNS invariant of G = π₁(M) is the projection onto S(G) of the open fibered faces of the Thurston norm ball B_T; in particular, Σ¹(G) = −Σ¹(G).

THEOREM

Let *M* be a compact, connected, orientable, 3-manifold with empty or toroidal boundary. Set $G = \pi_1(M)$ and assume $b_1(M) \ge 2$. Then

- 1) Trop $(\mathcal{V}^1(G) \cap \mathbb{T}^0_G)$ is the positive-codimension skeleton of $\mathcal{F}(B_A)$, the face fan of the unit ball in the Alexander norm.
- 2) $\Sigma^{1}(G)$ is contained in the union of the open cones on the facets of B_{A} .

REFERENCES

- A.I. Suciu, Poincaré duality and resonance varieties, Proceedings of the Royal Society of Edinburgh Section A: Mathematics 150 (2020), nr. 6, 3001–3027. doi:10.1017/prm.2019.55
- A.I. Suciu, *Cohomology jump loci of* 3*-manifolds*, Manuscripta Mathematica, doi:10.1007/s00229-020-01264-5
- A.I. Suciu, Sigma-invariants and tropical varieties, Mathematische Annalen 380 (2021), 1427–1463. doi:10.1007/s00208-021-02172-z