COHOMOLOGY JUMP LOCI AND DUALITY PROPERTIES

Alex Suciu

Northeastern University

Topology Seminar
Institute of Mathematics of the Romanian Academy
June 1, 2018
(1) JUMP LOCI

- Support loci
- Homology jump loci
- Resonance varieties of a cdgm
(2) Poincaré duality
- Poincaré duality algebras
- 3-dimensional Poincaré duality algebras
(3) CHARACTERISTIC VARIETIES
- Characteristic varieties
- The Tangent Cone theorem
(4) CHARACTERISTIC VARIETIES OF 3-MANIFOLDS
- Alexander polynomials
- A Tangent Cone theorem for 3-manifolds
(5) AbELIAN DUALITY
- Duality spaces
- Abelian duality spaces
- Arrangements of smooth hypersurfaces

SUPPORT LOCI

- Let \mathbb{k} be an (algebraically closed) field.
- Let S be a commutative, finitely generated \mathbb{k}-algebra.
- Let $\operatorname{Spec}(S)=\operatorname{Hom}_{\mathbb{k} \text {-alg }}(S, \mathbb{k})$ be the maximal spectrum of S.
- Let $E: \cdots \rightarrow E_{i} \xrightarrow{d_{i}} E_{i-1} \rightarrow \cdots \rightarrow E_{0} \rightarrow 0$ be an S-chain complex.
- The support varieties of E are the subsets of $\operatorname{Spec}(S)$ given by

$$
\mathcal{W}_{d}^{i}(E)=\operatorname{supp}\left(\bigwedge^{d} H_{i}(E)\right)
$$

- They depend only on the chain-homotopy equivalence class of E.
- For each $i \geqslant 0, \operatorname{Spec}(S)=\mathcal{W}_{0}^{i}(E) \supseteq \mathcal{W}_{1}^{i}(E) \supseteq \mathcal{W}_{2}^{i}(E) \supseteq \cdots$.
- If all E_{i} are finitely generated S-modules, then the sets $\mathcal{W}_{d}^{i}(E)$ are Zariski closed subsets of $\operatorname{Spec}(S)$.

Homology jump loci

- The homology jump loci of the S-chain complex E are defined as

$$
\mathcal{V}_{d}^{i}(E)=\left\{\mathfrak{m} \in \operatorname{Spec}(S) \mid \operatorname{dim}_{\mathbb{k}} H_{i}\left(E \otimes_{S} S / \mathfrak{m}\right) \geqslant d\right\} .
$$

- They depend only on the chain-homotopy equivalence class of E.
- Get stratifications $\operatorname{Spec}(S)=\mathcal{V}_{0}^{i}(E) \supseteq \mathcal{V}_{1}^{i}(E) \supseteq \mathcal{V}_{2}^{i}(E) \supseteq \cdots$.

THEOREM (PAPADIMA-S. 2014)

Suppose E is a chain complex of free, finitely generated S-modules. Then:

- Each $\mathcal{V}_{d}^{i}(E)$ is a Zariski closed subset of $\operatorname{Spec}(S)$.
- For each q,

$$
\bigcup_{i \leqslant q} \mathcal{V}_{1}^{i}(E)=\bigcup_{i \leqslant q} \mathcal{W}_{1}^{i}(E)
$$

RESONANCE VARIETIES OF A CDGM

- Let $A=\left(A^{\bullet}, \mathrm{d}_{A}\right)$ be a connected, finite-type \mathbb{k}-CDGA (char $\left.\mathbb{k} \neq 2\right)$.
- Let $M=\left(M^{\bullet}, \mathrm{d}_{M}\right)$ be an $A-$ CDGM.
- For each $a \in Z^{1}(A) \cong H^{1}(A)$, we have a cochain complex,

$$
\left(M^{\bullet}, \delta_{a}\right): M^{0} \xrightarrow{\delta_{a}^{0}} M^{1} \xrightarrow{\delta_{a}^{1}} M^{2} \xrightarrow{\delta_{a}^{2}} \cdots,
$$

with differentials $\delta_{a}^{i}(m)=a \cdot m+\mathrm{d}(m)$, for all $m \in M^{i}$.

- The resonance varieties of A are the affine varieties

$$
\mathcal{R}_{s}^{i}(M)=\left\{a \in H^{1}(A) \mid \operatorname{dim}_{\mathbb{k}} H^{i}\left(M^{\bullet}, \delta_{a}\right) \geqslant s\right\} .
$$

- If A is a CGA (that is, $\mathrm{d}_{A}=0$), the resonance varieties $\mathcal{R}_{S}^{i}(A)$ are homogeneous subvarieties of A^{1}.
- Fix a \mathbb{k}-basis $\left\{e_{1}, \ldots, e_{r}\right\}$ for A^{1}, and let $\left\{x_{1}, \ldots, x_{r}\right\}$ be the dual basis for $A_{1}=\left(A^{1}\right)^{*}$.
- Identify $\operatorname{Sym}\left(A_{1}\right)$ with $S=\mathbb{k}\left[x_{1}, \ldots, x_{r}\right]$, the coordinate ring of the affine space A^{1}.
- Cochain complex of free S-modules, $\mathbf{L}(M):=\left(M^{\bullet} \otimes S, \delta\right)$:

$$
\cdots \longrightarrow M^{i} \otimes S \xrightarrow{\delta^{i}} M^{i+1} \otimes S \xrightarrow{\delta^{i+1}} M^{i+2} \otimes S
$$

where $\quad \delta^{i}(m \otimes f)=\sum_{j=1}^{n} e_{j} m \otimes f x_{j}+d(m) \otimes f$.

- The specialization of $(M \otimes S, \delta)$ at $a \in Z^{1}(A)$ is $\left(M, \delta_{a}\right)$.
- Hence, $\mathcal{R}_{s}^{i}(M)$ is the zero-set of the ideal generated by all minors of size $b_{i}(M)-s+1$ of the block-matrix $\delta^{i+1} \oplus \delta^{i}$.
- In particular, $\mathcal{R}_{s}^{1}(M)=V\left(I_{r-s}\left(\delta^{1}\right)\right)$, the zero-set of the ideal of codimension s minors of δ^{1}.

EXAMPLE (EXTERIOR ALGEBRA)

Let $E=\bigwedge V$, where $V=\mathbb{k}^{n}$, and $S=\operatorname{Sym}(V)$. Then $\mathrm{L}(E)$ is the Koszul complex on V. E.g., for $n=3$:

$$
S \xrightarrow{\left(x_{3}-x_{2} x_{1}\right)} S^{3} \xrightarrow{\left(\begin{array}{ccc}
x_{2} & -x_{1} & 0 \\
x_{3} & 0 & -x_{1} \\
0 & x_{3} & -x_{2}
\end{array}\right)} S^{3} \xrightarrow{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)} S .
$$

This chain complex provides a free resolution $\varepsilon: \mathbf{L}(E) \rightarrow \mathbb{k}$ of the trivial S-module \mathbb{k}. Hence,

$$
\mathcal{R}_{s}^{i}(E)= \begin{cases}\{0\} & \text { if } s \leqslant\binom{ n}{i} \\ \varnothing & \text { otherwise }\end{cases}
$$

EXAMPLE (NON-ZERO RESONANCE)

Let $A=\bigwedge\left(e_{1}, e_{2}, e_{3}\right) /\left\langle e_{1} e_{2}\right\rangle$, and set $S=\mathbb{k}\left[x_{1}, x_{2}, x_{3}\right]$. Then

$$
\begin{aligned}
& \mathbf{L}(A): S^{2} \xrightarrow{\left(\begin{array}{ccc}
x_{3} & 0 & -x_{1} \\
0 & x_{3} & -x_{2}
\end{array}\right)} S^{3} \xrightarrow{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)} S . \\
& \mathcal{R}_{s}^{1}(A)= \begin{cases}\left\{x_{3}=0\right\} & \text { if } s=1, \\
\{0\} & \text { if } s=2 \text { or } 3, \\
\varnothing & \text { if } s>3 .\end{cases}
\end{aligned}
$$

EXAMPLE (NON-LINEAR RESONANCE)
Let $A=\bigwedge\left(e_{1}, \ldots, e_{4}\right) /\left\langle e_{1} e_{3}, e_{2} e_{4}, e_{1} e_{2}+e_{3} e_{4}\right\rangle$. Then

$$
\begin{gathered}
\mathbf{L}(A): S^{3} \xrightarrow{\left(\begin{array}{cccc}
x_{4} & 0 & 0 & -x_{1} \\
0 & x_{3} & -x_{2} & 0 \\
-x_{2} & x_{1} & x_{4} & -x_{3}
\end{array}\right)} S^{4} \xrightarrow{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)} \text { R. } S . \\
\mathcal{R}_{1}^{1}(A)=\left\{x_{1} x_{2}+x_{3} x_{4}=0\right\}
\end{gathered}
$$

THEOREM (DENHAM-S. 2018)

Let A be a connected \mathbb{k}-CDGA with locally finite cohomology. For every A-CDGM M and for every $i, s \geqslant 0$

$$
\mathrm{TC}_{0}\left(\mathcal{R}_{s}^{i}(M)\right) \subseteq \mathcal{R}_{s}^{i}\left(H^{\cdot}(M)\right)
$$

In general, we cannot replace $\mathrm{TC}_{0}\left(\mathcal{R}^{i}(M)\right)$ by $\mathcal{R}^{i}(M)$.

ExAMPLE

- Let $M=A=\bigwedge(a, b)$ with $\mathrm{d} a=0, \mathrm{~d} b=b \cdot a$.
- Then $\mathcal{R}^{1}(A)=\{0,1\}$ is not contained in $\mathcal{R}^{1}\left(H^{\cdot}(A)\right)=\{0\}$, though $\mathrm{TC}_{0}\left(\mathcal{R}^{1}(A)\right)=\{0\}$ is.

POINCARÉ DUALITY ALGEBRAS

- Let A be a graded, graded-commutative algebra over a field \mathbb{k}.
- $A=\oplus_{i \geqslant 0} A^{i}$, where A^{i} are \mathbb{k}-vector spaces.
- $\cdot A^{i} \otimes A^{j} \rightarrow A^{i+j}$.
- $a b=(-1)^{i j}$ ba for all $a \in A^{i}, b \in A^{j}$.
- We will assume that A is connected ($A^{0}=\mathbb{k} \cdot 1$), and locally finite (all the Betti numbers $b_{i}(A):=\operatorname{dim}_{\mathbb{k}} A^{i}$ are finite).
- A is a Poincaré duality \mathbb{k}-algebra of dimension n if there is a \mathbb{k}-linear map $\varepsilon: A^{n} \rightarrow \mathbb{k}$ (called an orientation) such that all the bilinear forms $A^{i} \otimes_{\mathbb{k}} A^{n-i} \rightarrow \mathbb{k}, a \otimes b \mapsto \varepsilon(a b)$ are non-singular.
- Consequently,
- $b_{i}(A)=b_{n-i}(A)$, and $A^{i}=0$ for $i>n$.
- ε is an isomorphism.
- The maps PD: $A^{i} \rightarrow\left(A^{n-i}\right)^{*}, \operatorname{PD}(a)(b)=\varepsilon(a b)$ are isomorphisms.
- Each $a \in A^{i}$ has a Poincaré dual, $a^{\vee} \in A^{n-i}$, such that $\varepsilon\left(a a^{\vee}\right)=1$.
- The orientation class is defined as $\omega_{A}=1^{\vee}$, so that $\varepsilon\left(\omega_{A}\right)=1$.

THE ASSOCIATED ALTERNATING FORM

- Associated to a $\mathbb{k}-\mathrm{PD}_{n}$ algebra there is an alternating n-form,

$$
\mu_{A}: \bigwedge^{n} A^{1} \rightarrow \mathbb{k}, \quad \mu_{A}\left(a_{1} \wedge \cdots \wedge a_{n}\right)=\varepsilon\left(a_{1} \cdots a_{n}\right)
$$

- Assume now that $n=3$, and set $r=b_{1}(A)$. Fix a basis $\left\{e_{1}, \ldots, e_{r}\right\}$ for A^{1}, and let $\left\{e_{1}^{\vee}, \ldots, e_{r}^{\vee}\right\}$ be the dual basis for A^{2}.
- The multiplication in A, then, is given on basis elements by

$$
e_{i} e_{j}=\sum_{k=1}^{r} \mu_{i j k} e_{k}^{\vee}, \quad e_{i} e_{j}^{\vee}=\delta_{i j} \omega,
$$

where $\mu_{i j k}=\mu\left(e_{i} \wedge e_{j} \wedge e_{k}\right)$.

- Alternatively, let $A_{i}=\left(A^{i}\right)^{*}$, and let $e^{i} \in A_{1}$ be the (Kronecker) dual of e_{i}. We may then view μ dually as a trivector,

$$
\mu=\sum \mu_{i j k} e^{i} \wedge e^{j} \wedge e^{k} \in \bigwedge^{3} A_{1}
$$

which encodes the algebra structure of A.

POINCARÉ DUALITY IN ORIENTABLE MANIFOLDS

- If M is a compact, connected, orientable, n-dimensional manifold, then the cohomology ring $A=H^{\cdot}(M, \mathbb{k})$ is a PD_{n} algebra over \mathbb{k}.
- Sullivan (1975): for every finite-dimensional \mathbb{Q}-vector space V and every alternating 3-form $\mu \in \bigwedge^{3} V^{*}$, there is a closed 3-manifold M with $H^{1}(M, \mathbb{Q})=V$ and cup-product form $\mu_{M}=\mu$.
- Such a 3-manifold can be constructed via "Borromean surgery."

- If M bounds an oriented 4-manifold W such that the cup-product pairing on $H^{2}(W, M)$ is non-degenerate (e.g., if M is the link of an isolated surface singularity), then $\mu_{M}=0$.

Resonance varieties of PD-ALGebras

- Let A be a PD_{n} algebra.
- For all $0 \leqslant i \leqslant n$ and all $a \in A^{1}$, the square

$$
\begin{array}{cc}
\left(A^{n-i}\right)^{*} \xrightarrow{\left(\delta_{a}^{n-i-1}\right)^{*}}\left(A^{n-i-1}\right)^{*} \\
\mathrm{PD} \uparrow \xlongequal{\cong} & \mathrm{PD} \uparrow \cong \\
A^{i} \xrightarrow{(} \xrightarrow{\delta_{a}^{i}} & A^{i+1}
\end{array}
$$

commutes up to a sign of $(-1)^{i}$.

- Consequently,

$$
\left(H^{i}\left(A, \delta_{a}\right)\right)^{*} \cong H^{n-i}\left(A, \delta_{-a}\right) .
$$

- Hence, for all i and s,

$$
\mathcal{R}_{s}^{i}(A)=\mathcal{R}_{s}^{n-i}(A) .
$$

- In particular, $\mathcal{R}_{1}^{n}(A)=\{0\}$.

3-DIMENSIONAL Poincaré DUALITY ALGEBRAS

- Let A be a PD_{3}-algebra with $b_{1}(A)=r>0$. Then
- $\mathcal{R}_{1}^{3}(A)=\mathcal{R}_{1}^{0}(A)=\{0\}$.
- $\mathcal{R}_{s}^{2}(A)=\mathcal{R}_{s}^{1}(A)$ for $1 \leqslant s \leqslant r$.
- $\mathcal{R}_{s}^{i}(A)=\varnothing$, otherwise.
- Write $\mathcal{R}_{s}(A)=\mathcal{R}_{s}^{1}(A)$. Then
- $\mathcal{R}_{2 k}(A)=\mathcal{R}_{2 k+1}(A)$ if r is even.
- $\mathcal{R}_{2 k-1}(A)=\mathcal{R}_{2 k}(A)$ if r is odd.
- If μ_{A} has rank $r \geqslant 3$, then $\mathcal{R}_{r-2}(A)=\mathcal{R}_{r-1}(A)=\mathcal{R}_{r}(A)=\{0\}$.
- If $r \geqslant 4$, and $\mathbb{k}=\overline{\mathbb{k}}$, then $\operatorname{dim} \mathcal{R}_{1}(A) \geqslant \operatorname{null}\left(\mu_{A}\right) \geqslant 2$.
- Here, the rank of a form $\mu: \bigwedge^{3} V \rightarrow \mathbb{k}$ is the minimum dimension of a linear subspace $W \subset V$ such that μ factors through $\bigwedge^{3} W$.
- The nullity of μ is the maximum dimension of a subspace $U \subset V$ such that $\mu(a \wedge b \wedge c)=0$ for all $a, b \in U$ and $c \in V$.
- If r is even, then $\mathcal{R}_{1}(A)=\mathcal{R}_{0}(A)=A^{1}$.
- If $r=2 g+1>1$, then $\mathcal{R}_{1}(A) \neq A^{1}$ if and only if μ_{A} is "generic" (in the sense of [Berceanu-Papadima 1994]), that is, there is a $c \in A^{1}$ such that the 2 -form $\gamma_{c} \in \bigwedge^{2} A_{1}$,

$$
\gamma_{c}(a \wedge b)=\mu_{A}(a \wedge b \wedge c)
$$

has maximal rank, i.e., $\gamma_{c}^{g} \neq 0$ in $\bigwedge^{2 g} A_{1}$.

- In that case, the principal minors of the skew-symmetric $r \times r$ matrix δ^{1} satisfy $\operatorname{pf}\left(\delta^{1}(i ; i)\right)=(-1)^{i+1} x_{i} \operatorname{Pf}\left(\mu_{A}\right)$, and so

$$
\mathcal{R}_{1}(A)=\left\{\operatorname{Pf}\left(\mu_{A}\right)=0\right\} .
$$

EXAMPLE

Let $M=\Sigma_{g} \times S^{1}$, where $g \geqslant 2$. Then $\mu_{M}=\sum_{i=1}^{g} a_{i} b_{i} c$ is generic, and $\operatorname{Pf}\left(\mu_{M}\right)=x_{2 g+1}^{g-1}$. Hence, $\mathcal{R}_{1}=\cdots=\mathcal{R}_{2 g-2}=\left\{x_{2 g+1}=0\right\}$ and $\mathcal{R}_{2 g-1}=\mathcal{R}_{2 g}=\mathcal{R}_{2 g+1}=\{0\}$.

Using recent work of De Poi, Faenzi, Mezzetti, and Ranestad, I get:

THEOREM

Let A be a PD_{3}-algebra, and set $n=\operatorname{dim} A^{1}$. Suppose rank $\gamma_{c}>2$, for all non-zero $c \in A^{1}$. Then:

- If n is odd, then $\mathcal{R}_{1}^{1}(A)$ is a hypersurface of degree $(n-3) / 2$ which is smooth if $n \leqslant 7$, and singular in codimension 5 if $n \geqslant 9$.
- If n is even, then $\mathcal{R}_{2}^{1}(A)$ is a subvariety of codimension 3 and degree $\frac{1}{4}\binom{n-1}{3}+1$, which is smooth if $n \leqslant 10$, and is singular in codimension 7 if $n \geqslant 12$.

Resonance varieties of 3-FORMS of LOW RANK

n	μ	\mathcal{R}_{1}					
3	123	0	\quad	n	μ	$\mathcal{R}_{1}=\mathcal{R}_{2}$	\mathcal{R}_{3}
:---:	:---:	:---:	:---:				
5	$125+345$	$\left\{x_{5}=0\right\}$	0				

n	μ	\mathcal{R}_{1}	$\mathcal{R}_{2}=\mathcal{R}_{3}$	\mathcal{R}_{4}
6	$123+456$	\mathbb{C}^{6}	$\left\{x_{1}=x_{2}=x_{3}=0\right\} \cup\left\{x_{4}=x_{5}=x_{6}=0\right\}$	0
	$123+236+456$	\mathbb{C}^{6}	$\left\{x_{3}=x_{5}=x_{6}=0\right\}$	0

n	μ	$\mathcal{R}_{1}=\mathcal{R}_{2}$	$\mathcal{R}_{3}=\mathcal{R}_{4}$	\mathcal{R}_{5}
7	$147+257+367$	$\left\{x_{7}=0\right\}$	$\left\{x_{7}=0\right\}$	0
	$456+147+257+367$	$\left\{x_{7}=0\right\}$	$\left\{x_{4}=x_{5}=x_{6}=x_{7}=0\right\}$	0
	$123+456+147$	$\left\{x_{1}=0\right\} \cup\left\{x_{4}=0\right\}$	$\left\{x_{1}=x_{2}=x_{3}=x_{4}=0\right\} \cup\left\{x_{1}=x_{4}=x_{5}=x_{6}=0\right\}$	0
	$123+456+147+257$	$\left\{x_{1} x_{4}+x_{2} x_{5}=0\right\}$	$\left\{x_{1}=x_{2}=x_{4}=x_{5}=x_{7}^{2}-x_{3} x_{6}=0\right\}$	0
	$123+456+147+257+367$	$\left\{x_{1} x_{4}+x_{2} x_{5}+x_{3} x_{6}=x_{7}^{2}\right\}$	0	0

n	μ	\mathcal{R}_{1}	$\mathcal{R}_{2}=\mathcal{R}_{3}$	$\mathcal{R}_{4}=\mathcal{R}_{5}$
8	147+257+367+358	C^{8}	$\left\{x_{7}=0\right\}$	$\left\{x_{3}=x_{5}=x_{7}=x_{8}=0\right\} \cup\left\{x_{1}=x_{3}=x_{4}=x_{5}=x_{7}=0\right\}$
	456+147+257+367+358	C^{8}	$\left\{x_{5}=x_{7}=0\right\}$	$\left\{x_{3}=x_{4}=x_{5}=x_{7}=x_{1} x_{8}+x_{6}^{2}=0\right\}$
	$123+456+147+358$	C^{8}	$\left\{x_{1}=x_{5}=0\right\} \cup\left\{x_{3}=x_{4}=0\right\}$	$\left\{x_{1}=x_{3}=x_{4}=x_{5}=x_{2} x_{6}+x_{7} x_{8}=0\right\}$
	$123+456+147+257+358$	C^{8}	$\left\{x_{1}=x_{5}=0\right\} \cup\left\{x_{3}=x_{4}=x_{5}=0\right\}$	$\left\{x_{1}=x_{2}=x_{3}=x_{4}=x_{5}=x_{7}=0\right\}$
	$123+456+147+257+367+358$	C^{8}	$\left\{x_{3}=x_{5}=x_{1} x_{4}-x_{7}^{2}=0\right\}$	$\left\{x_{1}=x_{2}=x_{3}=x_{4}=x_{5}=x_{6}=x_{7}=0\right\}$
	147+268+358	C^{8}	$\left\{x_{1}=x_{4}=x_{7}=0\right\} \cup\left\{x_{8}=0\right\}$	$\left\{x_{1}=x_{4}=x_{7}=x_{8}=0\right\} \cup\left\{x_{2}=x_{3}=x_{5}=x_{6}=x_{8}=0\right\}$
	$147+257+268+358$	C^{8}	$L_{1} \cup L_{2} \cup L_{3}$	$L_{1} \cup L_{2}$
	456+147+257+268+358	C^{8}	$C_{1} \cup C_{2}$	$L_{1} \cup L_{2}$
	147+257+367+268+358	C^{8}	$L_{1} \cup L_{2} \cup L_{3} \cup L_{4}$	$L_{1}^{\prime} \cup L_{2}^{\prime} \cup L_{3}^{\prime}$
	$456+147+257+367+268+358$	C^{8}	$C_{1} \cup C_{2} \cup C_{3}$	$L_{1} \cup L_{2} \cup L_{3}$
	$123+456+147+268+358$	C^{8}	$C_{1} \cup C_{2}$	L
	$123+456+147+257+268+358$	C^{8}	$\left\{f_{1}=\cdots=f_{20}=0\right\}$	0
	$123+456+147+257+367+268+358$	C^{8}	$\left\{g_{1}=\cdots=g_{20}=0\right\}$	0

Alex Suciu (Northeastern)
JUMP LOCI AND DUALITY
IMAR TOPOLOGY SEMINAR

CHARACTERISTIC VARIETIES

- Let X be a connected, finite-type CW-complex. Then $\pi=\pi_{1}\left(X, x_{0}\right)$ is a finitely presented group, with $\pi_{\mathrm{ab}} \cong H_{1}(X, \mathbb{Z})$.
- The ring $R=\mathbb{C}\left[\tau_{\mathrm{ab}}\right]$ is the coordinate ring of the character group, $\operatorname{Char}(X)=\operatorname{Hom}\left(\pi, \mathrm{C}^{*}\right) \cong\left(\mathbb{C}^{*}\right)^{r} \times \operatorname{Tors}\left(\pi_{\mathrm{ab}}\right)$, where $r=b_{1}(X)$.
- The characteristic varieties of X are the homology jump loci

$$
\mathcal{V}_{s}^{i}(X)=\left\{\rho \in \operatorname{Char}(X) \mid \operatorname{dim} H_{i}\left(X, \mathbb{C}_{\rho}\right) \geqslant s\right\} .
$$

- These varieties are homotopy-type invariants of X, with $\mathcal{V}_{s}^{1}(X)$ depending only on $\pi=\pi_{1}(X)$.
- Set $\mathcal{V}_{1}(\pi):=\mathcal{V}_{1}^{1}(K(\pi, 1))$; then $\mathcal{V}_{1}(\pi)=\mathcal{V}_{1}\left(\pi / \pi^{\prime \prime}\right)$.

ExAMPLE

Let $f \in \mathbb{Z}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$ be a Laurent polynomial, $f(1)=0$. There is then a finitely presented group π with $\pi_{\mathrm{ab}}=\mathbb{Z}^{n}$ such that $\mathcal{V}_{1}(\pi)=V(f)$.

Example (Circle)
Let $X=S^{1}$. We have $\left(S^{1}\right)^{\mathrm{ab}}=\mathbb{R}$. Identify $\pi_{1}\left(S^{1}, *\right)=\mathbb{Z}=\langle t\rangle$ and $\mathbb{Z} \mathbb{Z}=\mathbb{Z}\left[t^{ \pm 1}\right]$. Then:

$$
C_{*}\left(\left(S^{1}\right)^{\mathrm{ab}}\right): 0 \longrightarrow \mathbb{Z}\left[t^{ \pm 1}\right] \xrightarrow{t-1} \mathbb{Z}\left[t^{ \pm 1}\right] \longrightarrow 0
$$

For each $\rho \in \operatorname{Hom}\left(\mathbb{Z}, \mathbb{k}^{*}\right)=\mathbb{k}^{*}$, get a chain complex

$$
C_{*}\left(\widetilde{S^{1}}\right) \otimes_{\mathbb{Z} \mathbb{Z}} \mathbb{k}_{\rho}: 0 \longrightarrow \mathbb{k} \xrightarrow{\rho-1} \mathbb{k} \longrightarrow 0
$$

which is exact, except for $\rho=1$, when $H_{0}\left(S^{1}, \mathbb{k}\right)=H_{1}\left(S^{1}, \mathbb{k}\right)=\mathbb{k}$. Hence:

$$
\mathcal{V}_{1}^{0}\left(S^{1}\right)=\mathcal{V}_{1}^{1}\left(S^{1}\right)=\{1\}
$$

and $\mathcal{V}_{s}^{i}\left(S^{1}\right)=\varnothing$, otherwise.

EXAMPLE (TORUS)

Identify $\pi_{1}\left(T^{n}\right)=\mathbb{Z}^{n}$, and $\operatorname{Hom}\left(\mathbb{Z}^{n}, \mathbb{k}^{*}\right)=\left(\mathbb{k}^{*}\right)^{n}$. Then:

$$
\mathcal{V}_{s}^{i}\left(T^{n}\right)= \begin{cases}\{1\} & \text { if } s \leqslant\binom{ n}{i} \\ \varnothing & \text { otherwise }\end{cases}
$$

EXAMPLE (WEDGE OF CIRCLES)

Identify $\pi_{1}\left(\bigvee^{n} S^{1}\right)=F_{n}$, and $\operatorname{Hom}\left(F_{n}, \mathbb{k}^{*}\right)=\left(\mathbb{k}^{*}\right)^{n}$. Then:

$$
\mathcal{V}_{s}^{1}\left(\bigvee^{n} s^{1}\right)= \begin{cases}\left(\mathbb{k}^{*}\right)^{n} & \text { if } s<n \\ \{1\} & \text { if } s=n \\ \varnothing & \text { if } s>n\end{cases}
$$

EXAMPLE (ORIENTABLE SURFACE OF GENUS $g>1$)

$$
\mathcal{V}_{s}^{1}\left(\Sigma_{g}\right)= \begin{cases}\left(\mathbb{k}^{*}\right)^{2 g} & \text { if } s<2 g-1 \\ \{1\} & \text { if } s=2 g-1,2 g \\ \varnothing & \text { if } s>2 g\end{cases}
$$

TANGENT CONES

- Let exp: $H^{1}(X, C) \rightarrow H^{1}\left(X, C^{*}\right)$ be the coefficient homomorphism induced by $\mathbb{C} \rightarrow \mathbb{C}^{*}, z \mapsto e^{z}$.
- Let $W=V(I)$, a Zariski closed subset of $\operatorname{Char}(G)=H^{1}\left(X, C^{*}\right)$.
- The tangent cone at 1 to W is $\mathrm{TC}_{1}(W)=V($ in $(I))$.
- The exponential tangent cone at 1 to W :

$$
\tau_{1}(W)=\left\{z \in H^{1}(X, \mathbb{C}) \mid \exp (\lambda z) \in W, \forall \lambda \in \mathbb{C}\right\} .
$$

- Both tangent cones are homogeneous subvarieties of $H^{1}(X, \mathrm{C})$; are non-empty iff $1 \in W$; depend only on the analytic germ of W at 1 ; commute with finite unions and arbitrary intersections.
- $\tau_{1}(W) \subseteq T C_{1}(W)$, with $=$ if all irred components of W are subtori, but \neq in general.
- $\tau_{1}(W)$ is a finite union of rationally defined subspaces.

The TANGENT CONE THEOREM

Let X be a connected CW-complex with finite q-skeleton. Suppose X admits a q-finite q-model A.
THEOREM
For all $i \leqslant q$ and all s:

- (DPS 2009, Dimca-Papadima 2014) $\mathcal{V}_{s}^{i}(X)_{(1)} \cong \mathcal{R}_{s}^{i}(A)_{(0)}$.
- (Budur-Wang 2017) All the irreducible components of $\mathcal{V}_{s}^{i}(X)$ passing through the origin of $\operatorname{Char}(X)$ are algebraic subtori.

Consequently,

$$
\tau_{1}\left(\mathcal{V}_{s}^{i}(X)\right)=\mathrm{TC}_{1}\left(\mathcal{V}_{s}^{i}(X)\right)=\mathcal{R}_{s}^{i}(A) .
$$

THEOREM (PAPADIMA-S. 2017)
A f.g. group G admits a 1-finite 1-model if and only if the Malcev Lie algebra $\mathfrak{m}(G)$ is the LCS completion of a finitely presented Lie algebra.

ALEXANDER POLYNOMIALS OF 3-MANIFOLDS

- Let $H=H_{1}(X, \mathbb{Z}) /$ Tors.
- The Alexander polynomial $\Delta_{X} \in \mathbb{Z}[H]$ is the gcd of the codimension 1 minors of the Alexander matrix of $\pi_{1}(X)$.

Proposition

Let λ be a Laurent polynomial in $n \leqslant 3$ variables such that $\bar{\lambda}=\lambda$ and $\lambda(1) \neq 0$. Then λ can be realized as the Alexander polynomial Δ_{M} of a closed, orientable 3 -manifold M with $b_{1}(M)=n$.

Set $\mathcal{W}_{1}^{1}(M)=\mathcal{V}^{1}(M) \cap \operatorname{Char}^{0}(M)$.

Proposition

Let M be a closed, orientable, 3-dimensional manifold. Then

$$
\mathcal{W}_{1}^{1}(M)=V\left(\Delta_{M}\right) \cup\{1\} .
$$

If, moreover, $b_{1}(M) \geqslant 4$, then $\mathcal{W}_{1}^{1}(M)=V\left(\Delta_{M}\right)$.

A TANGENT CONE THEOREM FOR 3-MANIFOLDS

THEOREM

Let M be a closed, orientable, 3-dimensional manifold. Suppose $b_{1}(M)$ is odd and μ_{M} is generic. Then $\mathrm{TC}_{1}\left(\mathcal{V}_{1}^{1}(M)\right)=\mathcal{R}_{1}^{1}(M)$.

- If $b_{1}(M)$ is even, the conclusion may or may not hold:
- Let $M=S^{1} \times S^{2} \# S^{1} \times S^{2}$; then $\mathcal{V}_{1}^{1}(M)=\operatorname{Char}(M)=\left(\mathbb{C}^{*}\right)^{2}$, and so $\mathrm{TC}_{1}\left(\mathcal{V}_{1}^{1}(M)\right)=\mathcal{R}_{1}^{1}(M)=\mathbb{C}^{2}$.
- Let M be the Heisenberg nilmanifold; then $\operatorname{TC}_{1}\left(\mathcal{V}_{1}^{1}(M)\right)=\{0\}$, whereas $\mathcal{R}_{1}^{1}(M)=\mathbb{C}^{2}$.
- Let M be a closed, orientable 3-manifold with $b_{1}=7$ and $\mu=e_{1} e_{3} e_{5}+e_{1} e_{4} e_{7}+e_{2} e_{5} e_{7}+e_{3} e_{6} e_{7}+e_{4} e_{5} e_{6}$. Then μ is generic and $\operatorname{Pf}(\mu)=\left(x_{5}^{2}+x_{7}^{2}\right)^{2}$. Hence, $\mathcal{R}_{1}^{1}(M)=\left\{x_{5}^{2}+x_{7}^{2}=0\right\}$ splits as a union of two hyperplanes over \mathbb{C}, but not over \mathbb{Q}.

The above theorem does not hold in higher depth.

EXAMPLE

Let M be a closed, orientable 3-manifold with $b_{1}(M)=10$ and intersection 3-form

$$
\mu_{M}=e_{1} e_{2} e_{5}+e_{1} e_{3} e_{6}+e_{2} e_{3} e_{7}+e_{1} e_{4} e_{8}+e_{2} e_{4} e_{9}+e_{3} e_{4} e_{10}
$$

- $\mathcal{R}_{7}^{1}(M) \cong\left\{z \in \mathbb{C}^{6} \mid z_{1} z_{6}-z_{2} z_{5}+z_{3} z_{4}=0\right\}$, an irreducible quadric with an isolated singular point at 0 .
- $\mathcal{V}_{s}^{1}(M) \subseteq\{1\}$, for all $s \geqslant 1$.
- Thus, $\mathrm{TC}_{1}\left(\mathcal{V}_{7}^{1}(M)\right) \neq \mathcal{R}_{7}^{1}(M)$, showing that M is not 1 -formal.

DUALITY SPACES

A more general notion of duality is due to Bieri and Eckmann (1978).
Let X be a connected, finite-type CW-complex, and set $\pi=\pi_{1}\left(X, x_{0}\right)$.

- X is a duality space of dimension n if $H^{i}(X, \mathbb{Z} \pi)=0$ for $i \neq n$ and $H^{n}(X, Z \pi) \neq 0$ and torsion-free.
- Let $D=H^{n}(X, \mathbb{Z} \pi)$ be the dualizing $\mathbb{Z} \pi$-module. Given any $\mathbb{Z} \pi$-module A, we have $H^{i}(X, A) \cong H_{n-i}(X, D \otimes A)$.
- If $D=\mathbb{Z}$, with trivial $\mathbb{Z} \pi$-action, then X is a Poincaré duality space.
- If $X=K(\pi, 1)$ is a duality space, then π is a duality group.

Abelian duality spaces

We introduce in [Denham-S.-Yuzvinsky 2016/17] an analogous notion, by replacing $\pi \rightsquigarrow \pi_{\mathrm{ab}}$.

- X is an abelian duality space of dimension n if $H^{i}\left(X, \mathbb{Z} \pi_{\mathrm{ab}}\right)=0$ for $i \neq n$ and $H^{n}\left(X, Z \tau_{\mathrm{ab}}\right) \neq 0$ and torsion-free.
- Let $B=H^{n}\left(X, \mathbb{Z} \pi_{a b}\right)$ be the dualizing $\mathbb{Z} \pi_{\mathrm{ab}}$-module. Given any $\mathbb{Z} \pi_{\mathrm{ab}}$-module A, we have $H^{i}(X, A) \cong H_{n-i}(X, B \otimes A)$.
- The two notions of duality are independent:

EXAMPLE

- Surface groups of genus at least 2 are not abelian duality groups, though they are (Poincaré) duality groups.
- Let $\pi=\mathbb{Z}^{2} * G$, where

$$
G=\left\langle x_{1}, \ldots, x_{4} \mid x_{1}^{-2} x_{2} x_{1} x_{2}^{-1}, \ldots, x_{4}^{-2} x_{1} x_{4} x_{1}^{-1}\right\rangle
$$

is Higman's acyclic group. Then π is an abelian duality group (of dimension 2), but not a duality group.

THEOREM (DSY)

Let X be an abelian duality space of dimension n. Then:

- $b_{1}(X) \geqslant n-1$.
- $b_{i}(X) \neq 0$, for $0 \leqslant i \leqslant n$ and $b_{i}(X)=0$ for $i>n$.
- $(-1)^{n} \chi(X) \geqslant 0$.
- The characteristic varieties propagate, i.e., $\mathcal{V}_{1}^{1}(X) \subseteq \cdots \subseteq \mathcal{V}_{1}^{n}(X)$.

Theorem (DEnHAM-S. 2018)
Let U be a connected, smooth, complex quasi-projective variety of dimension n. Suppose U has a smooth compactification Y for which
(1) Components of $Y \backslash \cup$ form an arrangement of hypersurfaces \mathcal{A};
(2) For each submanifold X in the intersection poset $L(\mathcal{A})$, the complement of the restriction of \mathcal{A} to X is a Stein manifold.
Then U is both a duality space and an abelian duality space of dimension n.

LINEAR, ELLIPTIC, AND TORIC ARRANGEMENTS

THEOREM (DS18)

Suppose that \mathcal{A} is one of the following:
(1) An affine-linear arrangement in \mathbb{C}^{n}, or a hyperplane arrangement in $\mathbb{C P}^{n}$;
(2) A non-empty elliptic arrangement in E^{n};
(3) A toric arrangement in $\left(\mathbb{C}^{*}\right)^{n}$.

Then the complement $M(\mathcal{A})$ is both a duality space and an abelian duality space of dimension $n-r, n+r$, and n, respectively, where r is the corank of the arrangement.

This theorem extends several previous results:
(1) Davis, Januszkiewicz, Leary, and Okun (2011);
(2) Levin and Varchenko (2012);
(3) Davis and Settepanella (2013), Esterov and Takeuchi (2018).

REFERENCES

G. Denham, A.I. Suciu, Algebraic models and cohomology jump loci, preprint 2018.
A.I. Suciu, Poincaré duality and resonance varieties, arXiv:1809.01801.

囯 A.I. Suciu, Cohomology jump loci of 3-manifolds, arXiv:1901.01419.
围 G. Denham, A.I. Suciu, and S. Yuzvinsky, Abelian duality and propagation of resonance, Selecta Math. 23 (2017), no. 4, 2331-2367.
G. Denham, A.I. Suciu, Local systems on arrangements of smooth, complex algebraic hypersurfaces, Forum of Mathematics, Sigma 6 (2018), e6, 20 pages.

