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RESONANCE VARIETIES

I Let A = (A•, dA) be a connected, locally finite,
graded-commutative, differential graded algebra (cdga) over a
field k, and let M = (M•, dM) be an A-cdgm.

I Since A0 = k, we have Z 1(A) ∼= H1(A).

I Set Q(A) = {a ∈ Z 1(A) | a2 = 0 ∈ A2}. For each a ∈ Q(A), we
have a cochain complex,

(M•, δa) : M0 δ0
a // M1 δ1

a // M2 δ2
a // · · · ,

with differentials δi
a(m) = a ·m + dM(m), for all m ∈ M i .

I The resonance varieties of M (in degree i ≥ 0 and depth k ≥ 0):

Ri
k (M) = {a ∈ Q(A) | dimk H i(M•, δa) ≥ k}.

I Assume char k 6= 2. Since a2 = −a2 for all a ∈ A1, we have
Q(A) = Z 1(A), and so Ri

k (A) are subvarieties of H1(A).
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RESONANCE VARIETIES OF GRADED ALGEBRAS
I Assume further that d = 0 (i.e., A is a cga). Then the resonance

varieties of A are homogenous subvarieties of H1(A) = A1.

I An element a ∈ A1 belongs to Ri
k (A) if and only if there exist

u1, . . . ,uk ∈ Ai such that au1 = · · · = auk = 0 in Ai+1, and the set
{au,u1, . . . ,uk} is linearly independent in Ai , for all u ∈ Ai−1.

I Set bj = bj(A). For each i ≥ 0, we have a descending filtration,

A1 = Ri
0(A) ⊇ Ri

1(A) ⊇ · · · ⊇ Ri
bi
(A) = {0} ⊃ Ri

bi+1
(A) = ∅.

I A linear subspace U ⊂ A1 is isotropic if the restriction of
A1 ∧ A1 ·−→ A2 to U ∧U is the zero map (i.e., ab = 0, ∀a,b ∈ U).

I If U ⊆ A1 is isotropic and dimU = k , then U ⊆ R1
k−1(A).

I R1
1(A) is the union of all isotropic planes in A1.

I If k ⊂ K is a field extension, then the k-points on Ri
k (A⊗k K)

coincide with Ri
k (A).

I Let ϕ : A→ B be a morphism of graded, connected algebras. If
the map ϕ1 : A1 → B1 is injective, then ϕ1(R1

k (A)) ⊆ R1
k (B), ∀k .
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THE BGG CORRESPONDENCE
I Let (A,d) be a connected, finite-type k-cdga, where char(k) 6= 2.

I Fix a k-basis {e1, . . . ,en} for H1(A) ∼= Z 1(A), and let {x1, . . . , xn}
be the dual basis for H1(A) = (H1(A))∨.

I Identify Sym(H1(A)) with S = k[x1, . . . , xn], the coordinate ring of
the affine space H1(A).

I A BGG-type correspondence yields a cochain complex of finitely
generated, free S-modules, (A• ⊗ S, δA),

· · · // Ai ⊗ S
δi

A // Ai+1 ⊗ S
δi+1

A // Ai+2 ⊗ S // · · · ,

where δi
A(u ⊗ s) = ∑r

j=1 eju ⊗ sxj + du ⊗ s.

I The specialization of this complex at a ∈ Z 1(A) is (A, δa).

I Hence, Ri
k (A) is the zero-set of the ideal generated by all minors

of size bi(A)− k + 1 of the block-matrix δi+1
A ⊕ δi

A.
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CHARACTERISTIC VARIETIES
I Let X be a connected CW-complex with finite q-skeleton (q ≥ 1).

Let G = π1(X ), and set n = rank(Gab) = b1(X ).

I Let TG := Hom(G,C∗) be the character group of G = π1(X ), also
denoted by Char(X ) := H1(X ,C∗). Then TG is an algebraic group
with coordinate ring C[Gab], and TG

∼= (C∗)n × Tors(Gab).

I The characteristic varieties of X are the sets

V i
k (X ) = {ρ ∈ TG | dimC Hi(X ,Cρ) ≥ k}.

I These sets are Zariski closed for all i ≤ q and all k ≥ 0.

I We may define similarly V i
k (X ,k) ⊂ H1(X ,k∗) for any field k.

I These constructions are compatible with restriction and extension
of the base field. Namely, if k ⊂ L is a field extension, then

V i
k (X ,k) = V i

k (X ,L) ∩H1(X , k×) ,

V i
k (X ,L) = V i

k (X ,k)×k L .
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I Let exp : Cn → (C∗)n. Given a subvariety W ⊂ (C∗)n, define its
exponential tangent cone at 1 (identity of (C∗)n) as

τ1(W ) = {z ∈ Cn | exp(λz) ∈ W , ∀λ ∈ C}.

I (Dimca–Papadima–S. 2009) τ1(W ) is a finite union of rationally
defined linear subspaces.

I Given a subfield k ⊂ C, we write τk
1 (W ) = τ1(W ) ∩ kn.

I Let A and B be two k-cdgas. We say A ' B if there is a zig-zag of
quasi-isomorphisms connecting A to B. If those maps are isos in
degrees ≤ q and injective in degree q + 1, we say A 'q B.

I A is formal (or just q-formal) if it is (q-) equiv. to (H•(A),d = 0).

I Given any (path-connected) space X , there is an associated
Sullivan Q-cdga, APL(X ), such that H•(APL(X )) = H•(X ,Q).

I An algebraic (q-)model for X (over k ⊇ Q) is a k-cgda (A,d)
which is (q-) equivalent to APL(X )⊗Q k.
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THE TANGENT CONE THEOREM
I Let X be a connected CW-complex with finite q-skeleton, and

suppose X admits a q-finite q-model A (e.g., X q-formal).

I Set Ri
k (X ,k) := Ri

k (H
•(X ,k)) and Ri

k (X ) := Ri
k (X ,C).

THEOREM

For all i ≤ q and all k ≥ 0:
I (Dimca–Papadima–S. 2009, Dimca–Papadima 2014)

V i
k (X )(1) ∼= Ri

k (A)(0).

In particular, if X is q-formal, then V i
k (X )(1) ∼= Ri

k (X )(0).

I (Budur–Wang 2017) All the irreducible components of V i
k (X )

passing through the origin of Char(X ) are algebraic subtori.

I Consequently,

τ1(V i
k (X )) = TC1(V i

k (X )) = Ri
k (A).
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BIERI–NEUMANN–STREBEL–RENZ INVARIANTS

I Let G be a finitely generated group, n = b1(G) > 0. Let
S(G) = Sn−1 be the unit sphere in Hom(G,R) = Rn.

I (Bieri–Neumann–Strebel 1987)

Σ1(G) = {χ ∈ S(G) | Cayχ(G) is connected},

where Cayχ(G) is the induced subgraph of Cay(G) on vertex set
Gχ = {g ∈ G | χ(g) ≥ 0}.

I (Bieri–Renz 1988)

Σq(G,Z) = {χ ∈ S(G) | the monoid Gχ is of type FPq},

i.e., there is a projective ZGχ-resolution P• → Z, with Pi finitely
generated for all i ≤ q. Moreover, Σ1(G,Z) = −Σ1(G).

I The BNSR-invariants of G form a descending chain of open
subsets of S(G).
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I The Σ-invariants control the finiteness properties of normal
subgroups N / G for which G/N is free abelian:

N is of type FPq ⇐⇒ S(G,N) ⊆ Σq(G,Z)

where S(G,N) = {χ ∈ S(G) | χ(N) = 0}. In particular,
ker(χ : G� Z) is f.g. ⇐⇒ {±χ} ⊆ Σ1(G).

I More generally, let X be a connected CW-complex with finite
q-skeleton, for some q ≥ 1.

I Let G = π1(X , x0). For each χ ∈ S(X ) := S(G), let

ẐGχ =
{

λ ∈ ZG | {g ∈ suppλ | χ(g) ≥ c} is finite, ∀c ∈ R
}

be the Novikov–Sikorav completion of ZG.

I (Farber–Geoghegan–Schütz 2010)

Σq(X ,Z) = {χ ∈ S(X ) | Hi(X , ẐG−χ) = 0, ∀ i ≤ q}.

I (Bieri 2007) If G is FPk , then Σq(G,Z) = Σq(K (G,1),Z), ∀q ≤ k .
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TROPICAL VARIETIES

I Let K = C{{t}} = ⋃
n≥1 C((t1/n)) be the field of Puiseux series.

I Elements of K∗: c(t) = c1ta1 + c2ta2 + · · · , where ci ∈ C∗ and
a1 < a2 < · · · are rationals with a common denominator.

I K is an algebraically closed field; it admits a non-Archimedean
valuation, v : K∗ → Q, given by v(c(t)) = a1.

I Let v : (K∗)n → Qn ⊂ Rn be the n-fold product of the valuation.

I The tropicalization of a subvariety W ⊂ (K∗)n, denoted Trop(W ),
is the closure (in the Euclidean topology) of v(W ) in Rn.

I This is a rational polyhedral complex in Rn. For instance, if W is a
curve, then Trop(W ) is a graph with rational edge directions.

I For a variety W ⊂ (C∗)n, we may define its tropicalization by
setting Trop(W ) = Trop(W ×C K). This is a polyhedral fan in Rn.
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TROPICALIZING THE CHARACTERISTIC VARIETIES
I Let X be a space as above, and set n = b1(X ). We define

νX : CharK(X )→ Qn ⊂ Rn to be the composite

H1(X ,K∗)
v∗ // H1(X ,Q) // H1(X ,R).

I Given an algebraic subvariety W ⊂ H1(X ,C∗) we define its
tropicalization as the closure in H1(X ,R) ∼= Rn of the image of
W ×C K ⊂ H1(X ,K∗) under νX :

Trop(W ) := νX (W ×C K).

I Applying this definition to the varieties V i(X ) := V i
1(X ) and

recalling that V i(X ,K) = V i(X )×C K, we get

Trop(V i(X )) = νX
(
V i(X ,K)

)
.

LEMMA

Let W ⊂ (C∗)n be an algebraic variety. Then τR
1 (W ) ⊆ Trop(W ).
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A TROPICAL BOUND FOR THE Σ-INVARIANTS

THEOREM (PAPADIMA–S.-2010, S-2021)

Let ρ : π1(X )→ k∗ be a character such that ρ ∈ V≤q(X , k). Let
υ : k∗ → R be the homomorphism defined by a valuation on k, and
write χ = υ ◦ ρ. If the homomorphism χ : π1(X )→ R is non-zero, then
χ 6∈ Σq(X ,Z).

THEOREM (S-2021)

Σq(X ,Z) ⊆ S(Trop(V≤q(X ))){

Hence:
I (Papadima-S.-2010) Σq(X ,Z) ⊆ S(τR

1 (V≤q(X ))){

I If X is q-formal, then Σi(X ,Z) ⊆ S
(
R≤i(X )

){ for all i ≤ q.

I If V≤q(X ) contains a component of Char(X ), then Σq(X ,Z) = ∅.
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KÄHLER MANIFOLDS
I Let M be a compact Kähler manifold. Then M is formal.

I (Beauville, Catanese, Green–Lazarsfeld, Simpson, Arapura,
Budur, B. Wang) The varieties V i

k (M) are finite unions of torsion
translates of algebraic subtori of H1(M,C∗).

THEOREM (DELZANT 2010)

Σ1(M) = S(M) \
⋃

α
S(f ∗α (H

1(Cα,R))),

where the union is taken over those orbifold fibrations fα : M → Cα with
the property that either χ(Cα) < 0, or χ(Cα) = 0 and fα has some
multiple fiber.

In degree 1, we may recast this result in the tropical setting, as follows.

COROLLARY

Σ1(M) = S(Trop(V1(M)){.
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HYPERPLANE ARRANGEMENTS
I Let A = {H1, . . . ,Hn} be an (essential, central) arrangement of

hyperplanes in Cd , with intersection lattice L(A).
I The complement, M(A) := (C∗)d \⋃n

i=1 Hi , is a smooth,
quasi-projective Stein manifold; thus, it has the homotopy type of a
finite, d-dimensional CW-complex.

I (Orlik–Solomon) The cohomology ring H∗(M(A),Z) is
determined by L(A).

I Thus, the resonance varieties Ri(A) := Ri(M(A)) ⊂ Cn depend
only on L(A).

I (Arapura) The characteristic varieties
V i(A) := V i(M(A)) ⊂ (C∗)n are unions of translated subtori.

I Consequently, Trop(V i(A)) = −Trop(V i(A)).
I (Denham–S.–Yuzvinsky 2016/17) M(A) is an “abelian duality

space", and so V1(A) ⊆ V2(A) ⊆ · · · ⊆ Vd−1(A).
I (Arnol’d, Brieskorn) M(A) is formal. Thus, τ1(V i(A)) = Ri(A).
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THEOREM

Let M be the complement of an arrangement of n hyperplanes in Cd .
Then, for each 1 ≤ q ≤ d − 1:
I Trop(Vq(M)) is the union of a subspace arrangement in Rn.

I Σq(M,Z) ⊆ S(Trop(Vq(M))){.

QUESTION (MFO MINIWORKSHOP 2007)

Given an arrangement A, do we have

Σ1(M(A)) = S(R1(A,R)){? (?)
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EXAMPLE (KOBAN–MCCAMMOND–MEIER 2013)

I Let A be the braid arrangement in Cn, defined by
∏1≤i<j≤n(zi − zj) = 0. Then M(A) = Conf(n,C) ' K (Pn,1).

I Answer to (?) is yes: Σ1(M(A)) is the complement of the union of
(n

3) + (n
4) planes in C(n

2), intersected with the unit sphere.

EXAMPLE

I Let A be the “deleted B3" arrangement, defined by
z1z2(z2

1 − z2
2 )(z

2
1 − z2

3 )(z
2
2 − z2

3 ) = 0.

I (S. 2002) V1(A) contains a (1-dimensional) translated torus ρ · T .

I Thus, Trop(ρ · T ) = Trop(T ) is a line in C8 which is not contained
in R1(A,R). Hence, the answer to (?) is no.

QUESTION (REVISED)

Σ1(M(A)) = S(Trop(V1(A)){? (??)
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CLASSIFICATION OF ALTERNATING FORMS

(Following J. Schouten, G. Gurevich, D. Djoković, A. Cohen–A. Helminck, . . . )

I Let V be a k-vector space of dimension n. The group GL(V ) acts
on
∧m(V ∗) by (g · µ)(a1 ∧ · · · ∧ am) = µ

(
g−1a1 ∧ · · · ∧ g−1am

)
.

I The orbits of this action are the equivalence classes of alternating
m-forms on V . (We write µ ∼ µ′ if µ′ = g · µ.)

I Over k, the closures of these orbits are affine algebraic varieties.

I There are finitely many orbits over k only if n2 ≥ (n
m), that is,

m ≤ 2 or m = 3 and n ≤ 8.

I For k = C, each complex orbit has only finitely many real forms.

I When m = 3, and n = 8, there are 23 complex orbits, which split
into either 1, 2, or 3 real orbits, for a total of 35 real orbits.
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POINCARÉ DUALITY ALGEBRAS

I Let A be a connected, locally finite k-cga.

I A is a Poincaré duality k-algebra of dimension m if there is a
k-linear map ε : Am → k (called an orientation) such that all the
bilinear forms Ai ⊗k Am−i → k, a⊗ b 7→ ε(ab) are non-singular.

I If A is a PDm algebra, then:
• bi (A) = bm−i (A), and Ai = 0 for i > m.

• ε is an isomorphism.

• The maps PD : Ai → (Am−i )∗, PD(a)(b) = ε(ab) are isomorphisms.

I Each a ∈ Ai has a Poincaré dual, a∨ ∈ Am−i , such that
ε(aa∨) = 1.

I The orientation class is ωA := 1∨. We have ε(ωA) = 1, and thus
aa∨ = ωA.
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THE ASSOCIATED ALTERNATING FORM
I Associated to a k-PDm algebra there is an alternating m-form,

µA :
∧mA1 → k, µA(a1 ∧ · · · ∧ am) = ε(a1 · · · am).

I A and B are isomorphic as PDm algebras if and only if they are
isomorphic as graded algebras, in which case µA ∼ µB.

I Assume now that m = 3, and set n = b1(A). Fix a basis
{e1, . . . ,en} for A1, and let {e∨1 , . . . ,e∨n } be the dual basis for A2.

I The multiplication in A, then, is given on basis elements by

eiej =
r

∑
k=1

µijk e∨k , eie∨j = δij ω,

where µijk = µ(ei ∧ ej ∧ ek ).

I Two PD3 algebras A and B are isomorphic if and only if µA ∼ µB.
We thus have a bijection, A! µA, between isomorphism classes
of PD3 algebras and equivalence classes of alternating 3-forms.
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POINCARÉ DUALITY IN ORIENTABLE MANIFOLDS
I If M is a compact, connected, orientable, m-dimensional manifold,

then the cohomology ring A = H.(M,k) is a PDm algebra over k.

I Sullivan (1975): for every finite-dimensional Q-vector space V and
every alternating 3-form µ ∈ ∧3V ∗, there is a closed 3-manifold M
with H1(M,Q) = V and cup-product form µM = µ.

I Such a 3-manifold can be constructed via “Borromean surgery."

I E.g., 0-surgery on the Borromean rings in S3 yields M = T 3, with
µM = e1e2e3.

I If M is the link of an isolated surface singularity (e.g., if
M = Σ(p,q, r ) is a Brieskorn manifold), then µM = 0.
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RESONANCE VARIETIES OF PD-ALGEBRAS
I Let A be a PDm algebra. For 0 ≤ i ≤ m and a ∈ A1, we have(

H i(A, δa)
)∨ ∼= Hm−i(A, δ−a).

I Hence, Ri
k (A) = R

m−i
k (A) for all i and k , In particular,

Rm
1 (A) = R0

k (A) = {0}.

THEOREM

Let A be a PD3 algebra with b1(A) = n. Then Ri
k (A) = ∅, except for:

1) Ri
0(A) = A1 for all i ≥ 0.

2) R3
1(A) = R0

1(A) = {0} and R2
n(A) = R1

n(A) = {0}.
3) R2

k (A) = R1
k (A) for 0 < k < n.

Moreover, R1
k (A) = A1 for all k < corank µA

(The rank of µ :
∧3 V → k is the minimum dimension of a linear subspace

W ⊂ V such that µ factors through
∧3 W .)
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I A linear subspace U ⊂ V is 2-singular with respect to a 3-form
µ :
∧3V → k if µ(a ∧ b ∧ c) = 0 for all a,b ∈ U and c ∈ V .

I If dimU = 2, we simply say U is a singular plane.

I The nullity of µ, denoted null(µ), is the maximum dimension of a
2-singular subspace U ⊂ V .

I Clearly, V contains a singular plane if and only if null(µ) ≥ 2.

I Let A be a PD3 algebra. A linear subspace U ⊂ A1 is 2-singular
(with respect to µA) if and only if U is isotropic.

I Using a result of A. Sikora [2005], we obtain:

THEOREM

Let A be a PD3 algebra over an algebraically closed field k with
char(k) 6= 2, and let ν = null(µA). If b1(A) ≥ 4, then

dimR1
ν−1(A) ≥ ν ≥ 2.

In particular, dimR1
1(A) ≥ ν.
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REAL FORMS AND RESONANCE
I Sikora made the following conjecture: If µ :

∧3V → k is a 3-form
with dimV ≥ 4 and if char(k) 6= 2, then null(µ) ≥ 2.

I Conjecture holds if n := dimV is even or equal to 5, or if k = k.

I Work of J. Draisma and R. Shaw [2010, 2014] implies that the
conjecture does not hold for k = R and n = 7. We obtain:

THEOREM

Let A be a PD3 algebra over R. Then R1
1(A) 6= {0}, except when

I n = 1, µA = 0.

I n = 3, µA = e1e2e3.

I n = 7, µA = −e1e3e5 + e1e4e6 + e2e3e6 + e2e4e5 + e1e2e7 + e3e4e7 + e5e6e7.

Sketch: If R1
1(A) = {0}, then the formula (x × y) · z = µA(x , y , z)

defines a cross-product on A1 = Rn, and thus a division algebra
structure on Rn+1, forcing n = 1,3 or 7 by Bott–Milnor/Kervaire [1958].
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PFAFFIANS AND RESONANCE
I For a k-PD3 algebra A, the complex (A⊗k S, δA) looks like

A0 ⊗k S
δ0

A // A1 ⊗k S
δ1

A // A2 ⊗k S
δ2

A // A3 ⊗k S ,

where δ0
A =

(
x1 · · · xn

)
and δ2

A = (δ0
A)
>, while δ1

A is the skew-
symmetric matrix whose are entries linear forms in S given by

δ1
A(ei) = ∑n

j=1 ∑n
k=1 µjike∨k ⊗ xj .

I Recall that R1
k (A) = V (In−k (δ

1
A)). Using work of Buchsbaum and

Eisenbud [1977] on Pfaffians of skew-symmetric matrices, we get:

THEOREM

R1
2k (A) = R1

2k+1(A) = V (Pfn−2k (δ
1
A)), if n is even,

R1
2k−1(A) = R1

2k (A) = V (Pfn−2k+1(δ
1
A)), if n is odd.

THEOREM

If µA has maximal rank n ≥ 3, then
R1

n−2(A) = R1
n−1(A) = R1

n(A) = {0}.
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LEMMA (TURAEV 2002)
Suppose n ≥ 3. There is then a polynomial Det(µA) ∈ Sym(A1) such
that, if δ1

A(i ; j) is the sub-matrix obtained from δ1
A by deleting the i-th

row and j-th column, then det δ1
A(i ; j) = (−1)i+jxixj Det(µA).

Moreover, if n is even, then Det(µA) = 0, while if n is odd, then
Det(µA) = Pf(µA)

2, where pf(δ1
A(i ; i)) = (−1)i+1xi Pf(µA).

Suppose dimk V = 2g + 1 > 1. We say µ :
∧3V → k is generic (in the

sense of Berceanu–Papadima [1994]) if there is a v ∈ V such that the
2-form γv ∈ V∨ ∧ V∨ given by γv (a ∧ b) = µA(a ∧ b ∧ v) for a,b ∈ V
has rank 2g, that is, γ

g
v 6= 0 in

∧2gV∨.

THEOREM

Let A be a PD3 algebra with b1(A) = n. Then

R1
1(A) =


∅ if n = 0;
{0} if n = 1 or n = 3 and µ has rank 3;
V (Pf(µA)) if n is odd, n > 3, and µA is BP-generic;
A1 otherwise.
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As a corollary, we recover a closely related result, proved by Draisma
and Shaw [2010] by very different methods.

COROLLARY

Let V be a k-vector space of odd dimension n ≥ 5 and let µ ∈ ∧3 V∨.
Then the union of all singular planes is either all of V or a hypersurface
defined by a homogeneous polynomial in k[V ] of degree (n− 3)/2.

For µ ∈ ∧3 V∨, there is another genericity condition, due to P. De Poi,
D. Faenzi, E. Mezzetti, and K. Ranestad [2017]: rank(γv ) > 2, for all
non-zero v ∈ V . We may interpret some of their results, as follows.

THEOREM (DFMR)
Let A be a PD3 algebra over C, and suppose µA is generic. Then:
I If n is odd, then R1

1(A) is a hypersurface of degree (n− 3)/2
which is smooth if n ≤ 7, and singular in codimension 5 if n ≥ 9.

I If n is even, then R1
2(A) has codim 3 and degree 1

4 (
n−2

3 ) + 1; it is
smooth if n ≤ 10, and singular in codimension 7 if n ≥ 12.
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ALEXANDER POLYNOMIALS OF 3-MANIFOLDS

I Let H = H1(X ,Z)/Tors. Let X H → X be the maximal torsion-free
abelian cover of X , with cellular chain complex C•(X H , ∂H).

I The Alexander polynomial ∆X ∈ Z[H ] is the gcd of the
codimension 1 minors of the Alexander matrix ∂H

1 .

SetW1
1 (M) = V1

1 (M) ∩ Char0(M). Using work of McMullen [2002] and
Turaev [2002], as well as Dimca–Papadima–S. [2008], we find:

PROPOSITION

Let M be a closed, orientable, 3-dimensional manifold. Then
W1

1 (M) = V (∆M) ∪ {1}. If, moreover, b1(M) ≥ 4, then ∆M(1) = 0,
and soW1

1 (M) = V (∆M).
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A TANGENT CONE THEOREM FOR 3-MANIFOLDS

Let M be a closed, orientable, 3-manifold, and set n = b1(M).

THEOREM

1) If either n ≤ 1, or n is odd, n ≥ 3, and µM is BP-generic, then

TC1(V1
1 (M)) = R1

1(M).

2) If n is even, n ≥ 2, then R1(M) = H1(M,C). Moreover,

TC1(V1
1 (M)) = R1

1(M)⇐⇒ ∆M = 0.

REMARK

For n even, the equality R1(M) = H1(M,C) was first proved in
[Dimca–S, 2009], where it was used to show that the only 3-manifold
groups which are also Kähler groups are the finite subgroups of O(4).
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THEOREM

1) If n ≤ 1, then M is formal, and M 'Q S3 or S1 × S2.

2) If n is even, n ≥ 2, and ∆M 6= 0, then M is not 1-formal.

3) If ∆M 6= 0, yet ∆M(1) = 0 and TC1(V (∆M)) is not a finite union of
Q-linear subspaces, then M admits no 1-finite 1-model.

I (BNS 1987) The BNS invariant of G = π1(M) is the projection
onto S(G) of the open fibered faces of the Thurston norm ball BT ;
in particular, Σ1(G) = −Σ1(G).

THEOREM

Let M be a compact, connected, orientable, 3-manifold with empty or
toroidal boundary. Set G = π1(M) and assume b1(M) ≥ 2. Then

1) Trop
(
V1(G) ∩T0

G

)
is the positive-codimension skeleton of F (BA),

the face fan of the unit ball in the Alexander norm.
2) Σ1(G) is contained in the union of the open cones on the facets of

BA.
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