
COHOMOLOGY JUMP LOCI AND

DUALITY PROPERTIES

Alex Suciu

Northeastern University

Topology Seminar

Institute of Mathematics of the Romanian Academy

June 1, 2018

ALEX SUCIU (NORTHEASTERN) JUMP LOCI AND DUALITY IMAR TOPOLOGY SEMINAR 1 / 30



OUTLINE

1 JUMP LOCI
Support loci
Homology jump loci
Resonance varieties of a cdgm

2 POINCARÉ DUALITY
Poincaré duality algebras
3-dimensional Poincaré duality algebras

3 CHARACTERISTIC VARIETIES
Characteristic varieties
The Tangent Cone theorem

4 CHARACTERISTIC VARIETIES OF 3-MANIFOLDS
Alexander polynomials
A Tangent Cone theorem for 3-manifolds

5 ABELIAN DUALITY
Duality spaces
Abelian duality spaces
Arrangements of smooth hypersurfaces

ALEX SUCIU (NORTHEASTERN) JUMP LOCI AND DUALITY IMAR TOPOLOGY SEMINAR 2 / 30



JUMP LOCI SUPPORT LOCI

SUPPORT LOCI

Let k be an (algebraically closed) field.

Let S be a commutative, finitely generated k-algebra.

Let Spec(S) = Homk-alg(S, k) be the maximal spectrum of S.

Let E : ¨ ¨ ¨ // Ei
di // Ei´1 // ¨ ¨ ¨ // E0 // 0 be an S-chain complex.

The support varieties of E are the subsets of Spec(S) given by

W i
d (E) = supp

( d
ľ

Hi(E)
)
.

They depend only on the chain-homotopy equivalence class of E .

For each i ě 0, Spec(S) = W i
0(E) ĚW i

1(E) ĚW i
2(E) Ě ¨ ¨ ¨ .

If all Ei are finitely generated S-modules, then the sets W i
d (E) are

Zariski closed subsets of Spec(S).
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JUMP LOCI HOMOLOGY JUMP LOCI

HOMOLOGY JUMP LOCI

The homology jump loci of the S-chain complex E are defined as

V i
d (E) = tm P Spec(S) | dimk Hi(E bS S/m) ě du.

They depend only on the chain-homotopy equivalence class of E .

Get stratifications Spec(S) = V i
0(E) Ě V i

1(E) Ě V i
2(E) Ě ¨ ¨ ¨ .

THEOREM (PAPADIMA–S. 2014)

Suppose E is a chain complex of free, finitely generated S-modules.
Then:

Each V i
d (E) is a Zariski closed subset of Spec(S).

For each q,
ď

iďq

V i
1(E) =

ď

iďq

W i
1(E).
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JUMP LOCI RESONANCE VARIETIES OF A CDGM

RESONANCE VARIETIES OF A CDGM

Let A = (A‚, dA) be a connected, finite-type k-CDGA (char k ‰ 2).

Let M = (M‚, dM) be an A-CDGM.

For each a P Z 1(A) – H1(A), we have a cochain complex,

(M‚, δa) : M0 δ0
a // M1 δ1

a // M2 δ2
a // ¨ ¨ ¨ ,

with differentials δi
a(m) = a ¨m + d(m), for all m P M i .

The resonance varieties of A are the affine varieties

Ri
s(M) = ta P H1(A) | dimk H i(M‚, δa) ě su.

If A is a CGA (that is, dA = 0), the resonance varieties Ri
s(A) are

homogeneous subvarieties of A1.
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JUMP LOCI RESONANCE VARIETIES OF A CDGM

Fix a k-basis te1, . . . ,eru for A1, and let tx1, . . . , xru be the dual
basis for A1 = (A1)˚.

Identify Sym(A1) with S = k[x1, . . . , xr ], the coordinate ring of the
affine space A1.

Cochain complex of free S-modules, L(M) := (M‚ bS, δ):

¨ ¨ ¨ // M i bS δi
// M i+1 bS δi+1

// M i+2 bS // ¨ ¨ ¨ ,

where δi(mb f ) =
řn

j=1 ejmb f xj + d(m)b f .

The specialization of (M bS, δ) at a P Z 1(A) is (M, δa).

Hence, Ri
s(M) is the zero-set of the ideal generated by all minors

of size bi(M)´ s + 1 of the block-matrix δi+1 ‘ δi .

In particular, R1
s(M) = V (Ir´s(δ1)), the zero-set of the ideal of

codimension s minors of δ1.
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JUMP LOCI RESONANCE VARIETIES OF A CDGM

EXAMPLE (EXTERIOR ALGEBRA)

Let E =
Ź

V , where V = kn, and S = Sym(V ). Then L(E) is the
Koszul complex on V . E.g., for n = 3:

S
( x3 ´x2 x1 )// S3

( x2 ´x1 0
x3 0 ´x1
0 x3 ´x2

)
// S3

( x1
x2
x3

)
// S .

This chain complex provides a free resolution ε : L(E)Ñ k of the trivial
S-module k. Hence,

Ri
s(E) =

#

t0u if s ď (n
i ),

H otherwise.
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JUMP LOCI RESONANCE VARIETIES OF A CDGM

EXAMPLE (NON-ZERO RESONANCE)

Let A =
Ź

(e1,e2,e3)/xe1e2y, and set S = k[x1, x2, x3]. Then

L(A) : S2

(
x3 0 ´x1
0 x3 ´x2

)
// S3

( x1
x2
x3

)
// S .

R1
s(A) =

$

&

%

tx3 = 0u if s = 1,
t0u if s = 2 or 3,
H if s ą 3.

EXAMPLE (NON-LINEAR RESONANCE)

Let A =
Ź

(e1, . . . ,e4)/xe1e3,e2e4,e1e2 + e3e4y. Then

L(A) : S3

(
x4 0 0 ´x1
0 x3 ´x2 0
´x2 x1 x4 ´x3

)
// S4

 x1
x2
x3
x4


// S .

R1
1(A) = tx1x2 + x3x4 = 0u
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JUMP LOCI RESONANCE VARIETIES OF A CDGM

THEOREM (DENHAM–S. 2018)

Let A be a connected k-CDGA with locally finite cohomology. For every
A-CDGM M and for every i , s ě 0

TC0(Ri
s(M)) Ď Ri

s(H
.(M)).

In general, we cannot replace TC0(Ri(M)) by Ri(M).

EXAMPLE

Let M = A =
Ź

(a,b) with da = 0, db = b ¨ a.
Then R1(A) = t0,1u is not contained in R1(H.(A)) = t0u, though
TC0(R1(A)) = t0u is.
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POINCARÉ DUALITY POINCARÉ DUALITY ALGEBRAS

POINCARÉ DUALITY ALGEBRAS

Let A be a graded, graded-commutative algebra over a field k.
A =

À

iě0 Ai , where Ai are k-vector spaces.
¨ : Ai bAj Ñ Ai+j .
ab = (´1)ijba for all a P Ai , b P Aj .

We will assume that A is connected (A0 = k ¨ 1), and locally finite
(all the Betti numbers bi(A) := dimk Ai are finite).

A is a Poincaré duality k-algebra of dimension n if there is a
k-linear map ε : An Ñ k (called an orientation) such that all the
bilinear forms Ai bk An´i Ñ k, ab b ÞÑ ε(ab) are non-singular.
Consequently,

bi (A) = bn´i (A), and Ai = 0 for i ą n.
ε is an isomorphism.
The maps PD : Ai Ñ (An´i )˚, PD(a)(b) = ε(ab) are isomorphisms.
Each a P Ai has a Poincaré dual, a_ P An´i , such that ε(aa_) = 1.
The orientation class is defined as ωA = 1_, so that ε(ωA) = 1.
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POINCARÉ DUALITY POINCARÉ DUALITY ALGEBRAS

THE ASSOCIATED ALTERNATING FORM

Associated to a k-PDn algebra there is an alternating n-form,

µA :
ŹnA1 Ñ k, µA(a1 ^ ¨ ¨ ¨ ^ an) = ε(a1 ¨ ¨ ¨ an).

Assume now that n = 3, and set r = b1(A). Fix a basis
te1, . . . ,eru for A1, and let te_1 , . . . ,e_r u be the dual basis for A2.

The multiplication in A, then, is given on basis elements by

eiej =
r

ÿ

k=1

µijk e_k , eie_j = δij ω,

where µijk = µ(ei ^ ej ^ ek ).

Alternatively, let Ai = (Ai)˚, and let ei P A1 be the (Kronecker)
dual of ei . We may then view µ dually as a trivector,

µ =
ÿ

µijk ei ^ ej ^ ek P
Ź3A1,

which encodes the algebra structure of A.
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POINCARÉ DUALITY POINCARÉ DUALITY ALGEBRAS

POINCARÉ DUALITY IN ORIENTABLE MANIFOLDS

If M is a compact, connected, orientable, n-dimensional manifold,
then the cohomology ring A = H.(M,k) is a PDn algebra over k.

Sullivan (1975): for every finite-dimensional Q-vector space V and
every alternating 3-form µ P

Ź3V ˚, there is a closed 3-manifold M
with H1(M,Q) = V and cup-product form µM = µ.

Such a 3-manifold can be constructed via “Borromean surgery."

If M bounds an oriented 4-manifold W such that the cup-product
pairing on H2(W ,M) is non-degenerate (e.g., if M is the link of an
isolated surface singularity), then µM = 0.
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POINCARÉ DUALITY POINCARÉ DUALITY ALGEBRAS

RESONANCE VARIETIES OF PD-ALGEBRAS

Let A be a PDn algebra.

For all 0 ď i ď n and all a P A1, the square

(An´i)˚
(δn´i´1

a )˚ // (An´i´1)˚

Ai δi
a //

PD –

OO

Ai+1

PD –

OO

commutes up to a sign of (´1)i .

Consequently, (
H i(A, δa)

)˚
– Hn´i(A, δ´a).

Hence, for all i and s,
Ri

s(A) = Rn´i
s (A).

In particular, Rn
1(A) = t0u.
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POINCARÉ DUALITY 3-DIMENSIONAL POINCARÉ DUALITY ALGEBRAS

3-DIMENSIONAL POINCARÉ DUALITY ALGEBRAS

Let A be a PD3-algebra with b1(A) = r ą 0. Then
R3

1(A) = R0
1(A) = t0u.

R2
s(A) = R1

s(A) for 1 ď s ď r .

Ri
s(A) = H, otherwise.

Write Rs(A) = R1
s(A). Then

R2k (A) = R2k+1(A) if r is even.

R2k´1(A) = R2k (A) if r is odd.

If µA has rank r ě 3, then Rr´2(A) = Rr´1(A) = Rr (A) = t0u.

If r ě 4, and k = k̄, then dimR1(A) ě null(µA) ě 2.

Here, the rank of a form µ :
Ź3 V Ñ k is the minimum dimension of

a linear subspace W Ă V such that µ factors through
Ź3 W .

The nullity of µ is the maximum dimension of a subspace U Ă V
such that µ(a^ b^ c) = 0 for all a,b P U and c P V .
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POINCARÉ DUALITY 3-DIMENSIONAL POINCARÉ DUALITY ALGEBRAS

If r is even, then R1(A) = R0(A) = A1.

If r = 2g + 1 ą 1, then R1(A) ‰ A1 if and only if µA is “generic” (in
the sense of [Berceanu–Papadima 1994]), that is, there is a c P A1

such that the 2-form γc P
Ź2 A1,

γc(a^ b) = µA(a^ b^ c)

has maximal rank, i.e., γ
g
c ‰ 0 in

Ź2g A1.

In that case, the principal minors of the skew-symmetric r ˆ r
matrix δ1 satisfy pf(δ1(i ; i)) = (´1)i+1xi Pf(µA), and so

R1(A) = tPf(µA) = 0u.

EXAMPLE

Let M = Σg ˆS1, where g ě 2. Then µM =
řg

i=1 aibic is generic, and
Pf(µM) = xg´1

2g+1. Hence, R1 = ¨ ¨ ¨ = R2g´2 = tx2g+1 = 0u and
R2g´1 = R2g = R2g+1 = t0u.
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POINCARÉ DUALITY 3-DIMENSIONAL POINCARÉ DUALITY ALGEBRAS

Using recent work of De Poi, Faenzi, Mezzetti, and Ranestad, I get:

THEOREM

Let A be a PD3-algebra, and set n = dimA1. Suppose rankγc ą 2, for
all non-zero c P A1. Then:

If n is odd, then R1
1(A) is a hypersurface of degree (n´ 3)/2

which is smooth if n ď 7, and singular in codimension 5 if n ě 9.
If n is even, then R1

2(A) is a subvariety of codimension 3 and
degree 1

4 (
n´1

3 ) + 1, which is smooth if n ď 10, and is singular in
codimension 7 if n ě 12.
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POINCARÉ DUALITY 3-DIMENSIONAL POINCARÉ DUALITY ALGEBRAS

RESONANCE VARIETIES OF 3-FORMS OF LOW RANK

n µ R1
3 123 0

n µ R1 = R2 R3
5 125+345 tx5 = 0u 0

n µ R1 R2 = R3 R4
6 123+456 C6 tx1 = x2 = x3 = 0uY tx4 = x5 = x6 = 0u 0

123+236+456 C6 tx3 = x5 = x6 = 0u 0

n µ R1 = R2 R3 = R4 R5
7 147+257+367 tx7 = 0u tx7 = 0u 0

456+147+257+367 tx7 = 0u tx4 = x5 = x6 = x7 = 0u 0
123+456+147 tx1 = 0uY tx4 = 0u tx1 = x2 = x3 = x4 = 0uY tx1 = x4 = x5 = x6 = 0u 0

123+456+147+257 tx1x4 + x2x5 = 0u tx1 = x2 = x4 = x5 = x2
7 ´ x3x6 = 0u 0

123+456+147+257+367 tx1x4 + x2x5 + x3x6 = x2
7 u 0 0

n µ R1 R2 = R3 R4 = R5 R6
8 147+257+367+358 C8 tx7 = 0u tx3 =x5 =x7 =x8 =0uYtx1 =x3 =x4 =x5 =x7 =0u 0

456+147+257+367+358 C8 tx5 = x7 = 0u tx3 = x4 = x5 = x7 = x1x8 + x2
6 = 0u 0

123+456+147+358 C8 tx1 = x5 = 0uY tx3 = x4 = 0u tx1 = x3 = x4 = x5 = x2x6 + x7x8 = 0u 0
123+456+147+257+358 C8 tx1 = x5 = 0uY tx3 = x4 = x5 = 0u tx1 = x2 = x3 = x4 = x5 = x7 = 0u 0

123+456+147+257+367+358 C8 tx3 = x5 = x1x4´ x2
7 = 0u tx1 = x2 = x3 = x4 = x5 = x6 = x7 = 0u 0

147+268+358 C8 tx1 = x4 = x7 = 0uY tx8 = 0u tx1 =x4 =x7 =x8 =0uYtx2 =x3 =x5 =x6 =x8 =0u 0
147+257+268+358 C8 L1Y L2Y L3 L1Y L2 0

456+147+257+268+358 C8 C1YC2 L1Y L2 0
147+257+367+268+358 C8 L1Y L2Y L3Y L4 L1

1Y L1
2Y L1

3 0
456+147+257+367+268+358 C8 C1YC2YC3 L1Y L2Y L3 0

123+456+147+268+358 C8 C1YC2 L 0
123+456+147+257+268+358 C8 tf1 = ¨ ¨ ¨ = f20 = 0u 0 0

123+456+147+257+367+268+358 C8 tg1 = ¨ ¨ ¨ = g20 = 0u 0 0
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CHARACTERISTIC VARIETIES CHARACTERISTIC VARIETIES

CHARACTERISTIC VARIETIES

Let X be a connected, finite-type CW-complex. Then
π = π1(X , x0) is a finitely presented group, with πab – H1(X ,Z).

The ring R = C[πab] is the coordinate ring of the character group,
Char(X ) = Hom(π,C˚) – (C˚)r ˆTors(πab), where r = b1(X ).

The characteristic varieties of X are the homology jump loci

V i
s(X ) = tρ P Char(X ) | dimHi(X ,Cρ) ě su.

These varieties are homotopy-type invariants of X , with V1
s (X )

depending only on π = π1(X ).

Set V1(π) := V1
1 (K (π,1)); then V1(π) = V1(π/π2).

EXAMPLE

Let f P Z[t˘1
1 , . . . , t˘1

n ] be a Laurent polynomial, f (1) = 0. There is then
a finitely presented group π with πab = Zn such that V1(π) = V (f ).
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CHARACTERISTIC VARIETIES CHARACTERISTIC VARIETIES

EXAMPLE (CIRCLE)

Let X = S1. We have (S1)ab = R. Identify π1(S1, ˚) = Z = xty and
ZZ = Z[t˘1]. Then:

C˚((S1)ab) : 0 // Z[t˘1]
t´1 // Z[t˘1] // 0

For each ρ P Hom(Z, k˚) = k˚, get a chain complex

C˚(ĂS1)bZZ kρ : 0 // k
ρ´1 // k // 0

which is exact, except for ρ = 1, when H0(S1,k) = H1(S1, k) = k.
Hence:

V0
1 (S

1) = V1
1 (S

1) = t1u

and V i
s(S1) = H, otherwise.
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CHARACTERISTIC VARIETIES CHARACTERISTIC VARIETIES

EXAMPLE (TORUS)

Identify π1(T n) = Zn, and Hom(Zn,k˚) = (k˚)n. Then:

V i
s(T

n) =

"

t1u if s ď (n
i ),

H otherwise.

EXAMPLE (WEDGE OF CIRCLES)

Identify π1(
Žn S1) = Fn, and Hom(Fn, k˚) = (k˚)n. Then:

V1
s
( n

ł

S1) =
$

&

%

(k˚)n if s ă n,
t1u if s = n,
H if s ą n.

EXAMPLE (ORIENTABLE SURFACE OF GENUS g ą 1)

V1
s (Σg) =

$

&

%

(k˚)2g if s ă 2g ´ 1,
t1u if s = 2g ´ 1,2g,
H if s ą 2g.
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CHARACTERISTIC VARIETIES THE TANGENT CONE THEOREM

TANGENT CONES

Let exp : H1(X ,C)Ñ H1(X ,C˚) be the coefficient homomorphism
induced by C Ñ C˚, z ÞÑ ez .

Let W = V (I), a Zariski closed subset of Char(G) = H1(X ,C˚).

The tangent cone at 1 to W is TC1(W ) = V (in(I)).

The exponential tangent cone at 1 to W :

τ1(W ) = tz P H1(X ,C) | exp(λz) P W , @λ P Cu.

Both tangent cones are homogeneous subvarieties of H1(X ,C);
are non-empty iff 1 P W ; depend only on the analytic germ of W
at 1; commute with finite unions and arbitrary intersections.
τ1(W ) Ď TC1(W ), with = if all irred components of W are subtori,
but ‰ in general.
τ1(W ) is a finite union of rationally defined subspaces.
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CHARACTERISTIC VARIETIES THE TANGENT CONE THEOREM

THE TANGENT CONE THEOREM

Let X be a connected CW-complex with finite q-skeleton. Suppose X
admits a q-finite q-model A.

THEOREM

For all i ď q and all s:
(DPS 2009, Dimca–Papadima 2014) V i

s(X )(1) – Ri
s(A)(0).

(Budur–Wang 2017) All the irreducible components of V i
s(X )

passing through the origin of Char(X ) are algebraic subtori.

Consequently,

τ1(V i
s(X )) = TC1(V i

s(X )) = Ri
s(A).

THEOREM (PAPADIMA–S. 2017)

A f.g. group G admits a 1-finite 1-model if and only if the Malcev Lie
algebra m(G) is the LCS completion of a finitely presented Lie algebra.
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CHARACTERISTIC VARIETIES OF 3-MANIFOLDS ALEXANDER POLYNOMIALS

ALEXANDER POLYNOMIALS OF 3-MANIFOLDS

Let H = H1(X ,Z)/Tors.

The Alexander polynomial ∆X P Z[H ] is the gcd of the
codimension 1 minors of the Alexander matrix of π1(X ).

PROPOSITION

Let λ be a Laurent polynomial in n ď 3 variables such that λ̄ = λ and
λ(1) ‰ 0. Then λ can be realized as the Alexander polynomial ∆M of a
closed, orientable 3-manifold M with b1(M) = n.

Set W1
1 (M) = V1(M)X Char0(M).

PROPOSITION

Let M be a closed, orientable, 3-dimensional manifold. Then

W1
1 (M) = V (∆M)Y t1u.

If, moreover, b1(M) ě 4, then W1
1 (M) = V (∆M).
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CHARACTERISTIC VARIETIES OF 3-MANIFOLDS A TANGENT CONE THEOREM FOR 3-MANIFOLDS

A TANGENT CONE THEOREM FOR 3-MANIFOLDS

THEOREM

Let M be a closed, orientable, 3-dimensional manifold. Suppose b1(M)
is odd and µM is generic. Then TC1(V1

1 (M)) = R1
1(M).

If b1(M) is even, the conclusion may or may not hold:

Let M = S1 ˆS2#S1 ˆS2; then V1
1 (M) = Char(M) = (C˚)2, and

so TC1(V1
1 (M)) = R1

1(M) = C2.

Let M be the Heisenberg nilmanifold; then TC1(V1
1 (M)) = t0u,

whereas R1
1(M) = C2.

Let M be a closed, orientable 3-manifold with b1 = 7 and
µ = e1e3e5 + e1e4e7 + e2e5e7 + e3e6e7 + e4e5e6. Then µ is
generic and Pf(µ) = (x2

5 + x2
7 )

2. Hence, R1
1(M) = tx2

5 + x2
7 = 0u

splits as a union of two hyperplanes over C, but not over Q.
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CHARACTERISTIC VARIETIES OF 3-MANIFOLDS A TANGENT CONE THEOREM FOR 3-MANIFOLDS

The above theorem does not hold in higher depth.

EXAMPLE

Let M be a closed, orientable 3-manifold with b1(M) = 10 and
intersection 3-form

µM = e1e2e5 + e1e3e6 + e2e3e7 + e1e4e8 + e2e4e9 + e3e4e10.

R1
7(M) – tz P C6 | z1z6 ´ z2z5 + z3z4 = 0u, an irreducible quadric

with an isolated singular point at 0.
V1

s (M) Ď t1u, for all s ě 1.
Thus, TC1(V1

7 (M)) ‰ R1
7(M), showing that M is not 1-formal.

ALEX SUCIU (NORTHEASTERN) JUMP LOCI AND DUALITY IMAR TOPOLOGY SEMINAR 25 / 30



ABELIAN DUALITY DUALITY SPACES

DUALITY SPACES

A more general notion of duality is due to Bieri and Eckmann (1978).

Let X be a connected, finite-type CW-complex, and set π = π1(X , x0).

X is a duality space of dimension n if H i(X ,Zπ) = 0 for i ‰ n and
Hn(X ,Zπ) ‰ 0 and torsion-free.

Let D = Hn(X ,Zπ) be the dualizing Zπ-module. Given any
Zπ-module A, we have H i(X ,A) – Hn´i(X ,D bA).

If D = Z, with trivial Zπ-action, then X is a Poincaré duality
space.

If X = K (π,1) is a duality space, then π is a duality group.
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ABELIAN DUALITY ABELIAN DUALITY SPACES

ABELIAN DUALITY SPACES

We introduce in [Denham–S.–Yuzvinsky 2016/17] an analogous
notion, by replacing π  πab.

X is an abelian duality space of dimension n if H i(X ,Zπab) = 0
for i ‰ n and Hn(X ,Zπab) ‰ 0 and torsion-free.

Let B = Hn(X ,Zπab) be the dualizing Zπab-module. Given any
Zπab-module A, we have H i(X ,A) – Hn´i(X ,B bA).

The two notions of duality are independent:

EXAMPLE

Surface groups of genus at least 2 are not abelian duality groups,
though they are (Poincaré) duality groups.

Let π = Z2 ˚G, where
G = xx1, . . . , x4 | x´2

1 x2x1x´1
2 , . . . , x´2

4 x1x4x´1
1 y

is Higman’s acyclic group. Then π is an abelian duality group (of
dimension 2), but not a duality group.
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ABELIAN DUALITY ARRANGEMENTS OF SMOOTH HYPERSURFACES

THEOREM (DSY)

Let X be an abelian duality space of dimension n. Then:
b1(X ) ě n´ 1.
bi(X ) ‰ 0, for 0 ď i ď n and bi(X ) = 0 for i ą n.
(´1)nχ(X ) ě 0.
The characteristic varieties propagate, i.e., V1

1 (X ) Ď ¨ ¨ ¨ Ď Vn
1 (X ).

THEOREM (DENHAM–S. 2018)

Let U be a connected, smooth, complex quasi-projective variety of
dimension n. Suppose U has a smooth compactification Y for which

1 Components of Y zU form an arrangement of hypersurfaces A;
2 For each submanifold X in the intersection poset L(A), the

complement of the restriction of A to X is a Stein manifold.
Then U is both a duality space and an abelian duality space of
dimension n.
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ABELIAN DUALITY ARRANGEMENTS OF SMOOTH HYPERSURFACES

LINEAR, ELLIPTIC, AND TORIC ARRANGEMENTS

THEOREM (DS18)

Suppose that A is one of the following:

1 An affine-linear arrangement in Cn, or a hyperplane arrangement
in CPn;

2 A non-empty elliptic arrangement in En;

3 A toric arrangement in (C˚)n.
Then the complement M(A) is both a duality space and an abelian
duality space of dimension n´ r , n + r , and n, respectively, where r is
the corank of the arrangement.

This theorem extends several previous results:
1 Davis, Januszkiewicz, Leary, and Okun (2011);
2 Levin and Varchenko (2012);
3 Davis and Settepanella (2013), Esterov and Takeuchi (2018).
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