Hyperplane arrangements and Milnor fibrations

Alex Suciu

Northeastern University

Workshop on Computational Geometric Topology in Arrangement Theory ICERM, Brown University

July 8, 2015

THE MILNOR FIBRATION(S) OF AN ARRANGEMENT

- Let \mathcal{A} be a (central) hyperplane arrangement in \mathbb{C}^{ℓ} .
- For each $H \in \mathcal{A}$, let $f_H : \mathbb{C}^{\ell} \to \mathbb{C}$ be a linear form with kernel H.
- For each choice of multiplicities $m = (m_H)_{H \in \mathcal{A}}$ with $m_H \in \mathbb{N}$, let $Q_m := Q_m(\mathcal{A}) = \prod_{H \in \mathcal{A}} f_H^{m_H}$,

a homogeneous polynomial of degree $N = \sum_{H \in \mathcal{A}} m_H$.

- The map $Q_m : \mathbb{C}^{\ell} \to \mathbb{C}$ restricts to a map $Q_m : M(\mathcal{A}) \to \mathbb{C}^*$.
- This is the projection of a smooth, locally trivial bundle, known as the *Milnor fibration* of the multi-arrangement (*A*, *m*),

$$F_m(\mathcal{A}) \longrightarrow M(\mathcal{A}) \xrightarrow{Q_m} \mathbb{C}^*.$$

THE MILNOR FIBRATION(S) OF AN ARRANGEMENT

- Let \mathcal{A} be a (central) hyperplane arrangement in \mathbb{C}^{ℓ} .
- For each $H \in \mathcal{A}$, let $f_H : \mathbb{C}^{\ell} \to \mathbb{C}$ be a linear form with kernel H.
- For each choice of multiplicities $m = (m_H)_{H \in \mathcal{A}}$ with $m_H \in \mathbb{N}$, let $Q_m := Q_m(\mathcal{A}) = \prod_{H \in \mathcal{A}} f_H^{m_H}$,

a homogeneous polynomial of degree $N = \sum_{H \in \mathcal{A}} m_H$.

- The map $Q_m : \mathbb{C}^{\ell} \to \mathbb{C}$ restricts to a map $Q_m : M(\mathcal{A}) \to \mathbb{C}^*$.
- This is the projection of a smooth, locally trivial bundle, known as the *Milnor fibration* of the multi-arrangement (A, m),

$$F_m(\mathcal{A}) \longrightarrow M(\mathcal{A}) \xrightarrow{Q_m} \mathbb{C}^*.$$

- The typical fiber, $F_m(A) = Q_m^{-1}(1)$, is called the *Milnor fiber* of the multi-arrangement.
- *F_m*(*A*) is a Stein manifold. It has the homotopy type of a finite cell complex, with gcd(*m*) connected components, of dim ℓ − 1.
- The (geometric) monodromy is the diffeomorphism

$$h: F_m(\mathcal{A}) \to F_m(\mathcal{A}), \quad z \mapsto e^{2\pi i/N} z.$$

• If all $m_H = 1$, the polynomial Q = Q(A) is the usual defining polynomial, and F(A) is the usual Milnor fiber of A.

- The typical fiber, $F_m(A) = Q_m^{-1}(1)$, is called the *Milnor fiber* of the multi-arrangement.
- *F_m*(*A*) is a Stein manifold. It has the homotopy type of a finite cell complex, with gcd(*m*) connected components, of dim ℓ − 1.
- The (geometric) monodromy is the diffeomorphism

$$h: F_m(\mathcal{A}) \to F_m(\mathcal{A}), \quad z \mapsto e^{2\pi i/N} z.$$

• If all $m_H = 1$, the polynomial Q = Q(A) is the usual defining polynomial, and F(A) is the usual Milnor fiber of A.

- The typical fiber, $F_m(A) = Q_m^{-1}(1)$, is called the *Milnor fiber* of the multi-arrangement.
- *F_m*(*A*) is a Stein manifold. It has the homotopy type of a finite cell complex, with gcd(*m*) connected components, of dim ℓ − 1.
- The (geometric) monodromy is the diffeomorphism

$$h: F_m(\mathcal{A}) \to F_m(\mathcal{A}), \quad z \mapsto e^{2\pi i/N} z.$$

• If all $m_H = 1$, the polynomial Q = Q(A) is the usual defining polynomial, and F(A) is the usual Milnor fiber of A.

EXAMPLE

Let \mathcal{A} be the single hyperplane {0} inside \mathbb{C} . Then $M(\mathcal{A}) = \mathbb{C}^*$, $Q_m(\mathcal{A}) = z^m$, and $F_m(\mathcal{A}) = m$ -roots of 1.

EXAMPLE

Let \mathcal{A} be a pencil of 3 lines through the origin of \mathbb{C}^2 . Then $F(\mathcal{A})$ is a thrice-punctured torus, and *h* is an automorphism of order 3:

More generally, if \mathcal{A} is a pencil of *n* lines in \mathbb{C}^2 , then $F(\mathcal{A})$ is a Riemann surface of genus $\binom{n-1}{2}$, with *n* punctures.

EXAMPLE

Let \mathcal{A} be the single hyperplane $\{0\}$ inside \mathbb{C} . Then $M(\mathcal{A}) = \mathbb{C}^*$, $Q_m(\mathcal{A}) = z^m$, and $F_m(\mathcal{A}) = m$ -roots of 1.

EXAMPLE

Let \mathcal{A} be a pencil of 3 lines through the origin of \mathbb{C}^2 . Then $F(\mathcal{A})$ is a thrice-punctured torus, and *h* is an automorphism of order 3:

More generally, if \mathcal{A} is a pencil of *n* lines in \mathbb{C}^2 , then $F(\mathcal{A})$ is a Riemann surface of genus $\binom{n-1}{2}$, with *n* punctures.

EXAMPLE

Let \mathcal{A} be the single hyperplane $\{0\}$ inside \mathbb{C} . Then $M(\mathcal{A}) = \mathbb{C}^*$, $Q_m(\mathcal{A}) = z^m$, and $F_m(\mathcal{A}) = m$ -roots of 1.

EXAMPLE

Let \mathcal{A} be a pencil of 3 lines through the origin of \mathbb{C}^2 . Then $F(\mathcal{A})$ is a thrice-punctured torus, and *h* is an automorphism of order 3:

More generally, if \mathcal{A} is a pencil of *n* lines in \mathbb{C}^2 , then $F(\mathcal{A})$ is a Riemann surface of genus $\binom{n-1}{2}$, with *n* punctures.

• Let \mathcal{B}_n be the Boolean arrangement, with $Q_m(\mathcal{B}_n) = z_1^{m_1} \cdots z_n^{m_n}$. Then $M(\mathcal{B}_n) = (\mathbb{C}^*)^n$ and

$$F_m(\mathcal{B}_n) = \ker(\mathbb{Q}_m) \cong (\mathbb{C}^*)^{n-1} \times \mathbb{Z}_{\gcd(m)}$$

• Let $\mathcal{A} = \{H_1, \dots, H_n\}$ be an essential arrangement. The inclusion $\iota \colon M(\mathcal{A}) \to M(\mathcal{B}_n)$ restricts to a bundle map

• Thus,

• Let \mathcal{B}_n be the Boolean arrangement, with $Q_m(\mathcal{B}_n) = z_1^{m_1} \cdots z_n^{m_n}$. Then $M(\mathcal{B}_n) = (\mathbb{C}^*)^n$ and

$$F_m(\mathcal{B}_n) = \ker(\mathbb{Q}_m) \cong (\mathbb{C}^*)^{n-1} \times \mathbb{Z}_{\gcd(m)}$$

• Let $\mathcal{A} = \{H_1, \dots, H_n\}$ be an essential arrangement. The inclusion $\iota \colon M(\mathcal{A}) \to M(\mathcal{B}_n)$ restricts to a bundle map

Thus,

$$F_m(\mathcal{A}) = M(\mathcal{A}) \cap F_m(\mathcal{B}_n)$$

The homology of the Milnor Fiber

Some basic questions about the topology of the Milnor fibration:

(Q1) Are the homology groups $H_q(F_m(\mathcal{A}), \Bbbk)$ determined by $L(\mathcal{A})$? If so, is the characteristic polynomial of the algebraic monodromy, $h_* : H_q(F_m(\mathcal{A}), \Bbbk) \to H_q(F_m(\mathcal{A}), \Bbbk)$, also determined by $L(\mathcal{A})$?

(Q2) Are the homology groups $H_q(F_m(\mathcal{A}), \mathbb{Z})$ torsion-free? If so, does $F_m(\mathcal{A})$ admit a minimal cell structure?

(Q3) Is $F_m(A)$ a (partially) formal space?

The homology of the Milnor Fiber

Some basic questions about the topology of the Milnor fibration:

- (Q1) Are the homology groups $H_q(F_m(\mathcal{A}), \Bbbk)$ determined by $L(\mathcal{A})$? If so, is the characteristic polynomial of the algebraic monodromy, $h_* : H_q(F_m(\mathcal{A}), \Bbbk) \to H_q(F_m(\mathcal{A}), \Bbbk)$, also determined by $L(\mathcal{A})$?
- (Q2) Are the homology groups $H_q(F_m(\mathcal{A}), \mathbb{Z})$ torsion-free? If so, does $F_m(\mathcal{A})$ admit a minimal cell structure?

(Q3) Is $F_m(A)$ a (partially) formal space?

The homology of the Milnor Fiber

Some basic questions about the topology of the Milnor fibration:

- (Q1) Are the homology groups $H_q(F_m(\mathcal{A}), \Bbbk)$ determined by $L(\mathcal{A})$? If so, is the characteristic polynomial of the algebraic monodromy, $h_* : H_q(F_m(\mathcal{A}), \Bbbk) \to H_q(F_m(\mathcal{A}), \Bbbk)$, also determined by $L(\mathcal{A})$?
- (Q2) Are the homology groups $H_q(F_m(\mathcal{A}), \mathbb{Z})$ torsion-free? If so, does $F_m(\mathcal{A})$ admit a minimal cell structure?

(Q3) Is $F_m(A)$ a (partially) formal space?

- Let (\mathcal{A}, m) be a multi-arrangement with $gcd\{m_H \mid H \in \mathcal{A}\} = 1$. Set $N = \sum_{H \in \mathcal{A}} m_H$.
- The Milnor fiber $F_m(\mathcal{A})$ is a regular \mathbb{Z}_N -cover of $U(\mathcal{A}) = \mathbb{P}(M(\mathcal{A}))$ defined by the homomorphism

 $\delta_m \colon \pi_1(U(\mathcal{A})) \twoheadrightarrow \mathbb{Z}_N, \quad x_H \mapsto m_H \bmod N$

• Let $\widehat{\delta_m}$: Hom $(\mathbb{Z}_N, \mathbb{k}^*) \to$ Hom $(\pi_1(U(\mathcal{A})), \mathbb{k}^*)$. If char $(\mathbb{k}) \nmid N$, then $\dim_{\mathbb{k}} H_q(F_m(\mathcal{A}), \mathbb{k}) = \sum_{s \ge 1} \left| \mathcal{V}_s^q(U(\mathcal{A}), \mathbb{k}) \cap \operatorname{im}(\widehat{\delta_m}) \right|.$

• This gives a formula for the polynomial $\Delta_q(t) = \det(t \cdot \operatorname{id} - h_*)$ in terms of the characteristic varieties of U(A).

- Let (A, m) be a multi-arrangement with $gcd\{m_H \mid H \in A\} = 1$. Set $N = \sum_{H \in A} m_H$.
- The Milnor fiber $F_m(A)$ is a regular \mathbb{Z}_N -cover of $U(A) = \mathbb{P}(M(A))$ defined by the homomorphism

$$\delta_m \colon \pi_1(U(\mathcal{A})) \twoheadrightarrow \mathbb{Z}_N, \quad x_H \mapsto m_H \mod N$$

- Let $\widehat{\delta_m}$: Hom $(\mathbb{Z}_N, \mathbb{k}^*) \to$ Hom $(\pi_1(U(\mathcal{A})), \mathbb{k}^*)$. If char $(\mathbb{k}) \nmid N$, then $\dim_{\mathbb{k}} H_q(F_m(\mathcal{A}), \mathbb{k}) = \sum_{s \ge 1} \left| \mathcal{V}_s^q(U(\mathcal{A}), \mathbb{k}) \cap \operatorname{im}(\widehat{\delta_m}) \right|.$
- This gives a formula for the polynomial $\Delta_q(t) = \det(t \cdot \operatorname{id} h_*)$ in terms of the characteristic varieties of U(A).

$$\Delta(t) := \Delta_1(t) = \prod_{d|n} \Phi_d(t)^{e_d(\mathcal{A})},$$

where $\Phi_d(t)$ is the *d*-th cyclotomic polynomial, and $e_d(\mathcal{A}) \in \mathbb{Z}_{\geq 0}$.

- Transfer argument: $e_1(A) = n 1$.
- If there is a non-transverse multiple point on A of multiplicity not divisible by d, then $e_d(A) = 0$. (Libgober 2002).
- In particular, if A has only points of multiplicity 2 and 3, then $\Delta(t) = (t-1)^{m-1}(t^2+t+1)^{e_3}$.
- If multiplicity 4 appears, then also get factor of $(t + 1)^{e_2} \cdot (t^2 + 1)^{e_4}$.

EXAMPLE

$$\Delta(t) := \Delta_1(t) = \prod_{d|n} \Phi_d(t)^{e_d(\mathcal{A})},$$

where $\Phi_d(t)$ is the *d*-th cyclotomic polynomial, and $e_d(\mathcal{A}) \in \mathbb{Z}_{\geq 0}$.

- Transfer argument: $e_1(A) = n 1$.
- If there is a non-transverse multiple point on A of multiplicity not divisible by d, then e_d(A) = 0. (Libgober 2002).
- In particular, if A has only points of multiplicity 2 and 3, then $\Delta(t) = (t-1)^{m-1}(t^2+t+1)^{e_3}$.
- If multiplicity 4 appears, then also get factor of $(t + 1)^{e_2} \cdot (t^2 + 1)^{e_4}$.

EXAMPLE

$$\Delta(t) := \Delta_1(t) = \prod_{d|n} \Phi_d(t)^{e_d(\mathcal{A})},$$

where $\Phi_d(t)$ is the *d*-th cyclotomic polynomial, and $e_d(\mathcal{A}) \in \mathbb{Z}_{\geq 0}$.

- Transfer argument: $e_1(A) = n 1$.
- If there is a non-transverse multiple point on A of multiplicity not divisible by d, then e_d(A) = 0. (Libgober 2002).
- In particular, if A has only points of multiplicity 2 and 3, then $\Delta(t) = (t-1)^{m-1}(t^2+t+1)^{e_3}$.
- If multiplicity 4 appears, then also get factor of $(t + 1)^{e_2} \cdot (t^2 + 1)^{e_4}$.

EXAMPLE

$$\Delta(t) := \Delta_1(t) = \prod_{d|n} \Phi_d(t)^{e_d(\mathcal{A})},$$

where $\Phi_d(t)$ is the *d*-th cyclotomic polynomial, and $e_d(\mathcal{A}) \in \mathbb{Z}_{\geq 0}$.

- Transfer argument: $e_1(A) = n 1$.
- If there is a non-transverse multiple point on A of multiplicity not divisible by d, then e_d(A) = 0. (Libgober 2002).
- In particular, if A has only points of multiplicity 2 and 3, then $\Delta(t) = (t-1)^{m-1}(t^2+t+1)^{e_3}$.
- If multiplicity 4 appears, then also get factor of $(t + 1)^{e_2} \cdot (t^2 + 1)^{e_4}$.

EXAMPLE

MODULAR INEQUALITIES

- Let $\sigma = \sum_{H \in \mathcal{A}} e_H \in A^1$ be the "diagonal" vector.
- Assume k has characteristic p > 0, and define

 $\beta_{p}(\mathcal{A}) = \dim_{\mathbb{K}} H^{1}(\mathcal{A}, \cdot \sigma).$

That is, $\beta_{p}(\mathcal{A}) = \max\{s \mid \sigma \in \mathcal{R}^{1}_{s}(\mathcal{A}, \Bbbk)\}.$

Theorem (Cohen–Orlik 2000, Papadima–S. 2010) $e_{p^s}(\mathcal{A}) \leq \beta_p(\mathcal{A})$, for all $s \geq 1$.

THEOREM

Suppose A admits a k-net. Then $\beta_p(A) = 0$ if $p \nmid k$ and $\beta_p(A) \ge k - 2$, otherwise.

If \mathcal{A} admits a reduced k-multinet, then $e_k(\mathcal{A}) \ge k - 2$.

MODULAR INEQUALITIES

- Let $\sigma = \sum_{H \in \mathcal{A}} e_H \in A^1$ be the "diagonal" vector.
- Assume k has characteristic p > 0, and define

 $\beta_{p}(\mathcal{A}) = \dim_{\mathbb{K}} H^{1}(\mathcal{A}, \cdot \sigma).$

That is, $\beta_{p}(\mathcal{A}) = \max\{s \mid \sigma \in \mathcal{R}^{1}_{s}(\mathcal{A}, \Bbbk)\}.$

THEOREM (COHEN–ORLIK 2000, PAPADIMA–S. 2010) $e_{p^s}(\mathcal{A}) \leq \beta_p(\mathcal{A})$, for all $s \geq 1$.

THEOREM

Suppose \mathcal{A} admits a *k*-net. Then $\beta_p(\mathcal{A}) = 0$ if $p \nmid k$ and $\beta_p(\mathcal{A}) \ge k - 2$, otherwise.

If \mathcal{A} admits a reduced k-multinet, then $e_k(\mathcal{A}) \ge k - 2$.

MODULAR INEQUALITIES

- Let $\sigma = \sum_{H \in \mathcal{A}} e_H \in A^1$ be the "diagonal" vector.
- Assume k has characteristic p > 0, and define

 $\beta_{p}(\mathcal{A}) = \dim_{\mathbb{K}} H^{1}(\mathcal{A}, \cdot \sigma).$

That is, $\beta_{p}(\mathcal{A}) = \max\{s \mid \sigma \in \mathcal{R}^{1}_{s}(\mathcal{A}, \Bbbk)\}.$

THEOREM (COHEN–ORLIK 2000, PAPADIMA–S. 2010) $e_{p^s}(\mathcal{A}) \leq \beta_p(\mathcal{A})$, for all $s \geq 1$.

THEOREM

Suppose A admits a k-net. Then $\beta_p(A) = 0$ if $p \nmid k$ and $\beta_p(A) \ge k - 2$, otherwise.

If A admits a reduced k-multinet, then $e_k(A) \ge k - 2$.

COMBINATORICS AND MONODROMY

THEOREM (PAPADIMA-S. 2014)

Suppose A has no points of multiplicity 3r with r > 1. Then A admits a reduced 3-multinet iff A admits a 3-net iff $\beta_3(A) \neq 0$. Moreover,

- $\beta_3(\mathcal{A}) \leq 2$.
- $e_3(A) = \beta_3(A)$, and thus $e_3(A)$ is combinatorially determined.

COROLLARY (PS)

Suppose all flats $X \in L_2(\mathcal{A})$ have multiplicity 2 or 3. Then $\Delta(t)$, and thus $b_1(F(\mathcal{A}))$, are combinatorially determined.

THEOREM (PS)

Suppose A supports a 4-net and $\beta_2(A) \leq 2$. Then $e_2(A) = e_4(A) = \beta_2(A) = 2$.

COMBINATORICS AND MONODROMY

THEOREM (PAPADIMA-S. 2014)

Suppose A has no points of multiplicity 3r with r > 1. Then A admits a reduced 3-multinet iff A admits a 3-net iff $\beta_3(A) \neq 0$. Moreover,

- $\beta_3(\mathcal{A}) \leq 2$.
- $e_3(A) = \beta_3(A)$, and thus $e_3(A)$ is combinatorially determined.

COROLLARY (PS)

Suppose all flats $X \in L_2(\mathcal{A})$ have multiplicity 2 or 3. Then $\Delta(t)$, and thus $b_1(F(\mathcal{A}))$, are combinatorially determined.

Theorem (PS)

Suppose A supports a 4-net and $\beta_2(A) \leq 2$. Then $e_2(A) = e_4(A) = \beta_2(A) = 2$.

COMBINATORICS AND MONODROMY

THEOREM (PAPADIMA-S. 2014)

Suppose A has no points of multiplicity 3r with r > 1. Then A admits a reduced 3-multinet iff A admits a 3-net iff $\beta_3(A) \neq 0$. Moreover,

- $\beta_3(\mathcal{A}) \leq 2$.
- $e_3(A) = \beta_3(A)$, and thus $e_3(A)$ is combinatorially determined.

COROLLARY (PS)

Suppose all flats $X \in L_2(\mathcal{A})$ have multiplicity 2 or 3. Then $\Delta(t)$, and thus $b_1(F(\mathcal{A}))$, are combinatorially determined.

THEOREM (PS)

Suppose A supports a 4-net and $\beta_2(A) \leq 2$. Then $e_2(A) = e_4(A) = \beta_2(A) = 2$.

CONJECTURE (PS)

Let \mathcal{A} be an arrangement which is not a pencil. Then $e_{p^s}(\mathcal{A}) = 0$ for all primes p and integers $s \ge 1$, with two possible exceptions:

$$e_2(\mathcal{A}) = e_4(\mathcal{A}) = \beta_2(\mathcal{A})$$
 and $e_3(\mathcal{A}) = \beta_3(\mathcal{A})$.

If $e_d(A) = 0$ for all divisors *d* of |A| which are not prime powers, this conjecture would give:

 $\Delta_{\mathcal{A}}(t) = (t-1)^{|\mathcal{A}|-1}((t+1)(t^2+1))^{\beta_2(\mathcal{A})}(t^2+t+1)^{\beta_3(\mathcal{A})}.$

The conjecture has been verified for several classes of arrangements:

- Complex reflection arrangements (Măcinic-Papadima-Popescu).
- Certain types of real arrangements (Yoshinaga, Bailet, Torielli).
- Arrangements w/ connected multiplicity graph (Salvetti–Serventi).

CONJECTURE (PS)

Let \mathcal{A} be an arrangement which is not a pencil. Then $e_{p^s}(\mathcal{A}) = 0$ for all primes p and integers $s \ge 1$, with two possible exceptions:

$$e_2(\mathcal{A}) = e_4(\mathcal{A}) = \beta_2(\mathcal{A})$$
 and $e_3(\mathcal{A}) = \beta_3(\mathcal{A})$.

If $e_d(A) = 0$ for all divisors *d* of |A| which are not prime powers, this conjecture would give:

$$\Delta_{\mathcal{A}}(t) = (t-1)^{|\mathcal{A}|-1}((t+1)(t^2+1))^{\beta_2(\mathcal{A})}(t^2+t+1)^{\beta_3(\mathcal{A})}.$$

The conjecture has been verified for several classes of arrangements:

- Complex reflection arrangements (Măcinic-Papadima-Popescu).
- Certain types of real arrangements (Yoshinaga, Bailet, Torielli).
- Arrangements w/ connected multiplicity graph (Salvetti–Serventi).

CONJECTURE (PS)

Let \mathcal{A} be an arrangement which is not a pencil. Then $e_{p^s}(\mathcal{A}) = 0$ for all primes p and integers $s \ge 1$, with two possible exceptions:

$$e_2(\mathcal{A}) = e_4(\mathcal{A}) = \beta_2(\mathcal{A})$$
 and $e_3(\mathcal{A}) = \beta_3(\mathcal{A})$.

If $e_d(A) = 0$ for all divisors *d* of |A| which are not prime powers, this conjecture would give:

$$\Delta_{\mathcal{A}}(t) = (t-1)^{|\mathcal{A}|-1}((t+1)(t^2+1))^{\beta_2(\mathcal{A})}(t^2+t+1)^{\beta_3(\mathcal{A})}.$$

The conjecture has been verified for several classes of arrangements:

- Complex reflection arrangements (Măcinic–Papadima–Popescu).
- Certain types of real arrangements (Yoshinaga, Bailet, Torielli).
- Arrangements w/ connected multiplicity graph (Salvetti–Serventi).

TORSION IN HOMOLOGY

TORSION IN HOMOLOGY

THEOREM (COHEN–DENHAM–S. 2003)

For every prime $p \ge 2$, there is a multi-arrangement (A, m) such that $H_1(F_m(A), \mathbb{Z})$ has non-zero *p*-torsion.

Simplest example: the arrangement of 8 hyperplanes in \mathbb{C}^3 with

$$Q_m(\mathcal{A}) = x^2 y (x^2 - y^2)^3 (x^2 - z^2)^2 (y^2 - z^2)$$

ALEX SUCIU

TORSION IN HOMOLOGY

TORSION IN HOMOLOGY

THEOREM (COHEN–DENHAM–S. 2003)

For every prime $p \ge 2$, there is a multi-arrangement (A, m) such that $H_1(F_m(A), \mathbb{Z})$ has non-zero *p*-torsion.

Simplest example: the arrangement of 8 hyperplanes in \mathbb{C}^3 with

$$Q_m(\mathcal{A}) = x^2 y (x^2 - y^2)^3 (x^2 - z^2)^2 (y^2 - z^2)$$

Then $H_1(F_m(\mathcal{A}), \mathbb{Z}) = \mathbb{Z}^7 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$.

ALEX SUCIU

We now can generalize and reinterpret these examples, as follows.

A *pointed multinet* on an arrangement \mathcal{A} is a multinet structure, together with a distinguished hyperplane $H \in \mathcal{A}$ for which $m_H > 1$ and $m_H \mid n_X$ for each $X \in \mathcal{X}$ such that $X \subset H$.

THEOREM (DENHAM–S. 2014)

Suppose A admits a pointed multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_H . There is then a choice of multiplicities m' on the deletion $A' = A \setminus \{H\}$ such that $H_1(F_{m'}(A'), \mathbb{Z})$ has non-zero p-torsion.

This torsion is explained by the fact that the geometry of $\mathcal{V}_1^1(M(\mathcal{A}'), \Bbbk)$ varies with char(\Bbbk).

We now can generalize and reinterpret these examples, as follows.

A *pointed multinet* on an arrangement \mathcal{A} is a multinet structure, together with a distinguished hyperplane $H \in \mathcal{A}$ for which $m_H > 1$ and $m_H \mid n_X$ for each $X \in \mathcal{X}$ such that $X \subset H$.

THEOREM (DENHAM–S. 2014)

Suppose \mathcal{A} admits a pointed multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_H . There is then a choice of multiplicities m' on the deletion $\mathcal{A}' = \mathcal{A} \setminus \{H\}$ such that $H_1(F_{m'}(\mathcal{A}'), \mathbb{Z})$ has non-zero p-torsion.

This torsion is explained by the fact that the geometry of $\mathcal{V}_1^1(M(\mathcal{A}'), \Bbbk)$ varies with char(\Bbbk).

To produce *p*-torsion in the homology of the usual Milnor fiber, we use a "polarization" construction:

 $(\mathcal{A}, m) \rightsquigarrow \mathcal{A} \parallel m$, an arrangement of $N = \sum_{H \in \mathcal{A}} m_H$ hyperplanes, of rank equal to rank $\mathcal{A} + |\{H \in \mathcal{A} : m_H \ge 2\}|$.

THEOREM (DS)

Suppose A admits a pointed multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_H .

There is then a choice of multiplicities m' on the deletion $\mathcal{A}' = \mathcal{A} \setminus \{H\}$ such that $H_q(F(\mathcal{B}), \mathbb{Z})$ has p-torsion, where $\mathcal{B} = \mathcal{A}' \| m'$ and $q = 1 + |\{K \in \mathcal{A}' : m'_K \ge 3\}|.$ To produce *p*-torsion in the homology of the usual Milnor fiber, we use a "polarization" construction:

 $(\mathcal{A}, m) \rightsquigarrow \mathcal{A} \parallel m$, an arrangement of $N = \sum_{H \in \mathcal{A}} m_H$ hyperplanes, of rank equal to rank $\mathcal{A} + |\{H \in \mathcal{A} : m_H \ge 2\}|$.

THEOREM (DS)

Suppose A admits a pointed multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_H .

There is then a choice of multiplicities m' on the deletion $\mathcal{A}' = \mathcal{A} \setminus \{H\}$ such that $H_q(F(\mathcal{B}), \mathbb{Z})$ has p-torsion, where $\mathcal{B} = \mathcal{A}' \| m'$ and $q = 1 + |\{K \in \mathcal{A}' : m'_K \ge 3\}|.$

COROLLARY (DS)

For every prime $p \ge 2$, there is an arrangement A such that $H_q(F(A), \mathbb{Z})$ has non-zero *p*-torsion, for some q > 1.

Simplest example: the arrangement of 27 hyperplanes in \mathbb{C}^{8} with $Q(A) = xy(x^{2} - y^{2})(x^{2} - z^{2})(y^{2} - z^{2})w_{1}w_{2}w_{3}w_{4}w_{5}(x^{2} - w_{1}^{2})(x^{2} - 3w_{1}^{2})(x - 4w_{1})$.

 $((x-y)^2 - w_2^2)((x+y)^2 - w_3^2)((x-z)^2 - w_4^2)((x-z)^2 - 2w_4^2) \cdot ((x+z)^2 - w_5^2)((x+z)^2 - 2w_5^2).$ nen $H_6(F(\mathcal{A}), \mathbb{Z})$ has 2-torsion (of rank 108).

COROLLARY (DS)

For every prime $p \ge 2$, there is an arrangement A such that $H_q(F(A), \mathbb{Z})$ has non-zero p-torsion, for some q > 1.

Simplest example: the arrangement of 27 hyperplanes in \mathbb{C}^8 with

 $Q(\mathcal{A}) = xy(x^2 - y^2)(x^2 - z^2)(y^2 - z^2)w_1w_2w_3w_4w_5(x^2 - w_1^2)(x^2 - 2w_1^2)(x^2 - 3w_1^2)(x - 4w_1) \cdot \frac{1}{2}(x - 4w_1) \cdot \frac{1}{2}(x$

 $((x-y)^2 - w_2^2)((x+y)^2 - w_3^2)((x-z)^2 - w_4^2)((x-z)^2 - 2w_4^2) \cdot ((x+z)^2 - w_5^2)((x+z)^2 - 2w_5^2).$

Then $H_6(F(\mathcal{A}), \mathbb{Z})$ has 2-torsion (of rank 108).

ALEX SUCIU

THE FORMALITY PROBLEM

EXAMPLE (ZUBER 2010)

• Let $\mathcal A$ be the arrangement in $\mathbb C^3$ defined by

$$Q = (z_1^3 - z_2^3)(z_1^3 - z_3^3)(z_2^3 - z_3^3).$$

- The variety R¹(M) ⊂ C⁹ has 12 local components (from triple points), and 4 essential components (from 3-nets).
- One of these 3-nets corresponds to the rational map $\mathbb{CP}^2 \longrightarrow \mathbb{CP}^1$, $(z_1, z_2, z_3) \mapsto (z_1^3 z_2^3, z_2^3 z_3^3)$.
- This map can be used to construct a 4-dimensional subtorus
 T = exp(L) inside Hom(π₁(F(A)), C*) = (C*)¹².
- The subspace $L \subset H^1(F(\mathcal{A}), \mathbb{C})$ is *not* a component of $\mathcal{R}^1(F(\mathcal{A}))$.
- Thus, the tangent cone formula is violated, and so the Milnor fiber F(A) is not 1-formal.

ALEX SUCIU

THE FORMALITY PROBLEM

EXAMPLE (ZUBER 2010)

• Let \mathcal{A} be the arrangement in \mathbb{C}^3 defined by

$$Q = (z_1^3 - z_2^3)(z_1^3 - z_3^3)(z_2^3 - z_3^3).$$

- The variety R¹(M) ⊂ C⁹ has 12 local components (from triple points), and 4 essential components (from 3-nets).
- One of these 3-nets corresponds to the rational map $\mathbb{CP}^2 \longrightarrow \mathbb{CP}^1$, $(z_1, z_2, z_3) \mapsto (z_1^3 z_2^3, z_2^3 z_3^3)$.
- This map can be used to construct a 4-dimensional subtorus $T = \exp(L)$ inside $\operatorname{Hom}(\pi_1(F(\mathcal{A})), \mathbb{C}^*) = (\mathbb{C}^*)^{12}$.
- The subspace $L \subset H^1(F(\mathcal{A}), \mathbb{C})$ is *not* a component of $\mathcal{R}^1(F(\mathcal{A}))$.
- Thus, the tangent cone formula is violated, and so the Milnor fiber F(A) is not 1-formal.

ALEX SUCIU

THE FORMALITY PROBLEM

EXAMPLE (ZUBER 2010)

• Let \mathcal{A} be the arrangement in \mathbb{C}^3 defined by

$$Q = (z_1^3 - z_2^3)(z_1^3 - z_3^3)(z_2^3 - z_3^3).$$

- The variety R¹(M) ⊂ C⁹ has 12 local components (from triple points), and 4 essential components (from 3-nets).
- One of these 3-nets corresponds to the rational map $\mathbb{CP}^2 \longrightarrow \mathbb{CP}^1$, $(z_1, z_2, z_3) \mapsto (z_1^3 z_2^3, z_2^3 z_3^3)$.
- This map can be used to construct a 4-dimensional subtorus $T = \exp(L)$ inside $\operatorname{Hom}(\pi_1(F(\mathcal{A})), \mathbb{C}^*) = (\mathbb{C}^*)^{12}$.
- The subspace $L \subset H^1(F(\mathcal{A}), \mathbb{C})$ is *not* a component of $\mathcal{R}^1(F(\mathcal{A}))$.
- Thus, the tangent cone formula is violated, and so the Milnor fiber *F*(*A*) is not 1-formal.