Milnor fibrations of hyperplane ARRANGEMENTS

Alex Suciu

Northeastern University

Algebraic Geometry and Topology Seminars Institute of Mathematics of the Romanian Academy June 14, 2013

REFERENCES

國 Graham Denham and Alex Suciu, Multinets, parallel connections, and Milnor fibrations of arrangements, arxiv:1209.3414.

圁 Alex Suciu, Hyperplane arrangements and Milnor fibrations, arxiv:1301.4851.

Hyperplane arrangements

- An arrangement of hyperplanes is a finite set \mathcal{A} of codimension-1 linear subspaces in \mathbb{C}^{d+1}.
- Let $M(\mathcal{A})=\mathbb{C}^{d+1} \backslash \bigcup_{H \in \mathcal{A}} H$ be the complement of \mathcal{A}.
- This is a smooth, quasi-projective variety, with the homotopy type of a connected, finite CW-complex of dimension $d+1$.
- In fact, as conjectured by Papadima-S. (2000) and proved by Dimca-Papadima (2003), $M(\mathcal{A})$ admits a minimal cell structure (the Morse inequalities are satisfied on the nose).
- In particular, $H_{*}(M(\mathcal{A}), \mathbb{Z})$ is torsion-free.
- $\operatorname{Poin}(M(\mathcal{A}), t)=\sum_{X \in L(\mathcal{A})} \mu(X)(-t)^{\operatorname{rank}(X)}$, where $\mu: L(\mathcal{A}) \rightarrow \mathbb{Z}$ is given by $\mu\left(\mathbb{C}^{d+1}\right)=1$ and $\mu(X)=-\sum_{Y \nexists X} \mu(Y)$.
- The ring $H^{*}(M(\mathcal{A}), \mathbb{Z})$ is the quotient of the exterior algebra on \mathcal{A} (gens in deg 1) by an ideal (gens in deg $\geqslant 2$) determined by $L(\mathcal{A})$.

The Milnor fibration(s) OF AN ARrangement

- For each $H \in \mathcal{A}$, let $f_{H}: \mathbb{C}^{d+1} \rightarrow \mathrm{C}$ be a linear form with kernel H.
- For each $m \in \mathbb{N}^{|\mathcal{A}|}$, let $Q_{m}=\prod_{H \in \mathcal{A}} f_{H}^{m_{H}}$: a homogeneous polynomial of degree $N=\sum_{H \in \mathcal{A}} m_{H}$.
- The map $Q_{m}: \mathbb{C}^{d+1} \rightarrow \mathbb{C}$ restricts to a map $Q_{m}: M(\mathcal{A}) \rightarrow \mathbb{C}^{*}$.
- This is the projection of a smooth, locally trivial bundle, known as the (global) Milnor fibration of the multi-arrangement (\mathcal{A}, m),

$$
F_{m}(\mathcal{A}) \longrightarrow M(\mathcal{A}) \xrightarrow{Q_{m}} C^{*} .
$$

- The typical fiber, $F_{m}(\mathcal{A})=Q_{m}^{-1}(1)$, is called the Milnor fiber of the multi-arrangement; it has $\operatorname{gcd}(m)$ connected components.
- The (geometric) monodromy is the diffeomorphism

$$
h: F_{m}(\mathcal{A}) \rightarrow F_{m}(\mathcal{A}), \quad z \mapsto e^{2 \pi i / N} z .
$$

- If all $m_{H}=1$, the polynomial $Q=Q_{m}$ is the usual defining polynomial, and $F(\mathcal{A})=F_{m}(\mathcal{A})$ is the usual Milnor fiber of \mathcal{A}.

EXAMPLE
Let \mathcal{B}_{n} be the Boolean arrangement in \mathbb{C}^{n}, with $Q=z_{1} \cdots z_{n}$. Then $M\left(\mathcal{B}_{n}\right)=\left(\mathbb{C}^{*}\right)^{n}$ and $F\left(\mathcal{B}_{n}\right)=\left(\mathbb{C}^{*}\right)^{n-1}$.

EXAMPLE

Let \mathcal{A} be a pencil of 3 lines through the origin of \mathbb{C}^{2}. Then $F(\mathcal{A})$ is a thrice-punctured torus, and h is an automorphism of order 3:

- $F_{m}(\mathcal{A})$ is a Stein domain of complex dimension d; thus, it has the homotopy type of a finite CW-complex of dimension d.
- Question 1 (folklore): Is $H_{*}(F(\mathcal{A}), \mathbb{Q})$ determined by $L(\mathcal{A})$? Answer still not known, even for $*=1$.
- Question 2 (Dimca-Némethi, Randell): Is $H_{*}(F(\mathcal{A}), \mathbb{Z})$ torsion-free?
- In previous work (Cohen-Denham-S. 2003), we showed that the answer to Q2 is no, but only for $F_{m}(\mathcal{A})$, for non-trivial m.

THEOREM (DS12)

For every prime $p \geqslant 2$, there is a hyperplane arrangement \mathcal{A} whose Milnor fiber $F(\mathcal{A})$ has non-trivial p-torsion in homology.

In particular, Milnor fibers of arrangements may not admit a minimal cell structure.

Simplest example: the arrangement of 27 hyperplanes in \mathbb{C}^{8} with

$$
\begin{aligned}
& Q(\mathcal{A})=x y\left(x^{2}-y^{2}\right)\left(x^{2}-z^{2}\right)\left(y^{2}-z^{2}\right) w_{1} w_{2} w_{3} w_{4} w_{5}\left(x^{2}-w_{1}^{2}\right) . \\
& \quad\left(x^{2}-2 w_{1}^{2}\right)\left(x^{2}-3 w_{1}^{2}\right)\left(x-4 w_{1}\right)\left((x-y)^{2}-w_{2}^{2}\right)\left((x+y)^{2}-w_{3}^{2}\right) \\
& \quad\left((x-z)^{2}-w_{4}^{2}\right)\left((x-z)^{2}-2 w_{4}^{2}\right) \cdot\left((x+z)^{2}-w_{5}^{2}\right)\left((x+z)^{2}-2 w_{5}^{2}\right) .
\end{aligned}
$$

Then $H_{6}(F(\mathcal{A}), \mathbb{Z})$ has 2-torsion (of rank 108).

Basic idea of proof:

- $F_{m}(\mathcal{A})$ is the regular \mathbb{Z}_{N}-cover of $U=\mathbb{P} M(\mathcal{A})$ defined by the homomorphism $\delta_{m}: \pi_{1}(U) \rightarrow \mathbb{Z}_{N}$, taking each meridian x_{H} to m_{H}.
- If $\mathbb{k}=\overline{\mathbb{k}}$ and $\operatorname{char}(\mathbb{k}) \nmid N$, then $H_{q}\left(F_{m}(\mathcal{A}), \mathbb{k}\right) \cong \oplus_{\rho} H_{q}\left(U, \mathbb{k}_{\rho}\right)$, where $\rho: \pi_{1}(U) \rightarrow \mathbb{k}^{*}$ factors through δ_{m}.
- Thus, if there is such a character ρ for which $H_{q}\left(U, \mathbb{k}_{\rho}\right) \neq 0$, where $p=\operatorname{char}(\mathbb{k}) \nmid N$, but there is no corresponding character in characteristic 0 , then $H_{q}\left(F_{m}(\mathcal{A}), \mathbb{Z}\right)$ will have p-torsion.
- Fix a prime p. Starting with an arrangement \mathcal{A} with a suitable multinet structure, we find a deletion $\mathcal{A}^{\prime}=\mathcal{A} \backslash\{H\}$, and a choice of multiplicities m^{\prime} on \mathcal{A}^{\prime} such that $H_{1}\left(F_{m^{\prime}}\left(\mathcal{A}^{\prime}\right), \mathbb{Z}\right)$ has p-torsion.
- Finally, we construct a "polarized" arrangement, $\mathcal{B}=\mathcal{A}^{\prime} \| m^{\prime}$, and show that $H_{*}(F(\mathcal{B}), \mathbb{Z})$ has p-torsion.

CHARACTERISTIC VARIETIES

- Let X be a connected, finite-type CW-complex. Then $G=\pi_{1}\left(X, x_{0}\right)$ is a finitely generated group, with $G_{\mathrm{ab}} \cong H_{1}(X, \mathbb{Z})$.
- The character group $\hat{G}=\widehat{G}_{\mathbb{k}}:=\operatorname{Hom}\left(G, \mathbb{k}^{*}\right) \cong H^{1}\left(X, \mathbb{k}^{*}\right)$ is an abelian algebraic group, with $\widehat{G} \cong \widehat{G_{a b}}$.
- Characteristic varieties:

$$
\mathcal{V}_{s}^{i}(X, \mathbb{k}):=\left\{\rho \in \widehat{G} \mid \operatorname{dim}_{\mathbb{k}} H_{i}\left(X, \mathbb{k}_{\rho}\right) \geqslant s\right\} .
$$

Here, \mathbb{k}_{ρ} is the local system defined by ρ, i.e, \mathbb{k} viewed as a $\mathbb{k} G$-module, via $g \cdot x=\rho(g) x$, and $H_{i}\left(X, \mathbb{k}_{\rho}\right)=H_{i}\left(C_{*}\left(\widetilde{X}, \mathbb{k}^{\prime}\right) \otimes_{\mathbb{k} G} \mathbb{k}_{\rho}\right)$.

- Product formula: $\mathcal{V}_{1}^{i}\left(X_{1} \times X_{2}, \mathbb{k}\right)=\bigcup_{p+q=i} \mathcal{V}_{1}^{p}\left(X_{1}, \mathbb{k}\right) \times \mathcal{V}_{1}^{q}\left(X_{2}, \mathbb{k}\right)$.
- The sets $\mathcal{V}_{s}^{1}(X, \mathbb{k})$ depend only on $G=\pi_{1}(X)$-in fact, only on $G / G^{\prime \prime}$. Write them as $\mathcal{V}_{s}^{1}(G, \mathbb{k})$, and set $\mathcal{V}^{1}(G, \mathbb{k})=\mathcal{V}_{s}^{1}(G, \mathbb{k})$.
- If $\varphi: G \rightarrow Q$ is an epimorphism, then the induced morphism $\hat{\varphi}_{\mathbb{k}}: \hat{Q} \hookrightarrow \widehat{G}$ restricts to an embedding $\mathcal{V}_{s}^{1}(Q, \mathbb{k}) \hookrightarrow \mathcal{V}_{s}^{1}(G, \mathbb{k}), \forall s$.

EXAMPLE

Identify $\pi_{1}(\mathbb{C} \backslash\{n$ points $\})=F_{n}$, and $\widehat{F_{n}}=\left(\mathbb{k}^{*}\right)^{n}$. Then:

$$
\mathcal{V}_{s}^{1}(\mathbb{C} \backslash\{n \text { points }\}, \mathbb{k})= \begin{cases}\left(\mathbb{k}^{*}\right)^{n} & \text { if } s<n \\ \{1\} & \text { if } s=n \\ \varnothing & \text { if } s>n\end{cases}
$$

In general, though, the characteristic varieties depend on char((\mathbb{k}).

EXAMPLE

- Let $\Gamma=F_{n} * \mathbb{Z}_{p}$, and identify $\widehat{\Gamma}=\widehat{F_{n}} \times \widehat{\mathbb{Z}_{p}}$.
- If $\operatorname{char}(\mathbb{k}) \neq p$, then $\widehat{\mathbb{Z}_{p}}=\operatorname{Hom}\left(\mathbb{Z}_{p}, \mathbb{k}^{*}\right)$ has order p, and

$$
\mathcal{V}^{1}(\Gamma, \mathbb{k})= \begin{cases}\hat{\Gamma} & \text { if } n \geqslant 2 \\ \left(\widehat{\Gamma} \backslash \hat{\Gamma}^{\circ}\right) \cup\{\mathbf{1}\} & \text { if } n=1\end{cases}
$$

- If $\operatorname{char}(\mathbb{k})=p$, then $\widehat{\mathbb{Z}_{p}}=\{\mathbf{1}\}$, and $\mathcal{V}^{1}(\Gamma, \mathbb{k})=\widehat{\Gamma}$, for all $n \geqslant 1$.

Homology of finite abelian covers

- Let X be a connected, finite-type CW-complex, and $G=\pi_{1}(X)$.
- Let A be a finite abelian group.
- Every epimorphism $\chi: G \rightarrow A$ determines a regular, connected A-cover $X^{\chi} \rightarrow X$.
- Let \mathbb{k} be a field, $p=\operatorname{char}(\mathbb{k})$. Assume $p=0$ or $p \nmid|A|$. Then

$$
H_{q}\left(X^{\chi}, \mathbb{k}\right) \cong H_{q}(X, \mathbb{k}[A]) \cong \underset{\rho \in \hat{A}}{\bigoplus_{q}} H_{q}\left(X, \mathbb{k}_{\rho}\right) .
$$

- Hence,

$$
\operatorname{dim}_{\mathfrak{k}} H_{q}\left(X^{\chi}, \mathbb{k}\right)=\sum_{s \geqslant 1}\left|\mathcal{V}_{s}^{q}(X, \mathbb{k}) \cap \operatorname{im}\left(\hat{\chi}_{\mathbb{k}}\right)\right|,
$$

where $\hat{\chi}_{k}: \hat{A}_{k} \rightarrow \widehat{G}_{k}$ is the induced morphism between character groups.

- Now suppose A is a finite cyclic group. Choose a generator $\alpha \in A$.
- Let $h=h_{\alpha}: X^{\chi} \rightarrow X^{\chi}$ be the monodromy automorphism.
- Let $h_{*}: H_{q}\left(X^{\chi}, \mathbb{k}\right) \rightarrow H_{q}\left(X^{\chi}, \mathbb{k}\right)$ be the induced homomorphism.
- Note: if $\rho: G \rightarrow \mathbb{k}^{*}$ is a character belonging to $\operatorname{im}\left(\hat{\chi}_{\mathbb{k}}\right)$, there is a unique character $\iota_{\rho}: A \rightarrow \mathbb{k}^{*}$ such that $\rho=\iota_{\rho} \circ \chi$.
- Assume char $(\mathbb{k}) \nmid|A|$. Then, the characteristic polynomial of the algebraic monodromy, $\Delta_{\chi, q}^{\mathbb{K}}(t)=\operatorname{det}\left(t \cdot \mathrm{id}-h_{*}\right)$, is given by

$$
\Delta_{\chi, q}^{\mathbb{k}}(t)=\prod_{s \geqslant 1} \prod_{\rho \in \operatorname{im}(\hat{\chi}) \cap \mathcal{V}_{s}^{q}(X, \mathbb{k})}\left(t-\iota_{\rho}(\alpha)\right) .
$$

Theorem

Let $X^{\chi} \rightarrow X$ be a regular, finite cyclic cover, defined by an epimorphism $\chi: \pi_{1}(X) \rightarrow \mathbb{Z}_{r}$. Suppose that $\operatorname{im}\left(\hat{\chi}_{\mathrm{C}}\right) \nsubseteq \mathcal{V}_{1}^{q}(X, \mathbb{C})$, but $\operatorname{im}\left(\hat{\chi}_{\mathbb{k}}\right) \subseteq \mathcal{V}_{1}^{q}(X, \mathbb{k})$, for some field \mathbb{k} of characteristic p not dividing r.
Then $H_{q}\left(X^{\chi}, \mathbb{Z}\right)$ has non-zero p-torsion.

- In order to apply this theorem, one needs to know both the characteristic varieties over \mathbb{C} and over \mathbb{k}, and exploit the qualitative differences between the two.
- In a special situation, we only need to verify that a certain condition on the first characteristic variety over \mathbb{C} holds.

ThEOREM

Suppose there is a character $\rho: \pi_{1}(X) \rightarrow \mathbb{C}^{*}$ which factors as $\pi_{1}(X) \rightarrow \mathbb{Z} * \mathbb{Z}_{p} \rightarrow \mathbb{Z} \rightarrow \mathbb{C}^{*}$, for some prime p, but $\rho \notin \mathcal{V}^{1}(X, \mathbb{C})$.
Then, for all sufficiently large integers r not divisible by p, there is a regular, r-fold cyclic cover $Y \rightarrow X$ such that $H_{1}(Y, \mathbb{Z})$ has non-zero p-torsion.

ORBIFOLD FIBRATIONS

- Let $\Sigma_{g, r}$ be a Riemann surface of genus $g \geqslant 0$ with $r \geqslant 0$ points removed. Fix points q_{1}, \ldots, q_{s} on the surface, and assign integer weights μ_{1}, \ldots, μ_{s} with $\mu_{i} \geqslant 2$.
- The orbifold $\Sigma=\left(\Sigma_{g, r}, \mu\right)$ is hyperbolic if $\chi^{\mathrm{orb}}(\Sigma):=2-2 g-r-\sum_{i=1}^{s}\left(1-1 / \mu_{i}\right)$ is negative.
- A hyperbolic orbifold Σ is small if either $\Sigma=S^{1} \times S^{1}$ and $s \geqslant 2$, or $\Sigma=\mathbb{C}^{*}$ and $s \geqslant 1$; otherwise, Σ is large.
- The orbifold fundamental group is defined as

$$
\Gamma=\left\langle\begin{array}{c|c}
x_{1}, \ldots, x_{g}, y_{1}, \ldots, y_{g} & {\left[x_{1}, y_{1}\right] \cdots\left[x_{g}, y_{g}\right] z_{1} \cdots z_{s}=1} \\
z_{1}, \ldots, z_{s} & z_{1}^{\mu_{1}}=\cdots=z_{t}^{\mu_{s}}=1
\end{array}\right\rangle(r=0)
$$

- From (Artal-Cogolludo-Matei 2013), we get:

$$
\mathcal{V}^{1}(\Gamma)= \begin{cases}\widehat{\Gamma} & \text { if } \Sigma \text { is a large hyperbolic orbifold } \\ \left(\widehat{\Gamma} \backslash \widehat{\Gamma}^{\circ}\right) \cup\{1\} & \text { if } \Sigma \text { is a small hyperbolic orbifold } \\ \{1\} & \text { otherwise }\end{cases}
$$

- Let X be a smooth, quasi-projective variety, and $G=\pi_{1}(X)$.
- A surjective, holomorphic map $f: X \rightarrow\left(\Sigma_{g, r}, \mu\right)$ is called an orbifold fibration if the generic fiber is connected; the multiplicity of the fiber over each marked point q_{i} equals μ_{i}; and f admits an extension $\bar{f}: \bar{X} \rightarrow \Sigma_{g}$ with the same properties.
- Such a map induces an epimorphism $f_{\sharp}: G \rightarrow \Gamma$, where $\Gamma=\pi_{1}^{\mathrm{orb}}\left(\Sigma_{g, s}, \mu\right)$, and thus a monomorphism $\hat{f}_{\sharp}: \widehat{\Gamma} \hookrightarrow \widehat{G}$.

THEOREM (ARAPURA + ACM + BW)

$$
\mathcal{V}^{1}(X)=\bigcup_{f \text { large }} \operatorname{im}\left(\hat{f}_{\sharp}\right) \cup \bigcup_{f \text { small }}\left(\operatorname{im}\left(\hat{f}_{\sharp}\right) \backslash \operatorname{im}\left(\hat{f}_{\sharp}\right)^{\circ}\right) \cup Z,
$$

where Z is a finite set of torsion characters.

ThEOREM

Suppose there is a small orbifold fibration $f: X \rightarrow(\Sigma, \mu)$ and a prime p dividing each μ_{i}. Then, for all $r \gg 0$ with $p \nmid r$, there is a regular, r-fold cyclic cover $Y \rightarrow X$ such that $H_{1}(Y, \mathbb{Z})$ has non-zero p-torsion.

MULTINETS

DEFINITION (FALK AND YUZVINSKY)
A (k, ℓ)-multinet $(k \geqslant 3, \ell \geqslant 1)$ on an arrangement \mathcal{A} consists of:

- A partition $\mathcal{A}=\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}\right)$.
- An assignment of multiplicities on the hyperplanes, $m: \mathcal{A} \rightarrow \mathbb{N}$.
- A subset $\mathcal{X} \subseteq L_{2}(\mathcal{A})$, called the base locus.

Moreover,

- $\sum_{H \in \mathcal{A}_{i}} m_{H}=\ell$, for all $i \in[k]$.
- For any hyperplanes H and H^{\prime} in different classes, $H \cap H^{\prime} \in \mathcal{X}$.
- For each $X \in \mathcal{X}$, the sum $n_{X}=\sum_{H \in \mathcal{A}_{i}: H \supset X} m_{H}$ is independent of i.
- For each $i \in[k]$, the space $\left(\bigcup_{H \in \mathcal{A}_{i}} H\right) \backslash \mathcal{X}$ is connected.

WLOG, we may assume $\operatorname{gcd}\left\{m_{H} \mid H \in \mathcal{A}\right\}=1$. If all $m_{H}=1$, the multinet is reduced. If, furthermore, every flat in \mathcal{X} is contained in precisely one hyperplane from each class, this is a net.

Figure: A (3,2)-net on the A_{3} arrangement

Figure : $\mathrm{A}(3,4)$-multinet on the B_{3} arrangement

Figure : A (4,3)-net on the Hessian matroid

- Let \mathcal{A} be a (central) arrangement of hyperplanes in \mathbb{C}^{d+1}.
- Let $M=\mathbb{C}^{d+1} \backslash \cup_{H \in \mathcal{A}} H$, and $U=\mathbb{P} M$. Then $M \cong U \times \mathbb{C}^{*}$.
- Identify $H_{1}(M, \mathbb{Z})=\mathbb{Z}^{n}$, with basis the meridians $\left\{x_{H} \mid H \in \mathcal{A}\right\}$.
- Let $\operatorname{Hom}\left(\pi_{1}(M), \mathbb{k}^{*}\right)=\left(\mathbb{k}^{*}\right)^{n}$ be the character torus.
- Then $\mathcal{V}^{1}(\mathcal{A}):=\mathcal{V}^{1}(M) \subset\left(\mathbb{k}^{*}\right)^{n}$ is isomorphic to $\mathcal{V}^{1}(U) \subseteq\left\{t \in\left(\mathbb{k}^{*}\right)^{n} \mid t_{1} \cdots t_{n}=1\right\} \cong\left(\mathbb{k}^{*}\right)^{n-1}$.

Theorem (Falk-YuZ, Pereira-YuZ, YuZvinsky)

Each positive-dimensional, non-local component of $\mathcal{V}^{1}(\mathcal{A})$ is of the form ρT, where ρ is a torsion character, $T=f^{*}\left(H^{1}\left(\Sigma_{0, k}, C^{*}\right)\right)$, for some orbifold fibration $f: M(\mathcal{A}) \rightarrow\left(\Sigma_{0, k}, \mu\right)$, and either

- $k=2$, and f has at least one multiple fiber, or
- $k=3$ or 4 , and f corresponds to a multinet with k classes on the multiarrangement (\mathcal{A}, m), for some m.

Milnor fibers

- Let (\mathcal{A}, m) be a multi-arrangement with $\operatorname{gcd}\left\{m_{H} \mid H \in \mathcal{A}\right\}=1$. Set $N=\sum_{H \in \mathcal{A}} m_{H}$.
- The Milnor fiber $F_{m}(\mathcal{A})$ is the regular \mathbb{Z}_{N}-cover of $U(\mathcal{A})$ defined by the homomorphism $\delta_{m}: \pi_{1}(U(\mathcal{A})) \rightarrow \mathbb{Z}_{N}, x_{H} \mapsto m_{H} \bmod N$.
- If $\operatorname{char}(\mathbb{k}) \nmid N$, then

$$
\operatorname{dim}_{\mathbb{k}} H_{q}\left(F_{m}(\mathcal{A}), \mathbb{k}\right)=\sum_{s \geqslant 1}\left|\mathcal{V}_{s}^{q}(U(\mathcal{A}), \mathbb{k}) \cap \operatorname{im}\left(\widehat{\delta_{m}}\right)\right| .
$$

- The characteristic polynomial of the algebraic monodromy, $h_{*}: H_{q}\left(F_{m}(\mathcal{A}), \mathbb{k}\right) \rightarrow H_{q}\left(F_{m}(\mathcal{A}), \mathbb{k}\right)$, is given by

Not every regular, cyclic cover of a projective arrangement complement arises through the Milnor fiber construction. Nevertheless, the Milnor fibers dominate all other cyclic covers:

LEMMA

Let (\mathcal{A}, m) be a multiarrangement, and let $U^{\chi} \rightarrow U$ be a regular, r-fold cyclic cover of $U=\mathbb{P} M(\mathcal{A})$. There exist then infinitely many multiplicity vectors m such that

Moreover, for any prime $p \nmid r$, we may choose m so that the degree of $Q(\mathcal{A}, m)$ is not divisible by p.

DELETION

A pointed multinet (\mathcal{M}, H) on an arrangement \mathcal{A} is a multinet structure $\mathcal{M}=\left(\left(\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}\right), m, \mathcal{X}\right)$, together with a distinguished hyperplane $H \in \mathcal{A}$ for which $m_{H}>1$ and $m_{H} \mid n_{X}$ for each $X \in \mathcal{X}$ such that $X \subset H$.

Lemma

Suppose \mathcal{A} admits a pointed multinet, and set $\mathcal{A}^{\prime}=\mathcal{A} \backslash\{H\}$. Then $U\left(\mathcal{A}^{\prime}\right)$ supports a small pencil, and $\mathcal{V}^{1}\left(\mathcal{A}^{\prime}\right)$ has a component which is a 1-dimensional subtorus, translated by a character of order m_{H}.

THEOREM

Suppose \mathcal{A} admits a pointed multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_{H}. There is then a choice of multiplicities m^{\prime} on the deletion $\mathcal{A}^{\prime}=\mathcal{A} \backslash\{H\}$ such that $H_{1}\left(F_{m^{\prime}}\left(\mathcal{A}^{\prime}\right), \mathbb{Z}\right)$ has non-zero p-torsion.

Polarization

- Let \mathcal{A}_{1} and \mathcal{A}_{2} be arrangements in V_{1} and V_{2}, defined by polynomials $Q_{1}=\prod_{H \in \mathcal{A}_{1}} f_{H}$ and $Q_{2}=\prod_{H \in \mathcal{A}_{2}} g_{H}$.
- Fix $H_{1} \in \mathcal{A}_{1}$ and $H_{2} \in \mathcal{A}_{2}$. The parallel connection, $\mathcal{A}_{1 H_{1}} \|_{H_{2}} \mathcal{A}_{2}$, is the arrangement in $V_{1} \times V_{2}$ defined by the polynomial

$$
f_{H_{1}} \cdot \prod_{H \in \mathcal{A}_{\backslash} \backslash\left\{H_{1}\right\}} f_{H} \cdot \prod_{H \in \mathcal{A}_{2} \backslash\left\{H_{2}\right\}} g_{H} \in \mathbb{k}\left[V_{1}^{*}\right] \otimes_{\mathbb{k}} \mathbb{k}\left[V_{2}^{*}\right] /\left(f_{H_{1}}-g_{H_{2}}\right) .
$$

- Falk and Proudfoot (2002): $\mathbb{P}\left(M_{1}\right) \times \mathbb{P}\left(M_{2}\right) \cong \mathbb{P}\left(M_{1 H_{1}} \|_{H_{2}} M_{2}\right)$.
- If $\left(\mathcal{A}_{i}, H_{i}\right)$ are pointed arrangements and $H \in \mathcal{A}_{1}$, we let

$$
\left(\mathcal{A}_{1}, H_{1}\right) \circ H\left(\mathcal{A}_{2}, H_{2}\right)=\left(\mathcal{A}_{1} \|_{H_{2}} \mathcal{A}_{2}, H_{1}\right) .
$$

- Let $\mathcal{A}=\left(\left\{H_{1}, \ldots, H_{n}\right\}, m\right)$ be a multi-arrangement. The polarization $\mathcal{A} \| m$ is the iterated parallel connection

$$
\mathcal{A} \circ{ }_{H_{1}} \mathcal{P}_{m_{H_{1}}} \circ{ }_{H_{2}} \cdots \circ{ }_{H_{n}} \mathcal{P}_{m_{H_{n}}},
$$

where \mathcal{P}_{k} denotes a pencil of k lines in \mathbb{C}^{2}.

- Note: $\operatorname{rank}(\mathcal{A} \| m)=\operatorname{rank} \mathcal{A}+\left|\left\{H \in \mathcal{A}: m_{H} \geqslant 2\right\}\right|$.
- Let $P_{k}=U\left(\mathcal{P}_{k}\right) \cong \mathbb{C} \backslash\{k-1$ points $\}$. Write $P(\mathcal{A})=\prod_{H \in \mathcal{A}} P_{m_{H}}$. Then

$$
U(\mathcal{A}) \times P(\mathcal{A}) \cong U(\mathcal{A} \| m)
$$

- A special class of arrangements obtained by iterated parallel connection was studied in (Choudary-Dimca-Papadima 2005).

The polarization construction works well with respect to Milnor fibrations:

i.e., $j^{*}\left(\delta_{\mathcal{A} \| m}\right)=\delta_{\mathcal{A}, m}$.

THEOREM

Suppose \mathcal{A} admits a pointed multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_{H}.
There is then a choice of multiplicities m^{\prime} on the deletion $\mathcal{A}^{\prime}=\mathcal{A} \backslash\{H\}$ such that $H_{q}(F(\mathcal{B}), \mathbb{Z})$ has p-torsion, where $\mathcal{B}=\mathcal{A}^{\prime} \| m^{\prime}$ and $q=1+\left|\left\{K \in \mathcal{A}^{\prime}: m_{K}^{\prime} \geqslant 3\right\}\right|$.

ExAMPLE

- Let \mathcal{A} be reflection arrangement of type B_{3}, with $Q(\mathcal{A})=x y z(x-y)(x+y)(x-z)(x+z)(y-z)(y+z)$.
- Recall \mathcal{A} supports a $(3,4)$-multinet.
- Let $\mathcal{A}^{\prime}=\mathcal{A} \backslash\{z=0\}$ be the deleted B_{3} arrangement.
- Pick $m^{\prime}=(8,1,3,3,5,5,1,1)$.
- Let $\mathcal{B}=\mathcal{A}^{\prime} \| m^{\prime}$, an arrangement of 27 hyperplanes in \mathbb{C}^{8}
- Then $H_{6}(F(\mathcal{B}), \mathbb{Z})$ has 2-torsion of rank 108.
- $\Delta_{6}^{\mathrm{C}}(t)=(t-1)^{11968}$, yet $\Delta_{6}^{\overline{\mathrm{F}_{2}}}(t)=(t-1)^{11968}\left(t^{2}+t+1\right)^{54}$.

THE BOUNDARY MANIFOLD

- Let \mathcal{A} be a (central) arrangement of hyperplanes in $\mathbb{C}^{d+1}(d \geqslant 1)$.
- Let $\mathbb{P}(\mathcal{A})=\{\mathbb{P}(H)\}_{H \in \mathcal{A}}$, and let $v(W)$ be a regular neighborhood of the algebraic hypersurface $W=\bigcup_{H \in \mathcal{A}} \mathbb{P}(H)$ inside $\mathbb{C P}^{d}$.
- Let $\bar{U}=\mathbb{C P}^{d} \backslash \operatorname{int}(v(W))$ be the exterior of $\mathbb{P}(\mathcal{A})$.
- The boundary manifold of \mathcal{A} is $\partial \bar{U}=\partial v(W)$: a compact, orientable, smooth manifold of dimension $2 d-1$.

EXAMPLE

Let \mathcal{A} be a pencil of n hyperplanes in \mathbb{C}^{d+1}, defined by $Q=z_{1}^{n}-z_{2}^{n}$. If $n=1$, then $\partial \bar{U}=S^{2 d-1}$. If $n>1$, then $\partial \bar{U}=\sharp^{n-1} S^{1} \times S^{2(d-1)}$.

EXAMPLE

Let \mathcal{A} be a near-pencil of n planes in \mathbb{C}^{3}, defined by $Q=z_{1}\left(z_{2}^{n-1}-z_{3}^{n-1}\right)$. Then $\partial \bar{U}=S^{1} \times \Sigma_{n-2}$, where $\Sigma_{g}=\sharp^{9} S^{1} \times S^{1}$.

- By Lefschetz duality: $H_{q}(\partial \bar{U}, \mathbb{Z}) \cong H_{q}(U, \mathbb{Z}) \oplus H_{2 d-q-1}(U, \mathbb{Z})$
- Let $A=H^{*}(U, \mathbb{Z})$; then $\check{A}=\operatorname{Hom}_{\mathbb{Z}}(A, \mathbb{Z})$ is an A-bimodule, with $(a \cdot f)(b)=f(b a)$ and $(f \cdot a)(b)=f(a b)$.

THEOREM (COHEN-S. 2006)

The ring $\hat{A}=H^{*}(\partial \bar{U}, \mathbb{Z})$ is the "double" of A, that is: $\hat{A}=A \oplus \check{A}$, with multiplication given by $(a, f) \cdot(b, g)=(a b, a g+f b)$, and grading $\widehat{A}^{q}=A^{q} \oplus \check{A}^{2 d-q-1}$.

- Now assume $d=2$. Then $\partial \bar{U}$ is a graph-manifold of dimension 3, modeled on a graph Γ based on the poset $L_{\leqslant 2}(\mathcal{A})$.

THEOREM (COHEN-S. 2008)
The manifold $\partial \bar{U}$ admits a minimal cell structure. Moreover,

$$
\mathcal{V}_{1}^{1}(\partial \overline{\mathrm{U}})=\bigcup_{v \in \mathrm{~V}(\Gamma): d_{v} \geqslant 3}\left\{t_{v}-1=0\right\},
$$

where d_{v} denotes the degree of the vertex v, and $t_{v}=\prod_{i \in v} t_{i}$.

The boundary of the Milnor fiber

- Let (\mathcal{A}, m) be a multi-arrangement in \mathbb{C}^{d+1}.
- Define $\bar{F}_{m}(\mathcal{A})=F_{m}(\mathcal{A}) \cap D^{2(d+1)}$ to be the closed Milnor fiber of (\mathcal{A}, m). Clearly, $F_{m}(\mathcal{A})$ deform-retracts onto $\bar{F}_{m}(\mathcal{A})$.
- The boundary of the Milnor fiber of (\mathcal{A}, m) is the compact, smooth, orientable, $(2 d-1)$-manifold $\partial \bar{F}_{m}(\mathcal{A})=F_{m}(\mathcal{A}) \cap S^{2 d+1}$.
- The pair $\left(\bar{F}_{m}, \partial \bar{F}_{m}\right)$ is $(d-1)$-connected. In particular, if $d \geqslant 2$, then $\partial \bar{F}_{m}$ is connected, and $\pi_{1}\left(\partial \bar{F}_{m}\right) \rightarrow \pi_{1}\left(\bar{F}_{m}\right)$ is surjective.

Figure : Closed Milnor fiber for $Q(\mathcal{A})=x y$

EXAMPLE

- Let \mathcal{B}_{n} be the Boolean arrangement in \mathbb{C}^{n}. Recall $F=\left(\mathbb{C}^{*}\right)^{n-1}$. Hence, $\bar{F}=T^{n-1} \times D^{n-1}$, and so $\partial \bar{F}=T^{n-1} \times S^{n-2}$.
- Let \mathcal{A} be a near-pencil of n planes in \mathbb{C}^{3}. Then $\partial \bar{F}=S^{1} \times \Sigma_{n-2}$.

The Hopf fibration $\pi: \mathbb{C}^{d+1} \backslash\{0\} \rightarrow \mathbb{C} \mathbb{P}^{d}$ restricts to regular, cyclic n-fold covers, $\pi: \bar{F} \rightarrow \bar{U}$ and $\pi: \partial \bar{F} \rightarrow \partial \bar{U}$, which fit into the ladder

Assume now that $d=2$. The group $\pi_{1}(\partial \bar{U})$ has generators x_{1}, \ldots, x_{n-1} corresponding to the meridians around the first $n-1$ lines in $\mathbb{P}(\mathcal{A})$, and generators y_{1}, \ldots, y_{s} corresponding to the cycles in the associated graph Γ.

PROPOSITION (S13)

The \mathbb{Z}_{n}-cover $\pi: \partial \bar{F} \rightarrow \partial \bar{U}$ is classified by the homomorphism $\pi_{1}(\partial \bar{U}) \rightarrow \mathbb{Z}_{n}$ given by $x_{i} \mapsto 1$ and $y_{i} \mapsto 0$.

EXAMPLE

Let \mathcal{A} be a pencil of $n+1$ planes in \mathbb{C}^{3}. Since $\partial \bar{U}=\sharp^{n} S^{1} \times S^{2}$, and $\partial \bar{F} \rightarrow \partial \bar{U}$ is a cover with $n+1$ sheets, we see that $\partial \bar{F}=\sharp^{n^{2}} S^{1} \times S^{2}$.

THEOREM (NÉMETHI-SZILARD 2012)

Let \mathcal{A} be an arrangement of n planes in \mathbb{C}^{3}. The characteristic polynomial of the algebraic monodromy acting on $H_{1}(\partial \bar{F}, \mathbb{C})$ is given by

$$
\Delta(t)=\prod_{X \in L_{2}(\mathcal{A})}(t-1)\left(t^{\operatorname{gcd}(\mu(X)+1, n)}-1\right)^{\mu(X)-1}
$$

- This shows that $b_{1}(\partial \bar{F})$ is a much less subtle invariant than $b_{1}(F)$: it depends only on the number and type of multiple points of $\mathbb{P}(\mathcal{A})$, but not on their relative position.
- On the other hand, the torsion in $H_{1}(\partial \bar{F}, \mathbb{Z})$ is still not understood.
- For a generic arrangement of n planes in \mathbb{C}^{3}, I expect that $H_{1}(\partial \bar{F}, \mathbb{Z})=\mathbb{Z}^{n(n-1) / 2} \oplus \mathbb{Z}_{n}^{(n-2)(n-3) / 2}$.
- In general, it would be interesting to see whether all the torsion in $H_{1}(\partial \bar{F}(\mathcal{A}), \mathbb{Z})$ consists of \mathbb{Z}_{n}-summands, where $n=|\mathcal{A}|$.

