MILNOR FIBRATIONS OF HYPERPLANE ARRANGEMENTS

Alex Suciu

Northeastern University

Algebraic Geometry and Topology Seminars Institute of Mathematics of the Romanian Academy June 14, 2013

Graham Denham and Alex Suciu, *Multinets, parallel connections, and Milnor fibrations of arrangements*, arxiv:1209.3414.

Alex Suciu, *Hyperplane arrangements and Milnor fibrations*, arxiv:1301.4851.

HYPERPLANE ARRANGEMENTS

- An arrangement of hyperplanes is a finite set A of codimension-1 linear subspaces in C^{d+1}.
- Let $M(\mathcal{A}) = \mathbb{C}^{d+1} \setminus \bigcup_{H \in \mathcal{A}} H$ be the complement of \mathcal{A} .
- This is a smooth, quasi-projective variety, with the homotopy type of a connected, finite CW-complex of dimension d + 1.
- In fact, as conjectured by Papadima–S. (2000) and proved by Dimca–Papadima (2003), M(A) admits a *minimal* cell structure (the Morse inequalities are satisfied on the nose).
- In particular, $H_*(M(\mathcal{A}), \mathbb{Z})$ is torsion-free.
- Poin($M(\mathcal{A}), t$) = $\sum_{X \in L(\mathcal{A})} \mu(X)(-t)^{\operatorname{rank}(X)}$, where $\mu: L(\mathcal{A}) \to \mathbb{Z}$ is given by $\mu(\mathbb{C}^{d+1}) = 1$ and $\mu(X) = -\sum_{Y \supseteq X} \mu(Y)$.
- The ring H*(M(A), Z) is the quotient of the exterior algebra on A (gens in deg 1) by an ideal (gens in deg ≥ 2) determined by L(A).

THE MILNOR FIBRATION(S) OF AN ARRANGEMENT

- For each $H \in \mathcal{A}$, let $f_H : \mathbb{C}^{d+1} \to \mathbb{C}$ be a linear form with kernel H.
- For each $m \in \mathbb{N}^{|\mathcal{A}|}$, let $Q_m = \prod_{H \in \mathcal{A}} f_H^{m_H}$: a homogeneous polynomial of degree $N = \sum_{H \in \mathcal{A}} m_H$.
- The map $Q_m \colon \mathbb{C}^{d+1} \to \mathbb{C}$ restricts to a map $Q_m \colon M(\mathcal{A}) \to \mathbb{C}^*$.
- This is the projection of a smooth, locally trivial bundle, known as the (global) Milnor fibration of the multi-arrangement (A, m),

$$F_m(\mathcal{A}) \longrightarrow M(\mathcal{A}) \xrightarrow{Q_m} \mathbb{C}^*.$$

- The typical fiber, $F_m(A) = Q_m^{-1}(1)$, is called the *Milnor fiber* of the multi-arrangement; it has gcd(m) connected components.
- The *(geometric) monodromy* is the diffeomorphism

$$h: F_m(\mathcal{A}) \to F_m(\mathcal{A}), \quad z \mapsto e^{2\pi i/N} z.$$

• If all $m_H = 1$, the polynomial $Q = Q_m$ is the usual defining polynomial, and $F(A) = F_m(A)$ is the usual Milnor fiber of A.

EXAMPLE

Let \mathcal{B}_n be the Boolean arrangement in \mathbb{C}^n , with $Q = z_1 \cdots z_n$. Then $M(\mathcal{B}_n) = (\mathbb{C}^*)^n$ and $F(\mathcal{B}_n) = (\mathbb{C}^*)^{n-1}$.

EXAMPLE

Let \mathcal{A} be a pencil of 3 lines through the origin of \mathbb{C}^2 . Then $F(\mathcal{A})$ is a thrice-punctured torus, and *h* is an automorphism of order 3:

- *F_m(A)* is a Stein domain of complex dimension *d*; thus, it has the homotopy type of a finite CW-complex of dimension *d*.
- Question 1 (folklore): Is H_{*}(F(A), Q) determined by L(A)? Answer still not known, even for * = 1.
- Question 2 (Dimca–Némethi, Randell): Is H_∗(F(A), Z) torsion-free?
- In previous work (Cohen–Denham–S. 2003), we showed that the answer to Q2 is no, but only for $F_m(\mathcal{A})$, for non-trivial *m*.

THEOREM (DS12)

For every prime $p \ge 2$, there is a hyperplane arrangement A whose Milnor fiber F(A) has non-trivial *p*-torsion in homology.

In particular, Milnor fibers of arrangements may not admit a minimal cell structure.

Simplest example: the arrangement of 27 hyperplanes in \mathbb{C}^8 with

$$\begin{aligned} & Q(\mathcal{A}) = xy(x^2 - y^2)(x^2 - z^2)(y^2 - z^2)w_1w_2w_3w_4w_5(x^2 - w_1^2) \cdot \\ & (x^2 - 2w_1^2)(x^2 - 3w_1^2)(x - 4w_1)((x - y)^2 - w_2^2)((x + y)^2 - w_3^2) \cdot \\ & ((x - z)^2 - w_4^2)((x - z)^2 - 2w_4^2) \cdot ((x + z)^2 - w_5^2)((x + z)^2 - 2w_5^2). \end{aligned}$$

Then $H_6(F(\mathcal{A}), \mathbb{Z})$ has 2-torsion (of rank 108).

Basic idea of proof:

- $F_m(\mathcal{A})$ is the regular \mathbb{Z}_N -cover of $U = \mathbb{P}M(\mathcal{A})$ defined by the homomorphism $\delta_m : \pi_1(U) \twoheadrightarrow \mathbb{Z}_N$, taking each meridian x_H to m_H .
- If $\Bbbk = \overline{\Bbbk}$ and char(\Bbbk) $\nmid N$, then $H_q(F_m(\mathcal{A}), \Bbbk) \cong \bigoplus_{\rho} H_q(U, \Bbbk_{\rho})$, where $\rho \colon \pi_1(U) \to \Bbbk^*$ factors through δ_m .
- Thus, if there is such a character ρ for which H_q(U, k_ρ) ≠ 0, where p = char(k) ∤ N, but there is no corresponding character in characteristic 0, then H_q(F_m(A), Z) will have p-torsion.
- Fix a prime *p*. Starting with an arrangement A with a suitable multinet structure, we find a deletion A' = A \ {H}, and a choice of multiplicities *m*' on A' such that H₁(F_m(A'), Z) has *p*-torsion.
- Finally, we construct a "polarized" arrangement, B = A' ∥ m', and show that H_{*}(F(B), Z) has p-torsion.

CHARACTERISTIC VARIETIES

- Let *X* be a connected, finite-type CW-complex. Then $G = \pi_1(X, x_0)$ is a finitely generated group, with $G_{ab} \cong H_1(X, \mathbb{Z})$.
- The character group $\widehat{G} = \widehat{G}_{\Bbbk} := \operatorname{Hom}(G, \Bbbk^*) \cong H^1(X, \Bbbk^*)$ is an abelian algebraic group, with $\widehat{G} \cong \widehat{G_{ab}}$.
- Characteristic varieties:

 $\mathcal{V}^{i}_{s}(X,\Bbbk) := \{ \rho \in \widehat{G} \mid \dim_{\Bbbk} H_{i}(X, \Bbbk_{\rho}) \geq s \}.$

Here, \Bbbk_{ρ} is the local system defined by ρ , i.e, \Bbbk viewed as a $\Bbbk G$ -module, via $g \cdot x = \rho(g)x$, and $H_i(X, \Bbbk_{\rho}) = H_i(C_*(\widetilde{X}, \Bbbk) \otimes_{\Bbbk G} \Bbbk_{\rho})$.

- Product formula: $\mathcal{V}_1^i(X_1 \times X_2, \Bbbk) = \bigcup_{p+q=i} \mathcal{V}_1^p(X_1, \Bbbk) \times \mathcal{V}_1^q(X_2, \Bbbk).$
- The sets $\mathcal{V}_{s}^{1}(X, \Bbbk)$ depend only on $G = \pi_{1}(X)$ —in fact, only on G/G''. Write them as $\mathcal{V}_{s}^{1}(G, \Bbbk)$, and set $\mathcal{V}^{1}(G, \Bbbk) = \mathcal{V}_{s}^{1}(G, \Bbbk)$.

• If $\varphi: G \to Q$ is an epimorphism, then the induced morphism $\hat{\varphi}_{\Bbbk}: \hat{Q} \hookrightarrow \hat{G}$ restricts to an embedding $\mathcal{V}_{s}^{1}(Q, \Bbbk) \hookrightarrow \mathcal{V}_{s}^{1}(G, \Bbbk), \forall s$. Alex Suciu (Northeastern) Milnor fibrations of arrangements IMAR AG&T Seminars 9/33

EXAMPLE

Identify $\pi_1(\mathbb{C}\setminus\{n \text{ points}\}) = F_n$, and $\widehat{F_n} = (\Bbbk^*)^n$. Then: $\mathcal{V}_s^1(\mathbb{C}\setminus\{n \text{ points}\},\Bbbk) = \begin{cases} (\Bbbk^*)^n & \text{if } s < n, \\ \{1\} & \text{if } s = n, \\ \emptyset & \text{if } s > n. \end{cases}$

In general, though, the characteristic varieties depend on char(k).

EXAMPLE

- Let $\Gamma = F_n * \mathbb{Z}_p$, and identify $\widehat{\Gamma} = \widehat{F_n} \times \widehat{\mathbb{Z}_p}$.
- If $char(\Bbbk) \neq p$, then $\widehat{\mathbb{Z}_p} = Hom(\mathbb{Z}_p, \Bbbk^*)$ has order p, and

$$\mathcal{V}^{1}(\Gamma, \Bbbk) = egin{cases} \widehat{\Gamma} & ext{if } n \geq 2, \ \left(\widehat{\Gamma} \setminus \widehat{\Gamma}^{\circ}\right) \cup \{\mathbf{1}\} & ext{if } n = 1 \ . \end{cases}$$

• If char(\Bbbk) = p, then $\widehat{\mathbb{Z}_p} = \{\mathbf{1}\}$, and $\mathcal{V}^1(\Gamma, \Bbbk) = \widehat{\Gamma}$, for all $n \ge 1$.

HOMOLOGY OF FINITE ABELIAN COVERS

- Let X be a connected, finite-type CW-complex, and $G = \pi_1(X)$.
- Let *A* be a finite abelian group.
- Every epimorphism χ: G → A determines a regular, connected A-cover X^χ → X.
- Let k be a field, p = char(k). Assume p = 0 or $p \nmid |A|$. Then $H(X^{\chi} \mid k) \sim H(X \mid k[A]) \sim \bigoplus H(X \mid k)$

$$H_q(X^{\chi}, \Bbbk) \cong H_q(X, \Bbbk[A]) \cong \bigoplus_{\rho \in \widehat{A}} H_q(X, \Bbbk_{\rho}).$$

Hence,

$$\dim_{\Bbbk} H_q(X^{\chi}, \Bbbk) = \sum_{s \ge 1} \left| \mathcal{V}_s^q(X, \Bbbk) \cap \mathsf{im}(\widehat{\chi}_{\Bbbk}) \right|,$$

where $\hat{\chi}_{k} : \hat{A}_{k} \to \hat{G}_{k}$ is the induced morphism between character groups.

- Now suppose *A* is a finite cyclic group. Choose a generator $\alpha \in A$.
- Let $h = h_{\alpha}$: $X^{\chi} \to X^{\chi}$ be the monodromy automorphism.
- Let $h_*: H_q(X^{\chi}, \Bbbk) \to H_q(X^{\chi}, \Bbbk)$ be the induced homomorphism.
- Note: if ρ: G → k* is a character belonging to im(χ̂_k), there is a unique character ι_ρ: A → k* such that ρ = ι_ρ ∘ χ.
- Assume char(k) ∤ |A|. Then, the characteristic polynomial of the algebraic monodromy, Δ^k_{χ,q}(t) = det(t ⋅ id − h_{*}), is given by

$$\Delta_{\chi,q}^{\Bbbk}(t) = \prod_{s \ge 1} \prod_{\rho \in \operatorname{im}(\widehat{\chi}) \cap \mathcal{V}_s^q(X,\Bbbk)} (t - \iota_{\rho}(\alpha)).$$

THEOREM

Let $X^{\chi} \to X$ be a regular, finite cyclic cover, defined by an epimorphism $\chi: \pi_1(X) \twoheadrightarrow \mathbb{Z}_r$. Suppose that $\operatorname{im}(\widehat{\chi}_{\mathbb{C}}) \notin \mathcal{V}_1^q(X, \mathbb{C})$, but $\operatorname{im}(\widehat{\chi}_{\Bbbk}) \subseteq \mathcal{V}_1^q(X, \Bbbk)$, for some field \Bbbk of characteristic p not dividing r. Then $H_q(X^{\chi}, \mathbb{Z})$ has non-zero p-torsion.

- In order to apply this theorem, one needs to know both the characteristic varieties over C and over k, and exploit the qualitative differences between the two.
- In a special situation, we only need to verify that a certain condition on the first characteristic variety over C holds.

THEOREM

Suppose there is a character $\rho \colon \pi_1(X) \to \mathbb{C}^*$ which factors as $\pi_1(X) \to \mathbb{Z} * \mathbb{Z}_p \to \mathbb{Z} \to \mathbb{C}^*$, for some prime p, but $\rho \notin \mathcal{V}^1(X, \mathbb{C})$. Then, for all sufficiently large integers r not divisible by p, there is a regular, r-fold cyclic cover $Y \to X$ such that $H_1(Y, \mathbb{Z})$ has non-zero p-torsion.

ORBIFOLD FIBRATIONS

- Let Σ_{g,r} be a Riemann surface of genus g ≥ 0 with r ≥ 0 points removed. Fix points q₁,..., q_s on the surface, and assign integer weights μ₁,..., μ_s with μ_i ≥ 2.
- The orbifold $\Sigma = (\Sigma_{g,r}, \mu)$ is *hyperbolic* if $\chi^{\text{orb}}(\Sigma) := 2 2g r \sum_{i=1}^{s} (1 1/\mu_i)$ is negative.
- A hyperbolic orbifold Σ is *small* if either $\Sigma = S^1 \times S^1$ and $s \ge 2$, or $\Sigma = \mathbb{C}^*$ and $s \ge 1$; otherwise, Σ is *large*.
- The orbifold fundamental group is defined as

$$\begin{split} \Gamma &= \left\langle \begin{array}{c} x_1, \ldots, x_g, y_1, \ldots, y_g \\ z_1, \ldots, z_s \end{array} \middle| \begin{array}{c} [x_1, y_1] \cdots [x_g, y_g] z_1 \cdots z_s = 1 \\ z_1^{\mu_1} = \cdots = z_t^{\mu_s} = 1 \end{array} \right\rangle (r = 0) \\ & \Gamma = F_{2g+r-1} \ast \mathbb{Z}_{\mu_1} \ast \cdots \ast \mathbb{Z}_{\mu_s} \quad (r > 0) \\ & \bullet \text{ From (Artal-Cogolludo-Matei 2013), we get:} \\ & \mathcal{V}^1(\Gamma) = \begin{cases} \widehat{\Gamma} & \text{if } \Sigma \text{ is a large hyperbolic orbifold,} \\ (\widehat{\Gamma} \setminus \widehat{\Gamma}^\circ) \cup \{1\} & \text{if } \Sigma \text{ is a small hyperbolic orbifold,} \\ & \{1\} & \text{otherwise.} \end{cases} \end{split}$$

- Let X be a smooth, quasi-projective variety, and $G = \pi_1(X)$.
- A surjective, holomorphic map *f*: X → (Σ_{g,r}, μ) is called an *orbifold fibration* if the generic fiber is connected; the multiplicity of the fiber over each marked point *q_i* equals μ_i; and *f* admits an extension *f*: X → Σ_g with the same properties.
- Such a map induces an epimorphism $f_{\sharp} \colon G \to \Gamma$, where $\Gamma = \pi_1^{\text{orb}}(\Sigma_{g,s}, \mu)$, and thus a monomorphism $\hat{f}_{\sharp} \colon \hat{\Gamma} \hookrightarrow \hat{G}$.

THEOREM (ARAPURA + ACM + BW)

$$\mathcal{V}^{1}(X) = \bigcup_{f \text{ large}} \operatorname{im}(\widehat{f}_{\sharp}) \cup \bigcup_{f \text{ small}} \left(\operatorname{im}(\widehat{f}_{\sharp}) \setminus \operatorname{im}(\widehat{f}_{\sharp})^{\circ} \right) \cup Z,$$

where Z is a finite set of torsion characters.

Theorem

Suppose there is a small orbifold fibration $f: X \to (\Sigma, \mu)$ and a prime p dividing each μ_i . Then, for all $r \gg 0$ with $p \nmid r$, there is a regular, r-fold cyclic cover $Y \to X$ such that $H_1(Y, \mathbb{Z})$ has non-zero p-torsion.

MULTINETS

DEFINITION (FALK AND YUZVINSKY)

A (k, ℓ) -multinet $(k \ge 3, \ell \ge 1)$ on an arrangement \mathcal{A} consists of:

- A partition $\mathcal{A} = (\mathcal{A}_1, \dots, \mathcal{A}_k)$.
- An assignment of multiplicities on the hyperplanes, $m: \mathcal{A} \to \mathbb{N}$.
- A subset $\mathcal{X} \subseteq L_2(\mathcal{A})$, called the base locus.

Moreover,

• $\sum_{H \in A_i} m_H = \ell$, for all $i \in [k]$.

- For any hyperplanes H and H' in different classes, $H \cap H' \in \mathcal{X}$.
- For each $X \in \mathcal{X}$, the sum $n_X = \sum_{H \in \mathcal{A}_i: H \supset X} m_H$ is independent of *i*.

• For each $i \in [k]$, the space $(\bigcup_{H \in A_i} H) \setminus \mathcal{X}$ is connected.

WLOG, we may assume $gcd\{m_H \mid H \in A\} = 1$. If all $m_H = 1$, the multinet is *reduced*. If, furthermore, every flat in \mathcal{X} is contained in precisely one hyperplane from each class, this is a *net*. ALEX SUCIU (NORTHEASTERN) MILNOR FIBRATIONS OF ARRANGEMENTS IMAR AG&T SEMINARS

FIGURE : A (3, 2)-net on the A₃ arrangement

FIGURE : A (3, 4)-multinet on the B₃ arrangement

FIGURE : A (4, 3)-net on the Hessian matroid

- Let \mathcal{A} be a (central) arrangement of hyperplanes in \mathbb{C}^{d+1} .
- Let $M = \mathbb{C}^{d+1} \setminus \bigcup_{H \in \mathcal{A}} H$, and $U = \mathbb{P}M$. Then $M \cong U \times \mathbb{C}^*$.
- Identify $H_1(M, \mathbb{Z}) = \mathbb{Z}^n$, with basis the meridians $\{x_H \mid H \in \mathcal{A}\}$.
- Let $\operatorname{Hom}(\pi_1(M), \Bbbk^*) = (\Bbbk^*)^n$ be the character torus.
- Then $\mathcal{V}^1(\mathcal{A}) := \mathcal{V}^1(\mathcal{M}) \subset (\mathbb{k}^*)^n$ is isomorphic to $\mathcal{V}^1(\mathcal{U}) \subseteq \{t \in (\mathbb{k}^*)^n \mid t_1 \cdots t_n = 1\} \cong (\mathbb{k}^*)^{n-1}.$

THEOREM (FALK-YUZ, PEREIRA-YUZ, YUZVINSKY)

Each positive-dimensional, non-local component of $\mathcal{V}^1(\mathcal{A})$ is of the form ρT , where ρ is a torsion character, $T = f^*(H^1(\Sigma_{0,k}, \mathbb{C}^*))$, for some orbifold fibration $f: M(\mathcal{A}) \to (\Sigma_{0,k}, \mu)$, and either

- k = 2, and f has at least one multiple fiber, or
- k = 3 or 4, and f corresponds to a multinet with k classes on the multiarrangement (A, m), for some m.

MILNOR FIBERS

- Let (A, m) be a multi-arrangement with $gcd\{m_H \mid H \in A\} = 1$. Set $N = \sum_{H \in A} m_H$.
- The Milnor fiber $F_m(\mathcal{A})$ is the regular \mathbb{Z}_N -cover of $U(\mathcal{A})$ defined by the homomorphism $\delta_m \colon \pi_1(U(\mathcal{A})) \twoheadrightarrow \mathbb{Z}_N, x_H \mapsto m_H \mod N$.
- If $char(\Bbbk) \nmid N$, then

$$\dim_{\Bbbk} H_q(F_m(\mathcal{A}), \Bbbk) = \sum_{s \ge 1} \left| \mathcal{V}_s^q(U(\mathcal{A}), \Bbbk) \cap \operatorname{im}(\widehat{\delta_m}) \right|.$$

• The characteristic polynomial of the algebraic monodromy, $h_*: H_q(F_m(\mathcal{A}), \Bbbk) \to H_q(F_m(\mathcal{A}), \Bbbk)$, is given by

$$\Delta_{h,q}^{\Bbbk}(t) = \prod_{s \ge 1} \prod_{\substack{\zeta \in \Bbbk^* : \zeta^N = 1, \\ \zeta^m \in \mathcal{V}_s^q(U(\mathcal{A}), \Bbbk)}} (t - \zeta).$$

Not every regular, cyclic cover of a projective arrangement complement arises through the Milnor fiber construction. Nevertheless, the Milnor fibers dominate all other cyclic covers:

Lemma

Let (\mathcal{A}, m) be a multiarrangement, and let $U^{\chi} \to U$ be a regular, *r*-fold cyclic cover of $U = \mathbb{P}M(\mathcal{A})$. There exist then infinitely many multiplicity vectors *m* such that

Moreover, for any prime $p \nmid r$, we may choose m so that the degree of $Q(\mathcal{A}, m)$ is not divisible by p.

DELETION

A pointed multinet (\mathcal{M}, H) on an arrangement \mathcal{A} is a multinet structure $\mathcal{M} = ((\mathcal{A}_1, \dots, \mathcal{A}_k), m, \mathcal{X})$, together with a distinguished hyperplane $H \in \mathcal{A}$ for which $m_H > 1$ and $m_H \mid n_X$ for each $X \in \mathcal{X}$ such that $X \subset H$.

LEMMA

Suppose \mathcal{A} admits a pointed multinet, and set $\mathcal{A}' = \mathcal{A} \setminus \{H\}$. Then $U(\mathcal{A}')$ supports a small pencil, and $\mathcal{V}^1(\mathcal{A}')$ has a component which is a 1-dimensional subtorus, translated by a character of order m_H .

Theorem

Suppose \mathcal{A} admits a pointed multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_H . There is then a choice of multiplicities m' on the deletion $\mathcal{A}' = \mathcal{A} \setminus \{H\}$ such that $H_1(F_{m'}(\mathcal{A}'), \mathbb{Z})$ has non-zero p-torsion.

POLARIZATION

- Let A_1 and A_2 be arrangements in V_1 and V_2 , defined by polynomials $Q_1 = \prod_{H \in A_1} f_H$ and $Q_2 = \prod_{H \in A_2} g_H$.
- Fix H₁ ∈ A₁ and H₂ ∈ A₂. The *parallel connection*, A_{1H₁}||_{H₂}A₂, is the arrangement in V₁ × V₂ defined by the polynomial

$$f_{H_1} \cdot \prod_{H \in \mathcal{A}_1 \setminus \{H_1\}} f_H \cdot \prod_{H \in \mathcal{A}_2 \setminus \{H_2\}} g_H \in \Bbbk[V_1^*] \otimes_{\Bbbk} \Bbbk[V_2^*] / (f_{H_1} - g_{H_2}).$$

• Falk and Proudfoot (2002): $\mathbb{P}(M_1) \times \mathbb{P}(M_2) \cong \mathbb{P}(M_{1_{H_1}} ||_{H_2} M_2).$

• If (A_i, H_i) are pointed arrangements and $H \in A_1$, we let

 $(\mathcal{A}_1, \mathcal{H}_1) \circ_{\mathcal{H}} (\mathcal{A}_2, \mathcal{H}_2) = (\mathcal{A}_{1 \mathcal{H}} \|_{\mathcal{H}_2} \mathcal{A}_2, \mathcal{H}_1).$

Let A = ({H₁,..., H_n}, m) be a multi-arrangement. The polarization A ∥ m is the iterated parallel connection

$$\mathcal{A} \circ_{H_1} \mathcal{P}_{m_{H_1}} \circ_{H_2} \cdots \circ_{H_n} \mathcal{P}_{m_{H_n}},$$

where \mathcal{P}_k denotes a pencil of k lines in \mathbb{C}^2 .

- Note: $\operatorname{rank}(\mathcal{A} \parallel m) = \operatorname{rank} \mathcal{A} + |\{H \in \mathcal{A} \colon m_H \ge 2\}|.$
- Let $P_k = U(\mathcal{P}_k) \cong \mathbb{C} \setminus \{k 1 \text{ points}\}$. Write $P(\mathcal{A}) = \prod_{H \in \mathcal{A}} P_{m_H}$. Then $U(\mathcal{A}) \times P(\mathcal{A}) \cong U(\mathcal{A} \parallel m)$.
- A special class of arrangements obtained by iterated parallel connection was studied in (Choudary–Dimca–Papadima 2005).

The polarization construction works well with respect to Milnor fibrations:

i.e., $j^*(\delta_{\mathcal{A} \parallel m}) = \delta_{\mathcal{A},m}$.

Theorem

Suppose A admits a pointed multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_H .

There is then a choice of multiplicities m' on the deletion $\mathcal{A}' = \mathcal{A} \setminus \{H\}$ such that $H_q(F(\mathcal{B}), \mathbb{Z})$ has p-torsion, where $\mathcal{B} = \mathcal{A}' || m'$ and $q = 1 + |\{K \in \mathcal{A}' : m'_K \ge 3\}|.$

EXAMPLE

- Let \mathcal{A} be reflection arrangement of type B₃, with $Q(\mathcal{A}) = xyz(x-y)(x+y)(x-z)(x+z)(y-z)(y+z).$
- Recall *A* supports a (3, 4)-multinet.
- Let $\mathcal{A}' = \mathcal{A} \setminus \{z = 0\}$ be the deleted B_3 arrangement.
- Pick m' = (8, 1, 3, 3, 5, 5, 1, 1).
- Let $\mathcal{B} = \mathcal{A}' || m'$, an arrangement of 27 hyperplanes in \mathbb{C}^8
- Then $H_6(F(\mathcal{B}), \mathbb{Z})$ has 2-torsion of rank 108.

• $\Delta_6^{\mathbb{C}}(t) = (t-1)^{11968}$, yet $\Delta_6^{\overline{\mathbb{F}_2}}(t) = (t-1)^{11968}(t^2+t+1)^{54}$.

THE BOUNDARY MANIFOLD

- Let \mathcal{A} be a (central) arrangement of hyperplanes in \mathbb{C}^{d+1} ($d \ge 1$).
- Let P(A) = {P(H)}_{H∈A}, and let v(W) be a regular neighborhood of the algebraic hypersurface W = U_{H∈A} P(H) inside CP^d.
- Let $\overline{U} = \mathbb{CP}^d \setminus \operatorname{int}(\nu(W))$ be the *exterior* of $\mathbb{P}(\mathcal{A})$.
- The boundary manifold of A is ∂U = ∂v(W): a compact, orientable, smooth manifold of dimension 2d 1.

EXAMPLE

Let \mathcal{A} be a pencil of *n* hyperplanes in \mathbb{C}^{d+1} , defined by $Q = z_1^n - z_2^n$. If n = 1, then $\partial \overline{U} = S^{2d-1}$. If n > 1, then $\partial \overline{U} = \sharp^{n-1}S^1 \times S^{2(d-1)}$.

EXAMPLE

Let \mathcal{A} be a near-pencil of n planes in \mathbb{C}^3 , defined by $Q = z_1(z_2^{n-1} - z_3^{n-1})$. Then $\partial \overline{U} = S^1 \times \Sigma_{n-2}$, where $\Sigma_g = \sharp^g S^1 \times S^1$. By Lefschetz duality: H_q(∂U, Z) ≅ H_q(U, Z) ⊕ H_{2d-q-1}(U, Z)
Let A = H*(U, Z); then Ă = Hom_Z(A, Z) is an A-bimodule, with (a ⋅ f)(b) = f(ba) and (f ⋅ a)(b) = f(ab).

THEOREM (COHEN-S. 2006)

The ring $\widehat{A} = H^*(\partial \overline{U}, \mathbb{Z})$ is the "double" of A, that is: $\widehat{A} = A \oplus \check{A}$, with multiplication given by $(a, f) \cdot (b, g) = (ab, ag + fb)$, and grading $\widehat{A}^q = A^q \oplus \check{A}^{2d-q-1}$.

Now assume *d* = 2. Then ∂*U* is a graph-manifold of dimension 3, modeled on a graph Γ based on the poset *L*_{≤2}(*A*).

THEOREM (COHEN-S. 2008)

The manifold $\partial \overline{U}$ admits a minimal cell structure. Moreover,

$$\mathcal{V}_1^1(\partial \overline{U}) = \bigcup_{v \in V(\Gamma) : d_v \ge 3} \{t_v - 1 = 0\},\$$

where d_v denotes the degree of the vertex v, and $t_v = \prod_{i \in v} t_i$.

The boundary of the Milnor Fiber

- Let (\mathcal{A}, m) be a multi-arrangement in \mathbb{C}^{d+1} .
- Define $\overline{F}_m(\mathcal{A}) = F_m(\mathcal{A}) \cap D^{2(d+1)}$ to be the *closed Milnor fiber* of (\mathcal{A}, m) . Clearly, $F_m(\mathcal{A})$ deform-retracts onto $\overline{F}_m(\mathcal{A})$.
- The boundary of the Milnor fiber of (\mathcal{A}, m) is the compact, smooth, orientable, (2d-1)-manifold $\partial \overline{F}_m(\mathcal{A}) = F_m(\mathcal{A}) \cap S^{2d+1}$.
- The pair $(\overline{F}_m, \partial \overline{F}_m)$ is (d-1)-connected. In particular, if $d \ge 2$, then $\partial \overline{F}_m$ is connected, and $\pi_1(\partial \overline{F}_m) \to \pi_1(\overline{F}_m)$ is surjective.

FIGURE : Closed Milnor fiber for Q(A) = xy

ALEX SUCIU (NORTHEASTERN)

MILNOR FIBRATIONS OF ARRANGEMENTS

EXAMPLE

- Let \mathcal{B}_n be the Boolean arrangement in \mathbb{C}^n . Recall $F = (\mathbb{C}^*)^{n-1}$. Hence, $\overline{F} = T^{n-1} \times D^{n-1}$, and so $\partial \overline{F} = T^{n-1} \times S^{n-2}$.
- Let \mathcal{A} be a near-pencil of *n* planes in \mathbb{C}^3 . Then $\partial \overline{F} = S^1 \times \Sigma_{n-2}$.

The Hopf fibration $\pi: \mathbb{C}^{d+1} \setminus \{0\} \to \mathbb{CP}^d$ restricts to regular, cyclic *n*-fold covers, $\pi: \overline{F} \to \overline{U}$ and $\pi: \partial \overline{F} \to \partial \overline{U}$, which fit into the ladder

Assume now that d = 2. The group $\pi_1(\partial U)$ has generators x_1, \ldots, x_{n-1} corresponding to the meridians around the first n-1 lines in $\mathbb{P}(\mathcal{A})$, and generators y_1, \ldots, y_s corresponding to the cycles in the associated graph Γ .

PROPOSITION (S13)

The \mathbb{Z}_n -cover $\pi: \partial \overline{F} \to \partial \overline{U}$ is classified by the homomorphism $\pi_1(\partial \overline{U}) \twoheadrightarrow \mathbb{Z}_n$ given by $x_i \mapsto 1$ and $y_i \mapsto 0$.

EXAMPLE

Let \mathcal{A} be a pencil of n + 1 planes in \mathbb{C}^3 . Since $\partial \overline{U} = \sharp^n S^1 \times S^2$, and $\partial \overline{F} \to \partial \overline{U}$ is a cover with n + 1 sheets, we see that $\partial \overline{F} = \sharp^{n^2} S^1 \times S^2$.

THEOREM (NÉMETHI-SZILARD 2012)

Let \mathcal{A} be an arrangement of n planes in \mathbb{C}^3 . The characteristic polynomial of the algebraic monodromy acting on $H_1(\partial \overline{F}, \mathbb{C})$ is given by

$$\Delta(t) = \prod_{X \in L_2(\mathcal{A})} (t-1) (t^{\gcd(\mu(X)+1,n)} - 1)^{\mu(X)-1}.$$

- This shows that b₁(∂F) is a much less subtle invariant than b₁(F): it depends only on the number and type of multiple points of P(A), but not on their relative position.
- On the other hand, the torsion in $H_1(\partial \overline{F}, \mathbb{Z})$ is still not understood.
- For a generic arrangement of *n* planes in \mathbb{C}^3 , I expect that $H_1(\partial \overline{F}, \mathbb{Z}) = \mathbb{Z}^{n(n-1)/2} \oplus \mathbb{Z}_n^{(n-2)(n-3)/2}$.
- In general, it would be interesting to see whether all the torsion in $H_1(\partial \overline{F}(A), \mathbb{Z})$ consists of \mathbb{Z}_n -summands, where n = |A|.