COHOMOLOGY JUMP LOCI AND DUALITY PROPERTIES

Alex Suciu

Northeastern University

Topology Seminar Institute of Mathematics of the Romanian Academy June 1, 2018

ALEX SUCIU (NORTHEASTERN)

1 JUMP LOCI

- Support loci
- Homology jump loci
- Resonance varieties of a cdgm
- 2 POINCARÉ DUALITY
 - Poincaré duality algebras
 - 3-dimensional Poincaré duality algebras
- **3** CHARACTERISTIC VARIETIES
 - Characteristic varieties
 - The Tangent Cone theorem
- 4 CHARACTERISTIC VARIETIES OF 3-MANIFOLDS
 - Alexander polynomials
 - A Tangent Cone theorem for 3-manifolds
- 5 ABELIAN DUALITY
 - Duality spaces
 - Abelian duality spaces
 - Arrangements of smooth hypersurfaces

SUPPORT LOCI

- Let k be an (algebraically closed) field.
- Let S be a commutative, finitely generated k-algebra.
- Let $Spec(S) = Hom_{k-alg}(S, k)$ be the maximal spectrum of S.
- Let $E: \dots \rightarrow E_i \stackrel{d_i}{\rightarrow} E_{i-1} \rightarrow \dots \rightarrow E_0 \rightarrow 0$ be an *S*-chain complex.
- The support varieties of *E* are the subsets of Spec(*S*) given by

$$\mathcal{W}_d^i(E) = \operatorname{supp}\left(\bigwedge^d H_i(E)\right).$$

- They depend only on the chain-homotopy equivalence class of *E*.
- For each $i \ge 0$, Spec $(S) = W_0^i(E) \supseteq W_1^i(E) \supseteq W_2^i(E) \supseteq \cdots$.
- If all *E_i* are finitely generated *S*-modules, then the sets *Wⁱ_d(E)* are Zariski closed subsets of Spec(*S*).

ALEX SUCIU (NORTHEASTERN)

HOMOLOGY JUMP LOCI

- The homology jump loci of the *S*-chain complex *E* are defined as $\mathcal{V}_{d}^{i}(E) = \{\mathfrak{m} \in \operatorname{Spec}(S) \mid \dim_{\Bbbk} H_{i}(E \otimes_{S} S/\mathfrak{m}) \ge d\}.$
- They depend only on the chain-homotopy equivalence class of *E*.
- Get stratifications $\operatorname{Spec}(S) = \mathcal{V}_0^i(E) \supseteq \mathcal{V}_1^i(E) \supseteq \mathcal{V}_2^i(E) \supseteq \cdots$.

THEOREM (PAPADIMA-S. 2014)

Suppose E is a chain complex of free, finitely generated S-modules. Then:

- Each $\mathcal{V}_d^i(E)$ is a Zariski closed subset of $\operatorname{Spec}(S)$.
- For each q,

$$\bigcup_{i \leq q} \mathcal{V}_1^i(E) = \bigcup_{i \leq q} \mathcal{W}_1^i(E).$$

RESONANCE VARIETIES OF A CDGM

- Let $A = (A^{\bullet}, d_A)$ be a connected, finite-type \Bbbk -CDGA (char $\Bbbk \neq 2$).
- Let $M = (M^{\bullet}, d_M)$ be an A-CDGM.
- For each $a \in Z^1(A) \cong H^1(A)$, we have a cochain complex,

$$(M^{\bullet}, \delta_a): M^0 \xrightarrow{\delta_a^0} M^1 \xrightarrow{\delta_a^1} M^2 \xrightarrow{\delta_a^2} \cdots,$$

with differentials $\delta_a^i(m) = a \cdot m + d(m)$, for all $m \in M^i$.

• The resonance varieties of A are the affine varieties

 $\mathcal{R}^{i}_{s}(M) = \{ a \in H^{1}(A) \mid \dim_{\Bbbk} H^{i}(M^{\bullet}, \delta_{a}) \geq s \}.$

If A is a CGA (that is, d_A = 0), the resonance varieties Rⁱ_s(A) are homogeneous subvarieties of A¹.

- Fix a k-basis $\{e_1, \ldots, e_r\}$ for A^1 , and let $\{x_1, \ldots, x_r\}$ be the dual basis for $A_1 = (A^1)^*$.
- Identify $\text{Sym}(A_1)$ with $S = \Bbbk[x_1, \dots, x_r]$, the coordinate ring of the affine space A^1 .
- Cochain complex of free *S*-modules, $L(M) := (M^{\bullet} \otimes S, \delta)$:

$$\cdots \longrightarrow M^{i} \otimes S \xrightarrow{\delta^{i}} M^{i+1} \otimes S \xrightarrow{\delta^{i+1}} M^{i+2} \otimes S \longrightarrow \cdots,$$

where $\delta^{i}(m \otimes f) = \sum_{j=1}^{n} e_{j}m \otimes fx_{j} + d(m) \otimes f$.

- The specialization of $(M \otimes S, \delta)$ at $a \in Z^1(A)$ is (M, δ_a) .
- Hence, Rⁱ_s(M) is the zero-set of the ideal generated by all minors of size b_i(M) − s + 1 of the block-matrix δⁱ⁺¹ ⊕ δⁱ.
- In particular, R¹_s(M) = V(I_{r-s}(δ¹)), the zero-set of the ideal of codimension s minors of δ¹.

EXAMPLE (EXTERIOR ALGEBRA)

Let $E = \bigwedge V$, where $V = \Bbbk^n$, and S = Sym(V). Then L(E) is the Koszul complex on V. E.g., for n = 3:

$$S^{(\frac{x_{3}-x_{2}}{3}x_{1})}S^{3} \xrightarrow{\begin{pmatrix} x_{2}-x_{1}&0\\x_{3}&0&-x_{1}\\0&x_{3}&-x_{2} \end{pmatrix}} S^{3} \xrightarrow{\begin{pmatrix} x_{1}\\x_{2}\\x_{3} \end{pmatrix}} S^{3} \xrightarrow{\begin{pmatrix} x_{1}\\x_{2}\\x_{3} \end{pmatrix}} S^{3}$$

This chain complex provides a free resolution ε : $L(E) \rightarrow \Bbbk$ of the trivial *S*-module \Bbbk . Hence,

$$\mathcal{R}_{s}^{i}(E) = \begin{cases} \{0\} & \text{if } s \leqslant \binom{n}{i}, \\ \varnothing & \text{otherwise.} \end{cases}$$

ALEX SUCIU (NORTHEASTERN)

EXAMPLE (NON-ZERO RESONANCE)

Let $A = \bigwedge (e_1, e_2, e_3) / \langle e_1 e_2 \rangle$, and set $S = \Bbbk [x_1, x_2, x_3]$. Then

$$\mathbf{L}(\mathbf{A}): S^2 \xrightarrow{\begin{pmatrix} x_3 & 0 & -x_1 \\ 0 & x_3 & -x_2 \end{pmatrix}} S^3 \xrightarrow{\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}} S.$$

$$\mathcal{R}_{s}^{1}(A) = \begin{cases} \{x_{3} = 0\} & \text{if } s = 1, \\ \{0\} & \text{if } s = 2 \text{ or } 3, \\ \emptyset & \text{if } s > 3. \end{cases}$$

EXAMPLE (NON-LINEAR RESONANCE)

Let $A = \bigwedge (e_1, \dots, e_4) / \langle e_1 e_3, e_2 e_4, e_1 e_2 + e_3 e_4 \rangle$. Then

$$L(A): S^{3} \xrightarrow{\begin{pmatrix} x_{4} & 0 & 0 & -x_{1} \\ 0 & x_{3} & -x_{2} & 0 \\ -x_{2} & x_{1} & x_{4} & -x_{3} \end{pmatrix}}{} S^{4} \xrightarrow{\begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{pmatrix}} S$$

$$\mathcal{R}_1^1(A) = \{x_1x_2 + x_3x_4 = 0\}$$

THEOREM (DENHAM–S. 2018)

Let A be a connected \Bbbk -CDGA with locally finite cohomology. For every A-CDGM M and for every $i, s \ge 0$

 $\mathsf{TC}_0(\mathcal{R}^i_{\boldsymbol{s}}(\boldsymbol{M})) \subseteq \mathcal{R}^i_{\boldsymbol{s}}(\boldsymbol{H}^{\boldsymbol{\cdot}}(\boldsymbol{M})).$

In general, we cannot replace $TC_0(\mathcal{R}^i(M))$ by $\mathcal{R}^i(M)$.

EXAMPLE

- Let $M = A = \bigwedge (a, b)$ with d a = 0, d $b = b \cdot a$.
- Then $\mathcal{R}^1(A) = \{0, 1\}$ is not contained in $\mathcal{R}^1(H^{\boldsymbol{\cdot}}(A)) = \{0\}$, though $\mathsf{TC}_0(\mathcal{R}^1(A)) = \{0\}$ is.

POINCARÉ DUALITY ALGEBRAS

- Let A be a graded, graded-commutative algebra over a field \Bbbk .
 - $A = \bigoplus_{i \ge 0} A^i$, where A^i are k-vector spaces.
 - $: A^i \otimes A^j \to A^{i+j}.$
 - $ab = (-1)^{ij}ba$ for all $a \in A^i$, $b \in A^j$.
- We will assume that A is connected (A⁰ = k ⋅ 1), and locally finite (all the Betti numbers b_i(A) := dim_k Aⁱ are finite).
- *A* is a *Poincaré duality* \Bbbk -*algebra* of dimension *n* if there is a \Bbbk -linear map $\varepsilon \colon A^n \to \Bbbk$ (called an *orientation*) such that all the bilinear forms $A^i \otimes_{\Bbbk} A^{n-i} \to \Bbbk$, $a \otimes b \mapsto \varepsilon(ab)$ are non-singular.
- Consequently,
 - $b_i(A) = b_{n-i}(A)$, and $A^i = 0$ for i > n.
 - ε is an isomorphism.
 - The maps PD: $A^i \to (A^{n-i})^*$, PD $(a)(b) = \varepsilon(ab)$ are isomorphisms.
 - Each $a \in A^i$ has a *Poincaré dual*, $a^{\vee} \in A^{n-i}$, such that $\varepsilon(aa^{\vee}) = 1$.
 - The *orientation class* is defined as $\omega_A = 1^{\vee}$, so that $\varepsilon(\omega_A) = 1$.

THE ASSOCIATED ALTERNATING FORM

- Associated to a \Bbbk -PD_n algebra there is an alternating *n*-form, $\mu_A: \bigwedge^n A^1 \to \Bbbk, \quad \mu_A(a_1 \land \cdots \land a_n) = \varepsilon(a_1 \cdots a_n).$
- Assume now that n = 3, and set $r = b_1(A)$. Fix a basis $\{e_1, \ldots, e_r\}$ for A^1 , and let $\{e_1^{\vee}, \ldots, e_r^{\vee}\}$ be the dual basis for A^2 .
- The multiplication in A, then, is given on basis elements by

$$oldsymbol{e}_ioldsymbol{e}_j = \sum_{k=1} \mu_{ijk} \,oldsymbol{e}_k^{ee}, \quad oldsymbol{e}_ioldsymbol{e}_j^{ee} = \delta_{ij}\omega,$$

where $\mu_{ijk} = \mu(\boldsymbol{e}_i \wedge \boldsymbol{e}_j \wedge \boldsymbol{e}_k)$.

Alternatively, let A_i = (Aⁱ)*, and let eⁱ ∈ A₁ be the (Kronecker) dual of e_i. We may then view μ dually as a trivector,

$$\mu = \sum \mu_{ijk} e^i \wedge e^j \wedge e^k \in \bigwedge^3 A_1,$$

which encodes the algebra structure of A.

ALEX SUCIU (NORTHEASTERN)

POINCARÉ DUALITY IN ORIENTABLE MANIFOLDS

- If *M* is a compact, connected, orientable, *n*-dimensional manifold, then the cohomology ring $A = H^{\bullet}(M, \Bbbk)$ is a PD_n algebra over \Bbbk .
- Sullivan (1975): for every finite-dimensional Q-vector space V and every alternating 3-form $\mu \in \bigwedge^3 V^*$, there is a closed 3-manifold M with $H^1(M, \mathbb{Q}) = V$ and cup-product form $\mu_M = \mu$.
- Such a 3-manifold can be constructed via "Borromean surgery."

• If *M* bounds an oriented 4-manifold *W* such that the cup-product pairing on $H^2(W, M)$ is non-degenerate (e.g., if *M* is the link of an isolated surface singularity), then $\mu_M = 0$.

ALEX SUCIU (NORTHEASTERN)

RESONANCE VARIETIES OF PD-ALGEBRAS

- Let A be a PD_n algebra.
- For all $0 \le i \le n$ and all $a \in A^1$, the square

$$(\mathbf{A}^{n-i})^* \xrightarrow{(\delta_a^{n-i-1})^*} (\mathbf{A}^{n-i-1})^*$$

$$\mathsf{PD} \stackrel{\cong}{\cong} \mathsf{PD} \stackrel{\cong}{\cong} \mathsf{PD} \stackrel{\cong}{\cong} \mathsf{A}^i \xrightarrow{\delta_a^i} \mathsf{A}^{i+1}$$

commutes up to a sign of $(-1)^i$.

Consequently,

$$\left(H^{i}(\boldsymbol{A},\delta_{\boldsymbol{a}})\right)^{*}\cong H^{n-i}(\boldsymbol{A},\delta_{-\boldsymbol{a}}).$$

Hence, for all *i* and *s*,

$$\mathcal{R}^i_{s}(A) = \mathcal{R}^{n-i}_{s}(A).$$

• In particular, $\mathcal{R}_1^n(A) = \{0\}$.

3-DIMENSIONAL POINCARÉ DUALITY ALGEBRAS

- Let *A* be a PD₃-algebra with $b_1(A) = r > 0$. Then
 - $\mathcal{R}_1^3(A) = \mathcal{R}_1^0(A) = \{0\}.$
 - $\mathcal{R}^2_s(A) = \mathcal{R}^1_s(A)$ for $1 \leq s \leq r$.
 - $\mathcal{R}_{s}^{i}(A) = \emptyset$, otherwise.
- Write *R_s(A)* = *R*¹_s(*A*). Then
 *R*_{2k}(*A*) = *R*_{2k+1}(*A*) if *r* is even.
 *R*_{2k-1}(*A*) = *R*_{2k}(*A*) if *r* is odd.
- If μ_A has rank $r \ge 3$, then $\mathcal{R}_{r-2}(A) = \mathcal{R}_{r-1}(A) = \mathcal{R}_r(A) = \{0\}$.
- If $r \ge 4$, and $\mathbb{k} = \overline{\mathbb{k}}$, then dim $\mathcal{R}_1(A) \ge \operatorname{null}(\mu_A) \ge 2$.
 - Here, the *rank* of a form μ : $\bigwedge^{3} V \to \Bbbk$ is the minimum dimension of a linear subspace $W \subset V$ such that μ factors through $\bigwedge^{3} W$.
 - The *nullity* of µ is the maximum dimension of a subspace U ⊂ V such that µ(a ∧ b ∧ c) = 0 for all a, b ∈ U and c ∈ V.

ALEX SUCIU (NORTHEASTERN)

- If *r* is even, then $\mathcal{R}_1(A) = \mathcal{R}_0(A) = A^1$.
- If r = 2g + 1 > 1, then $\mathcal{R}_1(A) \neq A^1$ if and only if μ_A is "generic" (in the sense of [Berceanu–Papadima 1994]), that is, there is a $c \in A^1$ such that the 2-form $\gamma_c \in \bigwedge^2 A_1$,

 $\gamma_{c}(a \wedge b) = \mu_{A}(a \wedge b \wedge c)$

has maximal rank, i.e., $\gamma_c^g \neq 0$ in $\bigwedge^{2g} A_1$.

• In that case, the principal minors of the skew-symmetric $r \times r$ matrix δ^1 satisfy $pf(\delta^1(i; i)) = (-1)^{i+1} x_i Pf(\mu_A)$, and so $\mathcal{R}_1(A) = \{Pf(\mu_A) = 0\}.$

EXAMPLE

Let $M = \Sigma_g \times S^1$, where $g \ge 2$. Then $\mu_M = \sum_{i=1}^g a_i b_i c$ is generic, and $Pf(\mu_M) = x_{2g+1}^{g-1}$. Hence, $\mathcal{R}_1 = \cdots = \mathcal{R}_{2g-2} = \{x_{2g+1} = 0\}$ and $\mathcal{R}_{2g-1} = \mathcal{R}_{2g} = \mathcal{R}_{2g+1} = \{0\}.$

Using recent work of De Poi, Faenzi, Mezzetti, and Ranestad, I get:

THEOREM

Let A be a PD₃-algebra, and set $n = \dim A^1$. Suppose rank $\gamma_c > 2$, for all non-zero $c \in A^1$. Then:

- If n is odd, then R¹₁(A) is a hypersurface of degree (n − 3)/2 which is smooth if n ≤ 7, and singular in codimension 5 if n ≥ 9.
- If *n* is even, then $\mathcal{R}_2^1(A)$ is a subvariety of codimension 3 and degree $\frac{1}{4}\binom{n-1}{3} + 1$, which is smooth if $n \leq 10$, and is singular in codimension 7 if $n \geq 12$.

RESONANCE VARIETIES OF **3**-FORMS OF LOW RANK

	<u>n</u> 3	μ 123			$\begin{array}{c c} \mathcal{R}_1 = \mathcal{R}_2 & \mathcal{R}_3 \\ \mathcal{R}_5 = 0 \end{array}$	
	· · · · · · · · · · · · · · · · · · ·	μ	\mathcal{R}_1	$\mathcal{R}_2 = \mathcal{R}_3$	· · · · · · · · · · · · · · · · · · ·	
		+456			$x_4 = x_5 = x_6 = 0$ 0	
	$123+236+456 C^6 \{x_3 = x_5 = x_6 = 0\} 0$					
r	μ $\mathcal{R}_1 = \mathcal{R}_2$		$\mathcal{R}_3 = \mathcal{R}_4$		\mathcal{R}_5	
7	11112011001		$\{x_7 = 0\}$	$\{x_7 = 0\}$		0
	456+147+257+367		$\{x_7 = 0\}$	$\{x_4 = x_5 = x_6 = x_7 = 0\}$		0
	123+456+147	$\{x_1 = 0\} \cup \{x_4 = 0\}$		$\{x_1 = x_2 = x_3 = x_4 = 0\} \cup \{x_1 = x_4 = x_5 = x_6 = 0\}$		0
	123+456+147+257	$\{x_1x_4 + x_2x_5 = 0\}$		$\{x_1 = x_2 = x_4 = x_5 = x_7^2 - x_3 x_6 = 0\}$		0
	123+456+147+257+367	$\{x_1 x_4\}$	$_4 + x_2 x_5 + x_3 x_6 = x_7^2 \}$	0		0
n	$\mu \qquad \qquad \mathcal{R}_1 \qquad \qquad \mathcal{R}_2 = \mathcal{R}_3$			$\mathcal{R}_4 = \mathcal{R}_5$		
8	147+257+367+358		$\{x_7 = 0\}$		$\{x_3 = x_5 = x_7 = x_8 = 0\} \cup \{x_1 = x_3 = x_4 = x_5 = x_7 = 0\}$	
	456+147+257+367+358		$\{x_5 = x_7 = 0\}$		$\{x_3 = x_4 = x_5 = x_7 = x_1x_8 + x_6^2 = 0\}$	
	123+456+147+358	C ⁸	$\{x_1 = x_5 = 0\} \cup \{x_3 = x_4 = 0\}$		$\{x_1 = x_3 = x_4 = x_5 = x_2x_6 + x_7x_8 = 0\}$	
	123+456+147+257+358		$\{x_1 = x_5 = 0\} \cup \{x_3 = x_4 = x_5 = 0\}$		$\{x_1 = x_2 = x_3 = x_4 = x_5 = x_7 = 0\}$	
	123+456+147+257+367+358		$\{x_3 = x_5 = x_1x_4 - x_7^2 = 0\}$		$\{x_1 = x_2 = x_3 = x_4 = x_5 = x_6 = x_7 =$	0}
	147+268+358		$\{x_1 = x_4 = x_7 = 0\} \cup \{x_8 = 0\}$		$\{x_1 = x_4 = x_7 = x_8 = 0\} \cup \{x_2 = x_3 = x_5 = x_6 = 0\}$	$x_8 = 0$
	147+257+268+358		$L_1 \cup L_2 \cup L_3$		$L_1 \cup L_2$	
	456+147+257+268+358		$C_1 \cup C_2$		$L_1 \cup L_2$	
	147+257+367+268+358		$L_1 \cup L_2 \cup L_3 \cup L_4$		$L'_1 \cup L'_2 \cup L'_3$	
	456+147+257+367+268+358		$\begin{array}{c} 8 \\ \hline C_1 \cup C_2 \cup C_3 \end{array}$		$L_1 \cup L_2 \cup L_3$	
	123+456+147+268+358		$\begin{array}{c} 3 & C_1 \cup C_2 \\ 3 & \{f_1 = \dots = f_{20} = 0\} \end{array}$		L	
	123+456+147+257+268+358		$\{f_1 = \cdots = f_{20} = 0\}$		0	
	123+456+147+257+367+268+35	58 C ⁸	$\{g_1=\cdots=g_{20}$	= 0}	0	

ALEX SUCIU (NORTHEASTERN)

JUMP LOCI AND DUALITY

IMAR TOPOLOGY SEMINAR 17 / 30

CHARACTERISTIC VARIETIES

- Let *X* be a connected, finite-type CW-complex. Then $\pi = \pi_1(X, x_0)$ is a finitely presented group, with $\pi_{ab} \cong H_1(X, \mathbb{Z})$.
- The ring $R = \mathbb{C}[\pi_{ab}]$ is the coordinate ring of the character group, $\operatorname{Char}(X) = \operatorname{Hom}(\pi, \mathbb{C}^*) \cong (\mathbb{C}^*)^r \times \operatorname{Tors}(\pi_{ab})$, where $r = b_1(X)$.
- The characteristic varieties of X are the homology jump loci $\mathcal{V}_{s}^{i}(X) = \{ \rho \in \operatorname{Char}(X) \mid \dim H_{i}(X, \mathbb{C}_{\rho}) \geq s \}.$
- These varieties are homotopy-type invariants of X, with $\mathcal{V}_s^1(X)$ depending only on $\pi = \pi_1(X)$.
- Set $\mathcal{V}_1(\pi) := \mathcal{V}_1^1(K(\pi, 1))$; then $\mathcal{V}_1(\pi) = \mathcal{V}_1(\pi/\pi'')$.

EXAMPLE

Let $f \in \mathbb{Z}[t_1^{\pm 1}, \ldots, t_n^{\pm 1}]$ be a Laurent polynomial, f(1) = 0. There is then a finitely presented group π with $\pi_{ab} = \mathbb{Z}^n$ such that $\mathcal{V}_1(\pi) = V(f)$.

ALEX SUCIU (NORTHEASTERN)

EXAMPLE (CIRCLE)

Let $X = S^1$. We have $(S^1)^{ab} = \mathbb{R}$. Identify $\pi_1(S^1, *) = \mathbb{Z} = \langle t \rangle$ and $\mathbb{Z}\mathbb{Z} = \mathbb{Z}[t^{\pm 1}]$. Then:

$$C_*((S^1)^{\mathsf{ab}}): 0 \longrightarrow \mathbb{Z}[t^{\pm 1}] \xrightarrow{t-1} \mathbb{Z}[t^{\pm 1}] \longrightarrow 0$$

For each $\rho \in \operatorname{Hom}(\mathbb{Z}, \Bbbk^*) = \Bbbk^*$, get a chain complex

$$C_*(\widetilde{S}^1) \otimes_{\mathbb{Z}\mathbb{Z}} \Bbbk_{\rho} : \mathbf{0} \longrightarrow \Bbbk \xrightarrow{\rho-1} \Bbbk \longrightarrow \mathbf{0}$$

which is exact, except for $\rho = 1$, when $H_0(S^1, \Bbbk) = H_1(S^1, \Bbbk) = \Bbbk$. Hence:

$$\mathcal{V}_1^0(\mathcal{S}^1) = \mathcal{V}_1^1(\mathcal{S}^1) = \{1\}$$

and $\mathcal{V}_{s}^{i}(S^{1}) = \emptyset$, otherwise.

EXAMPLE (TORUS) Identify $\pi_1(T^n) = \mathbb{Z}^n$, and $\operatorname{Hom}(\mathbb{Z}^n, \mathbb{k}^*) = (\mathbb{k}^*)^n$. Then: $\mathcal{V}^i_{\mathcal{S}}(T^n) = \begin{cases} \{1\} & \text{if } \mathcal{S} \leq \binom{n}{i}, \\ \emptyset & \text{otherwise.} \end{cases}$

EXAMPLE (WEDGE OF CIRCLES) Identify $\pi_1(\bigvee^n S^1) = F_n$, and $\operatorname{Hom}(F_n, \Bbbk^*) = (\Bbbk^*)^n$. Then: $\mathcal{V}_s^1(\bigvee^n S^1) = \begin{cases} (\Bbbk^*)^n & \text{if } s < n, \\ \{1\} & \text{if } s = n, \\ \emptyset & \text{if } s > n. \end{cases}$

EXAMPLE (ORIENTABLE SURFACE OF GENUS g > 1)

$$\mathcal{V}^1_s(\Sigma_g) = \begin{cases} (\Bbbk^*)^{2g} & \text{if } s < 2g-1, \\ \{1\} & \text{if } s = 2g-1, 2g, \\ \varnothing & \text{if } s > 2g. \end{cases}$$

TANGENT CONES

- Let exp: H¹(X, C) → H¹(X, C*) be the coefficient homomorphism induced by C → C*, z ↦ e^z.
- Let W = V(I), a Zariski closed subset of $Char(G) = H^1(X, \mathbb{C}^*)$.
- The tangent cone at 1 to W is $TC_1(W) = V(in(I))$.
- The exponential tangent cone at 1 to W:

 $\tau_1(W) = \{ z \in H^1(X, \mathbb{C}) \mid \exp(\lambda z) \in W, \ \forall \lambda \in \mathbb{C} \}.$

- Both tangent cones are homogeneous subvarieties of $H^1(X, \mathbb{C})$; are non-empty iff $1 \in W$; depend only on the analytic germ of W at 1; commute with finite unions and arbitrary intersections.
- τ₁(W) ⊆ TC₁(W), with = if all irred components of W are subtori, but ≠ in general.
- $\tau_1(W)$ is a finite union of rationally defined subspaces.

THE TANGENT CONE THEOREM

Let X be a connected CW-complex with finite q-skeleton. Suppose X admits a q-finite q-model A.

THEOREM

For all $i \leq q$ and all s:

- (DPS 2009, Dimca–Papadima 2014) $\mathcal{V}_{s}^{i}(X)_{(1)} \cong \mathcal{R}_{s}^{i}(A)_{(0)}$.
- (Budur–Wang 2017) All the irreducible components of $\mathcal{V}_{s}^{i}(X)$ passing through the origin of $\operatorname{Char}(X)$ are algebraic subtori.

Consequently,

$$\tau_1(\mathcal{V}_{\boldsymbol{s}}^i(\boldsymbol{X})) = \mathsf{TC}_1(\mathcal{V}_{\boldsymbol{s}}^i(\boldsymbol{X})) = \mathcal{R}_{\boldsymbol{s}}^i(\boldsymbol{A}).$$

THEOREM (PAPADIMA–S. 2017)

A f.g. group G admits a 1-finite 1-model if and only if the Malcev Lie algebra $\mathfrak{m}(G)$ is the LCS completion of a finitely presented Lie algebra.

ALEX SUCIU (NORTHEASTERN)

ALEXANDER POLYNOMIALS OF **3**-MANIFOLDS

• Let $H = H_1(X, \mathbb{Z})/\text{Tors.}$

The Alexander polynomial Δ_X ∈ ℤ[H] is the gcd of the codimension 1 minors of the Alexander matrix of π₁(X).

PROPOSITION

Let λ be a Laurent polynomial in $n \leq 3$ variables such that $\overline{\lambda} = \lambda$ and $\lambda(1) \neq 0$. Then λ can be realized as the Alexander polynomial Δ_M of a closed, orientable 3-manifold M with $b_1(M) = n$.

Set $\mathcal{W}_1^1(M) = \mathcal{V}^1(M) \cap \operatorname{Char}^0(M)$.

PROPOSITION

Let M be a closed, orientable, 3-dimensional manifold. Then

 $\mathcal{W}_1^1(M) = V(\Delta_M) \cup \{1\}.$

If, moreover, $b_1(M) \ge 4$, then $\mathcal{W}_1^1(M) = V(\Delta_M)$.

ALEX SUCIU (NORTHEASTERN)

A TANGENT CONE THEOREM FOR **3**-MANIFOLDS

THEOREM

Let *M* be a closed, orientable, 3-dimensional manifold. Suppose $b_1(M)$ is odd and μ_M is generic. Then $TC_1(\mathcal{V}_1^1(M)) = \mathcal{R}_1^1(M)$.

• If $b_1(M)$ is even, the conclusion may or may not hold:

- Let $M = S^1 \times S^2 \# S^1 \times S^2$; then $\mathcal{V}_1^1(M) = \operatorname{Char}(M) = (\mathbb{C}^*)^2$, and so $\operatorname{TC}_1(\mathcal{V}_1^1(M)) = \mathcal{R}_1^1(M) = \mathbb{C}^2$.
- Let *M* be the Heisenberg nilmanifold; then $TC_1(\mathcal{V}_1^1(M)) = \{0\}$, whereas $\mathcal{R}_1^1(M) = \mathbb{C}^2$.
- Let *M* be a closed, orientable 3-manifold with $b_1 = 7$ and $\mu = e_1e_3e_5 + e_1e_4e_7 + e_2e_5e_7 + e_3e_6e_7 + e_4e_5e_6$. Then μ is generic and $Pf(\mu) = (x_5^2 + x_7^2)^2$. Hence, $\mathcal{R}_1^1(M) = \{x_5^2 + x_7^2 = 0\}$ splits as a union of two hyperplanes over \mathbb{C} , but not over \mathbb{Q} .

The above theorem does not hold in higher depth.

EXAMPLE

Let *M* be a closed, orientable 3-manifold with $b_1(M) = 10$ and intersection 3-form

 $\mu_{M} = e_{1}e_{2}e_{5} + e_{1}e_{3}e_{6} + e_{2}e_{3}e_{7} + e_{1}e_{4}e_{8} + e_{2}e_{4}e_{9} + e_{3}e_{4}e_{10}.$

- $\mathcal{R}_7^1(M) \cong \{z \in \mathbb{C}^6 \mid z_1 z_6 z_2 z_5 + z_3 z_4 = 0\}$, an irreducible quadric with an isolated singular point at 0.
- $\mathcal{V}_s^1(M) \subseteq \{1\}$, for all $s \ge 1$.
- Thus, $TC_1(\mathcal{V}_7^1(M)) \neq \mathcal{R}_7^1(M)$, showing that *M* is not 1-formal.

DUALITY SPACES

A more general notion of duality is due to Bieri and Eckmann (1978). Let *X* be a connected, finite-type CW-complex, and set $\pi = \pi_1(X, x_0)$.

- X is a *duality space* of dimension n if $H^i(X, \mathbb{Z}\pi) = 0$ for $i \neq n$ and $H^n(X, \mathbb{Z}\pi) \neq 0$ and torsion-free.
- Let $D = H^n(X, \mathbb{Z}\pi)$ be the dualizing $\mathbb{Z}\pi$ -module. Given any $\mathbb{Z}\pi$ -module *A*, we have $H^i(X, A) \cong H_{n-i}(X, D \otimes A)$.
- If $D = \mathbb{Z}$, with trivial $\mathbb{Z}\pi$ -action, then X is a Poincaré duality space.
- If $X = K(\pi, 1)$ is a duality space, then π is a *duality group*.

ABELIAN DUALITY SPACES

We introduce in [Denham–S.–Yuzvinsky 2016/17] an analogous notion, by replacing $\pi \rightsquigarrow \pi_{ab}$.

- X is an *abelian duality space* of dimension *n* if $H^i(X, \mathbb{Z}\pi_{ab}) = 0$ for $i \neq n$ and $H^n(X, \mathbb{Z}\pi_{ab}) \neq 0$ and torsion-free.
- Let $B = H^n(X, \mathbb{Z}\pi_{ab})$ be the dualizing $\mathbb{Z}\pi_{ab}$ -module. Given any $\mathbb{Z}\pi_{ab}$ -module A, we have $H^i(X, A) \cong H_{n-i}(X, B \otimes A)$.
- The two notions of duality are independent:

EXAMPLE

- Surface groups of genus at least 2 are not abelian duality groups, though they are (Poincaré) duality groups.
- Let $\pi = \mathbb{Z}^2 * G$, where

 $G = \langle x_1, \dots, x_4 \mid x_1^{-2}x_2x_1x_2^{-1}, \dots, x_4^{-2}x_1x_4x_1^{-1} \rangle$ is Higman's acyclic group. Then π is an abelian duality group (of dimension 2), but not a duality group.

ALEX SUCIU (NORTHEASTERN)

THEOREM (DSY)

Let X be an abelian duality space of dimension n. Then:

- $b_1(X) \ge n-1$.
- $b_i(X) \neq 0$, for $0 \leq i \leq n$ and $b_i(X) = 0$ for i > n.
- $(-1)^n \chi(X) \ge 0.$
- The characteristic varieties propagate, i.e., $\mathcal{V}_1^1(X) \subseteq \cdots \subseteq \mathcal{V}_1^n(X)$.

THEOREM (DENHAM–S. 2018)

Let U be a connected, smooth, complex quasi-projective variety of dimension n. Suppose U has a smooth compactification Y for which

- ① Components of $Y \setminus U$ form an arrangement of hypersurfaces A;
- Por each submanifold X in the intersection poset L(A), the complement of the restriction of A to X is a Stein manifold.

Then U is both a duality space and an abelian duality space of dimension n.

LINEAR, ELLIPTIC, AND TORIC ARRANGEMENTS

THEOREM (DS18)

Suppose that \mathcal{A} is one of the following:

- In affine-linear arrangement in Cⁿ, or a hyperplane arrangement in CPⁿ;
- (2) A non-empty elliptic arrangement in E^n ;
- 3 A toric arrangement in $(\mathbb{C}^*)^n$.

Then the complement $M(\mathcal{A})$ is both a duality space and an abelian duality space of dimension n - r, n + r, and n, respectively, where r is the corank of the arrangement.

This theorem extends several previous results:

- 1 Davis, Januszkiewicz, Leary, and Okun (2011);
- 2 Levin and Varchenko (2012);
- ③ Davis and Settepanella (2013), Esterov and Takeuchi (2018).

REFERENCES

- G. Denham, A.I. Suciu, *Algebraic models and cohomology jump loci*, preprint 2018.
- A.I. Suciu, *Poincaré duality and resonance varieties*, arXiv:1809.01801.
- A.I. Suciu, Cohomology jump loci of 3-manifolds, arXiv:1901.01419.
- G. Denham, A.I. Suciu, and S. Yuzvinsky, *Abelian duality and propagation of resonance*, Selecta Math. **23** (2017), no. 4, 2331–2367.
- G. Denham, A.I. Suciu, *Local systems on arrangements of smooth, complex algebraic hypersurfaces*, Forum of Mathematics, Sigma **6** (2018), e6, 20 pages.