Topology of complex arrangements

Alexandru Suciu

Northeastern University

Session on the Geometry and Topology of Differentiable Manifolds and Algebraic Varieties

The Eighth Congress of Romanian Mathematicians Iaşi, Romania, June 30, 2015

COMBINATORIAL COVERS

A combinatorial cover for a space X is a triple $(\mathscr{C}, \phi, \rho)$, where
(1) \mathscr{C} is a countable cover which is either open, or closed and locally finite.
(2) $\phi: N(\mathscr{C}) \rightarrow P$ is an order-preserving, surjective map from the nerve of the cover to a finite poset P, such that, if $S \leqslant T$ and $\phi(S)=\phi(T)$, then $\cap T \hookrightarrow \cap S$ admits a homotopy inverse.
(3) If $S \leqslant T$ and $\cap S=\bigcap T$, then $\phi(S)=\phi(T)$.
(4) $\rho: P \rightarrow \mathbb{Z}$ is an order-preserving map whose fibers are antichains.
(5) ϕ induces a homotopy equivalence, $\phi:|N(\mathscr{C})| \rightarrow|P|$.

Example: $X=D^{2} \backslash\{4$ points $\}$.

$$
\begin{aligned}
& \left\{U_{1}, U_{2}, U_{3}\right\} \\
& N(\mathscr{C}): \quad\left\{U_{1}, U_{2}\right\}\left\{U_{1}, U_{3}\right\}\left\{U_{2}, U_{3}\right\} \\
& \left\{U_{1}\right\} \quad\left\{U_{2}\right\} \quad\left\{U_{3}\right\}
\end{aligned}
$$

- $\phi: N(\mathscr{C}) \rightarrow P: \quad \phi\left(\left\{U_{i}\right\}\right)=i$ and $\phi(S)=*$ if $|S| \neq 1$.
- $\rho: P \rightarrow \mathbb{Z}: \quad \rho(*)=1$ and $\rho(i)=0$.
- $\cap S=\cap T$ for any $S, T \in \phi^{-1}(*)$.
- Both $|N(\mathscr{C})|$ and $|P|$ are contractible.
- Thus, \mathscr{C} is a combinatorial cover.

Arrangements of submanifolds

- Let \mathcal{A} be an arrangement of submanifolds in a smooth, connected manifold. Assume each submanifold is either compact or open.
- Let $L(\mathcal{A})$ be the (ranked) intersection poset of \mathcal{A}.
- Assume that every element of $L(\mathcal{A})$ is smooth and contractible.

THEOREM (DENHAM-S.-YUZVINSKY 2014)
The complement $M(\mathcal{A})$ has a combinatorial cover $(\mathscr{C}, \phi, \rho)$ over $L(\mathcal{A})$.

A SPECTRAL SEQUENCE

THEOREM (DSY)

Suppose X has a combinatorial cover $(\mathscr{C}, \phi, \rho)$ over a poset P. For every locally constant sheaf \mathcal{F} on X, there is a spectral sequence with

$$
E_{2}^{p q}=\prod_{x \in P} \tilde{H}^{p-\rho(x)-1}\left(\mid \mathrm{k}_{|P|}(x) ; H^{q+\rho(x)}\left(X,\left.\mathcal{F}\right|_{U_{x}}\right)\right)
$$

converging to $H^{p+q}(X, \mathcal{F})$. Here, $U_{x}=\cap S$, where $S \in N(\mathscr{C})$ with $\phi(S)=x$.

DUALITY SPACES

Let X be a path-connected space, having the homotopy type of a finite-type CW-complex. Set $\pi=\pi_{1}(X)$.
Recall a notion due to Bieri and Eckmann (1978).

- X is a duality space of dimension n if $H^{\prime}(X, \mathbb{Z} \pi)=0$ for $i \neq n$ and $H^{n}(X, \mathbb{Z} \pi) \neq 0$ and torsion-free.
- Let $D=H^{n}(X, \mathbb{Z} \pi)$ be the dualizing $\mathbb{Z} \pi$-module. Given any $\mathbb{Z} \pi$-module A, we have $H^{i}(X, A) \cong H_{n-i}(X, D \otimes A)$.
- If $D=\mathbb{Z}$, with trivial $\mathbb{Z} \pi$-action, then X is a Poincaré duality space.
- If $X=K(\pi, 1)$ is a duality space, then π is a duality group.

Abelian duality spaces

We introduce an analogous notion, by replacing $\pi \rightsquigarrow \pi_{\mathrm{ab}}$.

- X is an abelian duality space of dimension n if $H^{i}\left(X, \mathbb{Z} \pi_{a b}\right)=0$ for $i \neq n$ and $H^{n}\left(X, \mathbb{Z} \pi_{\mathrm{ab}}\right) \neq 0$ and torsion-free.
- Let $B=H^{n}\left(X, \mathbb{Z} \pi_{\text {ab }}\right)$ be the dualizing $\mathbb{Z} \pi_{a b}$-module. Given any $\mathbb{Z} \pi_{\mathrm{ab}}$-module A, we have $H^{i}(X, A) \cong H_{n-i}(X, B \otimes A)$.
- The two notions of duality are independent.

Fix a field \mathbb{k}.
THEOREM (DENHAM-S.-YUZVINSKY 2015)
Let X be an abelian duality space of dimension n. If $\rho: \pi_{1}(X) \rightarrow \mathbb{k}^{*}$ satisfies $H^{i}\left(X, \mathbb{k}_{\rho}\right) \neq 0$, then $H^{j}\left(X, \mathbb{k}_{\rho}\right) \neq 0$, for all $i \leqslant j \leqslant n$.

CHARACTERISTIC VARIETIES

Consider the jump loci for cohomology with coefficients in rank-1 local systems on X,

$$
\mathcal{V}_{s}^{i}(X, \mathbb{k})=\left\{\rho \in \operatorname{Hom}\left(\pi_{1}(X), \mathbb{k}^{*}\right) \mid \operatorname{dim}_{k_{k}} H_{i}\left(X, \mathbb{k}_{\rho}\right) \geqslant s\right\},
$$

and set $\mathcal{V}^{i}(X, \mathbb{k})=\mathcal{V}_{1}^{j}(X, \mathbb{k})$.
Corollary (DSY)
Let X be an abelian duality space of dimension n. Then:

- The characteristic varieties propagate:

$$
\mathcal{V}^{1}(X, \mathbb{k}) \subseteq \cdots \subseteq \mathcal{V}^{n}(X, \mathbb{k}) .
$$

- $\operatorname{dim}_{k} H^{1}(X, k) \geqslant n-1$.
- If $n \geqslant 2$, then $H^{i}(X, \mathbb{k}) \neq 0$, for all $0 \leqslant i \leqslant n$.

Resonance varieties

- Assume $\operatorname{char}(\mathbb{k}) \neq 2$, and set $A=H^{*}(X, \mathbb{k})$.
- For each $a \in A^{1}$, we have a cochain complex

$$
(A, \cdot a): A^{0} \xrightarrow{a} A^{1} \xrightarrow{a} A^{2} \longrightarrow \cdots
$$

- The resonance varieties of X are the jump loci for the cohomology of these cochain complexes,

$$
\mathcal{R}_{s}^{i}(X, \mathbb{k})=\left\{a \in H^{1}(X, \mathbb{k}) \mid \operatorname{dim}_{\mathbb{k}} H^{i}(A, a) \geqslant s\right\} .
$$

THEOREM (PAPADIMA-S. 2010)
Let X be a minimal CW-complex. Then the linearization of the cellular cochain complex $C^{*}\left(X^{\mathrm{ab}}, \mathbb{k}\right)$, evaluated at $a \in A^{1}$ coincides with the cochain complex (A, a).

THEOREM (DSY)

Let X be an abelian duality space of dimension n which admits a minimal cell structure. Then the resonance varieties of X propagate:

$$
\mathcal{R}^{1}(X, \mathbb{k}) \subseteq \cdots \subseteq \mathcal{R}^{n}(X, \mathbb{k})
$$

COROLLARY (DSY)

Let M be a compact, connected, orientable smooth manifold of dimension n. Suppose M admits a perfect Morse function, and $\mathcal{R}^{1}(M, \mathbb{k}) \neq 0$. Then M is not an abelian duality space.

EXAMPLE

- Let M be the 3-dimensional Heisenberg nilmanifold.
- M admits a perfect Morse function.
- Characteristic varieties propagate: $\mathcal{V}^{i}(M, \mathbb{k})=\{1\}$ for $i \leqslant 3$.
- Resonance does not propagate: $\mathcal{R}^{1}(M, \mathbb{k})=\mathbb{k}^{2}$ but $\mathcal{R}^{3}(M, \mathbb{k})=0$.

Hyperplane arrangements

- Let \mathcal{A} be a central, essential hyperplane arrangement in \mathbb{C}^{n}.
- Its complement, $M(\mathcal{A})$, is a Stein manifold. It has the homotopy type of a minimal CW-complex of dimension n.
- $M(\mathcal{A})$ is a formal space.
- $M(\mathcal{A})$ admits a combinatorial cover.

Theorem (Davis-Januszkiewicz-OKun)
$M(\mathcal{A})$ is a duality space of dimension n.
Using the above spectral sequence, we prove:
Theorem (Denham-S.-YuZvinsky 2015)
$M(\mathcal{A})$ is an abelian duality space of dimension n. Furthermore, both the characteristic and resonance varieties of $M(\mathcal{A})$ propagate.

ELLIPTIC ARRANGEMENTS

- An elliptic arrangement is a finite collection, \mathcal{A}, of subvarieties in a product of elliptic curves E^{n}, each subvariety being a fiber of a group homomorphism $E^{n} \rightarrow E$.
- If \mathcal{A} is essential, the complement $M(\mathcal{A})$ is a Stein manifold.
- $M(\mathcal{A})$ is minimal.
- $M(\mathcal{A})$ may be non-formal (examples by Bezrukavnikov and Berceanu-Măcinic-Papadima-Popescu).

Theorem (DSY)

The complement of an essential, unimodular elliptic arrangement in E^{n} is both a duality space and an abelian duality space of dimension n.

In particular, the pure braid group of n strings on an elliptic curve is both a duality group and an abelian duality group.

Resonance varieties and multinets

Let $\mathcal{R}_{s}(\mathcal{A}, \mathbb{k})=\mathcal{R}_{s}^{1}(M(\mathcal{A}), \mathbb{k})$. Work of Arapura, Falk, D.Cohen-A.S., Libgober-Yuzvinsky, and Falk-Yuzvinsky completely describes the varieties $\mathcal{R}_{s}(\mathcal{A}, \mathbb{C})$:

- $\mathcal{R}_{1}(\mathcal{A}, \mathbb{C})$ is a union of linear subspaces in $H^{1}(M(\mathcal{A}), \mathbb{C}) \cong \mathbb{C}^{|\mathcal{A}|}$.
- Each subspace has dimension at least 2, and each pair of subspaces meets transversely at 0 .
- $\mathcal{R}_{s}(\mathcal{A}, \mathbb{C})$ is the union of those linear subspaces that have dimension at least $s+1$.
- Each k-multinet on a sub-arrangement $\mathcal{B} \subseteq \mathcal{A}$ gives rise to a component of $\mathcal{R}_{1}(\mathcal{A}, \mathbb{C})$ of dimension $k-1$. Moreover, all components of $\mathcal{R}_{1}(\mathcal{A}, \mathbb{C})$ arise in this way.

DEFINITION (FALK AND YUZVINSKY)

A multinet on \mathcal{A} is a partition of the set \mathcal{A} into $k \geqslant 3$ subsets $\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}$, together with an assignment of multiplicities, $m: \mathcal{A} \rightarrow \mathbb{N}$, and a subset $\mathcal{X} \subseteq L_{2}(\mathcal{A})$, called the base locus, such that:
(1) There is an integer d such that $\sum_{H \in \mathcal{A}_{\alpha}} m_{H}=d$, for all $\alpha \in[k]$.
(2) If H and H^{\prime} are in different classes, then $H \cap H^{\prime} \in \mathcal{X}$.
(3) For each $X \in \mathcal{X}$, the sum $n_{X}=\sum_{H \in \mathcal{A}_{\alpha}: H \supset X} m_{H}$ is independent of α.
(4) Each set $\left(\bigcup_{H \in \mathcal{A}_{\alpha}} H\right) \backslash \mathcal{X}$ is connected.

- A multinet as above is also called a (k, d)-multinet, or a k-multinet.
- The multinet is reduced if $m_{H}=1$, for all $H \in \mathcal{A}$.
- A net is a reduced multinet with $n_{X}=1$, for all $X \in \mathcal{X}$.

Figure : A $(3,2)$-net on the A_{3} arrangement: \mathcal{X} consists of 4 triple points ($n_{X}=1$)

Figure : $\mathrm{A}(3,4)$-multinet on the B_{3} arrangement: \mathcal{X} consists of 4 triple points $\left(n_{X}=1\right)$ and 3 triple points $\left(n_{X}=2\right)$

Milnor fibration

- For each $H \in \mathcal{A}$ let α_{H} be a linear form with $\operatorname{ker}\left(\alpha_{H}\right)=H$, and let $Q=\prod_{H \in \mathcal{A}} \alpha_{H}$.
- $Q: \mathbb{C}^{n} \rightarrow \mathbb{C}$ restricts to a smooth fibration, $Q: M(\mathcal{A}) \rightarrow \mathbb{C}^{*}$.
- The typical fiber of this fibration, $Q^{-1}(1)$, is called the Milnor fiber of the arrangement, and is denoted by $F=F(\mathcal{A})$.
- F is neither formal, nor minimal, in general.
- The monodromy diffeomorphism, $h: F \rightarrow F$, is given by $h(z)=\exp (2 \pi \mathrm{i} / m) z$, where $m=|\mathcal{A}|$.

MODULAR INEQUALITIES

- Let $\Delta(t)$ be the characteristic polynomial of the degree-1 algebraic monodromy, $h_{*}: H_{1}(F, \mathbb{C}) \rightarrow H_{1}(F, \mathbb{C})$.
- Since $h^{m}=$ id, we have

$$
\Delta(t)=\prod_{d \mid m} \Phi_{d}(t)^{e_{d}(\mathcal{A})}
$$

where $\Phi_{d}(t)$ is the d-th cyclotomic polynomial, and $e_{d}(\mathcal{A}) \in \mathbb{Z}_{\geqslant 0}$.

- If there is a non-transverse multiple point on \mathcal{A} of multiplicity not divisible by d, then $e_{d}(\mathcal{A})=0$.
- In particular, if \mathcal{A} has only points of multiplicity 2 and 3 , then $\Delta(t)=(t-1)^{m-1}\left(t^{2}+t+1\right)^{e_{3}}$.
- If multiplicity 4 appears, then also get factor of $(t+1)^{e_{2}} \cdot\left(t^{2}+1\right)^{e_{4}}$.
- Let $\sigma=\sum_{H \in \mathcal{A}} e_{H} \in A^{1}$ be the "diagonal" vector.
- Assume \mathbb{k} has characteristic $p>0$, and define

$$
\beta_{p}(\mathcal{A})=\operatorname{dim}_{\mathbb{k}} H^{1}(A, \cdot \sigma) .
$$

That is, $\beta_{p}(\mathcal{A})=\max \left\{s \mid \sigma \in \mathcal{R}_{s}^{1}(A, \mathbb{k})\right\}$.

THEOREM (COHEN-ORLIK 2000, PAPADIMA-S. 2010) $e_{p^{s}}(\mathcal{A}) \leqslant \beta_{p}(\mathcal{A})$, for all $s \geqslant 1$.

THEOREM (PAPADIMA-S. 2014)
(1) Suppose \mathcal{A} admits a k-net. Then $\beta_{p}(\mathcal{A})=0$ if $p \nmid k$ and $\beta_{p}(\mathcal{A}) \geqslant k-2$, otherwise.
(2) If \mathcal{A} admits a reduced k-multinet, then $e_{k}(\mathcal{A}) \geqslant k-2$.

Combinatorics and monodromy

THEOREM (PAPADIMA-S. 2014)

Suppose \mathcal{A} has no points of multiplicity $3 r$ with $r>1$. Then, the following conditions are equivalent:
(1) \mathcal{A} admits a reduced 3-multinet.
(2) \mathcal{A} admits a 3-net.
(3) $\beta_{3}(\mathcal{A}) \neq 0$.

Moreover, the following hold:
(4) $\beta_{3}(\mathcal{A}) \leqslant 2$.
(5) $e_{3}(\mathcal{A})=\beta_{3}(\mathcal{A})$, and thus $e_{3}(\mathcal{A})$ is combinatorially determined.

THEOREM (PS)

Suppose \mathcal{A} supports a 4-net and $\beta_{2}(\mathcal{A}) \leqslant 2$. Then

$$
e_{2}(\mathcal{A})=e_{4}(\mathcal{A})=\beta_{2}(\mathcal{A})=2
$$

CONJECTURE (PS)

Let \mathcal{A} be an arrangement which is not a pencil. Then $e_{p^{s}}(\mathcal{A})=0$ for all primes p and integers $s \geqslant 1$, with two possible exceptions:

$$
e_{2}(\mathcal{A})=e_{4}(\mathcal{A})=\beta_{2}(\mathcal{A}) \text { and } e_{3}(\mathcal{A})=\beta_{3}(\mathcal{A})
$$

If $e_{d}(\mathcal{A})=0$ for all divisors d of $|\mathcal{A}|$ which are not prime powers, this conjecture would give:

$$
\Delta_{\mathcal{A}}(t)=(t-1)^{|\mathcal{A}|-1}\left((t+1)\left(t^{2}+1\right)\right)^{\beta_{2}(\mathcal{A})}\left(t^{2}+t+1\right)^{\beta_{3}(\mathcal{A})} .
$$

The conjecture has been verified for several classes of arrangements:

- Complex reflection arrangements (Măcinic-Papadima-Popescu).
- Certain types of real arrangements (Yoshinaga, Bailet, Torielli).

Torsion in homology

- A pointed multinet on an arrangement \mathcal{A} is a multinet structure, together with a distinguished hyperplane $H \in \mathcal{A}$ for which $m_{H}>1$ and $m_{H} \mid n_{X}$ for each $X \in \mathcal{X}$ such that $X \subset H$.
- We use a 'polarization' construction: $(\mathcal{A}, m) \rightsquigarrow \mathcal{A} \| m$, an arrangement of $N=\sum_{H \in \mathcal{A}} m_{H}$ hyperplanes, of rank equal to $\operatorname{rank} \mathcal{A}+\left|\left\{H \in \mathcal{A}: m_{H} \geqslant 2\right\}\right|$.

THEOREM (DENHAM-SUCIU 2014)
Suppose \mathcal{A} admits a pointed multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_{H}.
There is then a choice of multiplicities m^{\prime} on the deletion $\mathcal{A}^{\prime}=\mathcal{A} \backslash\{H\}$ such that $H_{q}(F(\mathcal{B}), \mathbb{Z})$ has p-torsion, where $\mathcal{B}=\mathcal{A}^{\prime} \| m^{\prime}$ and $q=1+\left|\left\{K \in \mathcal{A}^{\prime}: m_{K}^{\prime} \geqslant 3\right\}\right|$.

In particular, $F(\mathcal{B})$ does not admit a minimal cell structure.

COROLLARY (DS)

For every prime $p \geqslant 2$, there is an arrangement \mathcal{A} such that $H_{q}(F(\mathcal{A}), \mathbb{Z})$ has non-zero p-torsion, for some $q>1$.

Simplest example: the arrangement of 27 hyperplanes in \mathbb{C}^{8} with

$$
\begin{aligned}
& Q(\mathcal{A})=x y\left(x^{2}-y^{2}\right)\left(x^{2}-z^{2}\right)\left(y^{2}-z^{2}\right) w_{1} w_{2} w_{3} w_{4} w_{5}\left(x^{2}-w_{1}^{2}\right)\left(x^{2}-2 w_{1}^{2}\right)\left(x^{2}-3 w_{1}^{2}\right)\left(x-4 w_{1}\right) \\
& \quad\left((x-y)^{2}-w_{2}^{2}\right)\left((x+y)^{2}-w_{3}^{2}\right)\left((x-z)^{2}-w_{4}^{2}\right)\left((x-z)^{2}-2 w_{4}^{2}\right) \cdot\left((x+z)^{2}-w_{5}^{2}\right)\left((x+z)^{2}-2 w_{5}^{2}\right) .
\end{aligned}
$$

Then $H_{6}(F(\mathcal{A}), \mathbb{Z})$ has 2-torsion (of rank 108).

REFERENCES

(in . Denham, A. Suciu, Multinets, parallel connections, and Milnor fibrations of arrangements, Proc. London Math. Soc. 108 (2014), no. 6, 1435-1470.

- Graham Denham, Alexander I. Suciu, and Sergey Yuzvinsky, Combinatorial covers and vanishing of cohomology, arxiv:1411.7981, to appear in Selecta Math.

围 Graham Denham, Alexander I. Suciu, and Sergey Yuzvinsky, Abelian duality and propagation of resonance, preprint, 2015.

囯 S. Papadima, A. Suciu, The Milnor fibration of a hyperplane arrangement: from modular resonance to algebraic monodromy, arxiv:1401.0868.
A. Suciu, Hyperplane arrangements and Milnor fibrations, Ann. Fac. Sci. Toulouse Math. 23 (2014), no. 2, 417-481.

