ARRANGEMENTS, DUALITY, AND LOCAL SYSTEMS

Alex Suciu

Northeastern University

Joint work with Graham Denham

Workshop on Braids in symplectic and algebraic geometry ICERM

March 24, 2022

DUALITY SPACES

- The following notion of duality is due to Bieri and Eckmann (1978).
- Let X be a connected, finite-type CW-complex, and set $\pi = \pi_1(X, x_0)$.
- X is a *duality space* of dimension n if $H^i(X, \mathbb{Z}\pi) = 0$ for $i \neq n$ and $H^n(X, \mathbb{Z}\pi) \neq 0$ and torsion-free.
- Let $D = H^n(X, \mathbb{Z}\pi)$ be the dualizing $\mathbb{Z}\pi$ -module. Given any $\mathbb{Z}\pi$ -module A, we have $H^i(X, A) \cong H_{n-i}(X, D \otimes A)$.
- If $D = \mathbb{Z}$, with trivial $\mathbb{Z}\pi$ -action, then X is a Poincaré duality space.
- If $X = K(\pi, 1)$ is a duality space, then π is a *duality group*.
- Davis, Januszkiewicz, Leary, and Okun (2011): Complements of (linear) hyperplane arrangements are duality spaces.

ABELIAN DUALITY SPACES

- We introduces in [Denham–S.–Yuzvinsky 2016/17] an analogous notion, by replacing $\pi \rightsquigarrow \pi_{ab}$.
- X is an *abelian duality space* of dimension n if $H^i(X, \mathbb{Z}\pi_{ab}) = 0$ for $i \neq n$ and $H^n(X, \mathbb{Z}\pi_{ab}) \neq 0$ and torsion-free.
- Let $B = H^n(X, \mathbb{Z}\pi_{ab})$ be the dualizing $\mathbb{Z}\pi_{ab}$ -module. Given any $\mathbb{Z}\pi_{ab}$ -module A, we have $H^i(X, A) \cong H_{n-i}(X, B \otimes A)$.
- Finitely generated free groups F_n are both duality groups and abelian duality groups.
- Surface groups of genus at least 2 are not abelian duality groups, though they are (Poincaré) duality groups.
- Let $H = \langle x_1, \ldots, x_4 \mid x_1^{-2}x_2x_1x_2^{-1}, \ldots, x_4^{-2}x_1x_4x_1^{-1} \rangle$ be Higman's acyclic group, and let $\pi = \mathbb{Z}^2 * H$. Then π is an abelian duality group (of dimension 2), but not a duality group.

THEOREM (DSY)

Let X be an abelian duality space of dimension n. Then:

- $b_1(X) \ge n-1$.
- $b_i(X) \neq 0$, for $0 \leq i \leq n$ and $b_i(X) = 0$ for i > n.
- $(-1)^n \chi(X) \ge 0.$

CHARACTERISTIC VARIETIES

- Let X be a connected, finite-type CW-complex. Then $\pi = \pi_1(X, x_0)$ is a finitely presented group, with $\pi_{ab} \cong H_1(X, \mathbb{Z})$.
- The ring $R = \mathbb{C}[\pi_{ab}]$ is the coordinate ring of the character group, $\operatorname{Char}(X) = \operatorname{Hom}(\pi, \mathbb{C}^*) \cong (\mathbb{C}^*)^r \times \operatorname{Tors}(\pi_{ab})$, where $r = b_1(X)$.
- The characteristic varieties of X are the homology jump loci

 $\mathcal{V}_{s}^{i}(X) = \{ \rho \in \operatorname{Char}(X) \mid \dim H_{i}(X, \mathbb{C}_{\rho}) \geq s \}.$

THEOREM (DSY)

Let X be an abelian duality space of dimension n. If $\rho \colon \pi_1(X) \to \mathbb{C}^*$ satisfies $H^i(X, \mathbb{C}_{\rho}) \neq 0$, then $H^j(X, \mathbb{C}_{\rho}) \neq 0$, for all $i \leq j \leq n$.

COROLLARY

Let X be an abelian duality space of dimension n. Then the characteristic varieties propagate, i.e., $\mathcal{V}_1^1(X) \subseteq \cdots \subseteq \mathcal{V}_1^n(X)$.

RESONANCE VARIETIES

- Let A^{\bullet} be a graded, graded commutative algebra over \mathbb{C} .
- We assume A is connected (A⁰ = ℂ) and of finite-type (dim Aⁱ < ∞, for all i).
- For each $a \in A^1$, we have a cochain complex,

$$(A^{\bullet}, \delta_{a}): A^{0} \xrightarrow{\delta_{a}^{0}} A^{1} \xrightarrow{\delta_{a}^{1}} A^{2} \xrightarrow{\delta_{a}^{2}} \cdots,$$

with differentials $\delta_a^i(u) = a \cdot u$, for all $u \in A^i$.

• The *resonance varieties* of *A* are the sets

 $\mathcal{R}_{s}^{i}(A) = \{ a \in A^{1} \mid \dim H^{i}(A^{\bullet}, \delta_{a}) \geq s \}.$

- These sets are *homogeneous* subvarieties of A¹.
- If X is a connected, finite-type CW-complex, we let $\mathcal{R}^i_s(X) := \mathcal{R}^i_s(H^{\bullet}(X, \mathbb{C})).$

- We say that the resonance varieties of a graded algebra A propagate if $\mathcal{R}^1_1(A) \subseteq \cdots \subseteq \mathcal{R}^n_1(A)$.
- (Eisenbud–Popescu–Yuzvinsky 2003) If X is the complement of a hyperplane arrangement, then its resonance varieties propagate.

THEOREM (DSY)

- Suppose the \mathbb{C} -dual of A has a linear free resolution over $E = \bigwedge A^1$. Then the resonance varieties of A propagate.
- Let X be a formal, abelian duality space. Then the resonance varieties of X propagate.
- Let M be a closed, orientable 3-manifold. If $b_1(M)$ is even and non-zero, then the resonance varieties of M do not propagate.

ARRANGEMENTS OF SMOOTH HYPERSURFACES

- Let Y be a smooth, connected complex manifold, and let
 \$\mathcal{A} = {W_1, \ldots, W_m}\$ be a finite collection of smooth, connected, codimension-1 submanifolds of Y.
- Let $D = \bigcup_{i=1}^{m} W_i$ be the corresponding divisor, and let $M(\mathcal{A}) := Y \setminus D$ be the *complement* of the arrangement \mathcal{A} .
- We assume that the intersection of any subset of A is also a smooth manifold, and has only finitely many connected components.
- We also require that, for each point $y \in D$, there is a chart containing y for which each element of the subcollection $\mathcal{A}_y := \{W_i \mid y \in W_i\}$ is defined locally by a linear equation.
- In other words, the hypersurfaces comprising \mathcal{A} have intersections which, locally, are diffeomorphic to hyperplane arrangements.

- Let L(A) denote the collection of all connected components of intersections of zero or more of the hypersurfaces comprising A.
- Then L(A) forms a finite poset under reverse inclusion, ranked by codimension. We write X ≤ Y if X ⊇ Y and r(X) = codim X.
- For every submanifold X in the intersection poset L(A), we let
 A_X = {W ∈ A | X ⊆ W}: the *closed subarrangement* for X.
 A^X = {W ∩ X | W ∈ A\A_X}: the *restriction* of A to X.
- Then $M(\mathcal{A}^X) := X \setminus D_X$, where $D_X = \bigcup_{Z \in L(\mathcal{A}): Z < X} Z$.
- We also let TA_X be the hyperplane arrangement in the tangent space to Y at a point in the relative interior of X.

THEOREM (DSY)

Let A be an arrangement of hypersurfaces in a compact, smooth manifold Y. Let M be the complement of the arrangement, and let \mathcal{F} be a locally constant sheaf on M. There is then a spectral sequence with

$$E_2^{pq} = \prod_{X \in L(\mathcal{A})} H_c^{p+r(X)}(M(\mathcal{A}^X); H^{q-r(X)}(M(\mathcal{T}\mathcal{A}_X), \mathcal{F}_X)),$$

converging to $H^{p+q}(M, \mathcal{F})$, where \mathcal{F}_X is the restriction of \mathcal{F} to $M(T\mathcal{A}_X)$.

WONDERFUL COMPACTIFICATIONS

- Let A be an arrangement of smooth, algebraic hypersurfaces in a smooth, connected complex projective variety Y.
- For each $x \in Y$, there is a linear hyperplane arrangement $T\mathcal{A}_X$ in the \mathbb{C} -vector space $V = T_X Y$ tangent to \mathcal{A}_X , where $X = \bigcap_{x \in Z \in L(\mathcal{A})} Z$.
- We apply De Concini and Procesi's construction of the wonderful model of a subspace arrangement to $TA_X \subset V$.
- The construction blows up the arrangement to one with simple normal crossings; let $p: \widetilde{V} \to V$ denote the blowup.
- The (total) divisor components are indexed by a 'building set' \mathcal{G}_X .
- A subset $S \subseteq \mathcal{G}_X$ indexing divisor components that have non-empty intersection is called a *nested set*.

- The collection of all nested sets forms a simplicial complex, called the nested set complex, $\mathcal{N}(\mathcal{TA}_X)$.
- For a nested set $S \in \mathcal{N}(TA_X)$ of size r, let D_S denote the corresponding intersection of r divisor components in \widetilde{V} .
- For a point z in the relative interior of D_S, let D_z be a sufficiently small closed polydisc in V centered at z.
- Set $U_S := \mathbb{D}_z \cap M(T\mathcal{A}_X)$. Then $U_S \simeq (S^1)^r$ and $\pi_1(U_S) \cong \mathbb{Z}^r$.

LEMMA (DENHAM-S.)

For every $X \in L(\mathcal{A})$ and every nested set $S \in \mathcal{N}(T\mathcal{A}_X)$, there is a naturally defined homomorphism $\alpha_{X,S} \colon \pi_1(U_S) \to \pi_1(\mathcal{M}(\mathcal{A}))$ which is injective.

Let $G = \pi_1(\mathcal{M}(\mathcal{A}))$. Let $C_{S,X}$ be the conjugacy class of the subgroup $\alpha_{X,S}(C_S) < G$; this is a free abelian group of rank |S|.

STEIN MANIFOLDS

- A complex manifold *M* is said to be a *Stein manifold* if it can be realized as a closed, complex submanifold of some complex affine space.
- Alternatively, holomorphic functions on *M* separate points, and *M* is holomorphically convex.
- The Stein property is preserved under taking closed submanifolds and finite direct products.
- A Stein manifold of (complex) dimension *n* has the homotopy type of a CW-complex of dimension *n*.

MAXIMAL COHEN-MACAULAY MODULES

DEFINITION

Let $\mathbf{k} = \mathbb{Z}$ or a field, let $R = \mathbf{k}[\mathbb{Z}^n]$, and let I be the augmentation ideal of R. We say that an R-module A is a maximal Cohen-Macaulay (MCM) module provided that depth_R $(I, A) \ge n$.

DEFINITION (DS)

A (left) $\Bbbk[G]$ -module *A* is a *MCM module* if the restriction of *A* to each subalgebra $\Bbbk[C_{S,X}]$ is MCM, for all $X \in L(\mathcal{A})$ and all $S \in \mathcal{N}(\mathcal{T}\mathcal{A}_X)$.

THEOREM (DS)

Suppose that $M(\mathcal{A}^X)$ is Stein for each $X \in L(\mathcal{A})$. Then, for any MCM module A on $M(\mathcal{A})$, we have $H^p(M(\mathcal{A}), A) = 0$ for all $p \neq n$.

The Stein hypothesis in this theorem is indispensable. For instance, let $X = \mathbb{C}^n$, with $n \ge 2$, and let $\mathcal{A} = \{0\}$. Then $U = \mathbb{C}^n \setminus \{0\}$ is not Stein, and also not an abelian duality space, since $U \simeq S^{2n-1}$.

DUALITY AND GENERIC VANISHING OF COHOMOLOGY

THEOREM

Let U be a connected, smooth, complex quasi-projective variety of dimension n. Suppose U has a smooth compactification Y for which (1) Components of $Y \setminus U$ form an arrangement of hypersurfaces A. (2) $M(\mathcal{A}^X)$ is a Stein manifold for each submanifold $X \in L(\mathcal{A})$. Then U is both a duality space and an abelian duality space of dimension n.

Consequently, the characteristic varieties of such "recursively Stein" hypersurface complements propagate.

THEOREM

Let $G = \pi_1(U)$, and let A be a finite-dimensional representation of G over a field k. Suppose that $A^{\gamma_g} = 0$ for all g in a building set \mathcal{G}_X , where $X \in L(\mathcal{A})$. Then $H^i(U, \mathcal{A}) = 0$ for all $i \neq n$.

Consequently, the cohomology groups of U with coefficients in a 'generic' local system vanish in the range below n.

- Let $\ell_2 G$ denote the left $\mathbb{C}[G]$ -module of complex-valued, square-summable functions on G.
- Let ${}^{\text{red}}H^i(U, \ell_2 G)$ be the reduced L^2 -cohomology groups of U with coefficients in this module.

THEOREM

Let U and $G = \pi_1(U)$ be as above. Then ${}^{\text{red}}H^i(U, \ell_2 G) = 0$ for all $i \neq n$.

- Consequently, the ℓ_2 -Betti numbers of U are all zero except in dimension n.
- A basic fact about ℓ₂-cohomology is that ℓ₂-Betti numbers compute the usual Euler characteristic. Therefore, we see once again that (-1)ⁿχ(U) ≥ 0.

LINEAR, ELLIPTIC, AND TORIC ARRANGEMENTS

THEOREM

Suppose that \mathcal{A} is one of the following:

- An affine-linear arrangement in Cⁿ, or a hyperplane arrangement in CPⁿ;
- (2) A non-empty elliptic arrangement in E^n ;
- (3) A toric arrangement in $(\mathbb{C}^*)^n$.

Then the complement M(A) is both a duality space and an abelian duality space of dimension n - r, n + r, and n, respectively, where r is the corank of the arrangement.

- This theorem extends several previous results:
 - Davis, Januszkiewicz, Leary, and Okun (2011);
 - Levin and Varchenko (2012);
 - Davis and Settepanella (2013), Esterov and Takeuchi (2014).
- Liu, Maxim, and Wang (2018) proved that very affine varieties are abelian duality spaces.

ORBIT CONFIGURATION SPACES

- Let Γ be a discrete group that acts freely and properly discontinuously on a space X.
- The orbit configuration space F_Γ(X, n) is the subspace of the cartesian product X^{×n} consisting of n-tuples (x₁,..., x_n) for which the Γ-orbits of x_i and x_j are disjoint for all 1 ≤ i ≠ j ≤ n.
- If $|\Gamma| = 1$, then $F_{\Gamma}(X, n) = F(X, n)$, the classical (ordered) configuration space.
- When X = M is a smooth manifold of dimension d and Γ acts by diffeomorphisms, $F_{\Gamma}(M, n)$ is a smooth manifold of dimension dn.
- Let M = Σ_{g,k} be a Riemann surface of genus g with k ≥ 0 punctures, and assume Γ is finite.
- When k = 0, the complement in $\sum_{g}^{\times n}$ of $F_{\Gamma}(\sum_{g}, n)$ is the union of an arrangement of smooth, complex algebraic hypersurfaces.

• Xicoténcatl showed that the classical Fadell–Neuwirth fibration applies in the more general case of orbit configuration spaces:

$$F_{\Gamma}(\Sigma_{g,k+|\Gamma|}, n-1) \longrightarrow F_{\Gamma}(\Sigma_{g,k}, n) \longrightarrow \Sigma_{g,k} .$$

- Consider the 'tautological' compactification of the orbit configuration space $U = F_{\Gamma}(\Sigma_{g,k}, n)$, namely $Y = \Sigma_g^{\times n}$.
- The components of the boundary divisor, $D = Y \setminus U$, form an arrangement of hypersurfaces,

$$\mathcal{B}_{n} := \left\{ H_{ij}^{\gamma} \mid \gamma \in \Gamma, 1 \leqslant i \neq j \leqslant n \right\} \cup \{ K_{i,l} \mid 1 \leqslant i \leqslant n, 1 \leqslant l \leqslant k \},$$

where H_{ij}^{γ} is given by the equation $x_i = \gamma \cdot x_j$ and $K_{i,l}$ by $x_i = p_l$, where $p_1, \ldots, p_k \in \Sigma_g$ are the punctures of $\Sigma_{g,k}$.

- The intersection poset $L(B_n)$ can be described in terms of labelled partitions via a slight generalization of the Dowling lattice.
- If k > 0, then for each flat $X \in L(\mathcal{B}_n)$, the complement $M(\mathcal{B}_n^X)$ is a Stein manifold.

THEOREM

Suppose Γ is a finite group that acts freely on a Riemann surface $\Sigma_{g,k}$ of genus g with k punctures. Let $F_{\Gamma}(\Sigma_{g,k}, n)$ be the orbit configuration space of n ordered, disjoint Γ -orbits.

- (1) If k > 0, then $F_{\Gamma}(\Sigma_{g,k}, n)$ is both a duality space and an abelian duality space of dimension n.
- (2) If k = 0, then $F_{\Gamma}(\Sigma_g, n)$ is a duality space of dimension n + 1, provided $g \ge 1$, and is an abelian duality space of dimension n + 1 if g = 1.
- (3) If k = 0, then $F(\Sigma_g, n)$ is neither a duality space nor an abelian duality space if g = 0, and it is not an abelian duality space if $g \ge 2$.

COROLLARY

If Γ is a finite group acting freely on $\Sigma_{g,k}$, the characteristic varieties propagate for the orbit configuration spaces $F_{\Gamma}(\Sigma_{g,k}, n)$, where either $k \ge 1$, or k = 0 and g = 1.

REFERENCES

- G. Denham, A.I. Suciu, and S. Yuzvinsky, *Combinatorial covers and vanishing of cohomology*, Selecta Math. **22** (2016), no. 2, 561–594.
- G. Denham, A.I. Suciu, and S. Yuzvinsky, *Abelian duality and propagation of resonance*, Selecta Math. **23** (2017), no. 4, 2331–2367.
- G. Denham, A.I. Suciu, *Local systems on arrangements of smooth, complex algebraic hypersurfaces*, Forum of Mathematics, Sigma **6** (2018), e6, 20 pages.