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THE MILNOR FIBRATION(S) OF AN ARRANGEMENT

Let A be a (central) hyperplane arrangement in C`.

For each H P A, let fH : C` Ñ C be a linear form with kernel H.

For each choice of multiplicities m “ pmHqHPA with mH P N, let

Qm :“ QmpAq “
ź

HPA
f mH
H ,

a homogeneous polynomial of degree N “
ř

HPA mH .

The map Qm : C` Ñ C restricts to a map Qm : MpAq Ñ C˚.

This is the projection of a smooth, locally trivial bundle, known as
the Milnor fibration of the multi-arrangement pA,mq,

FmpAq // MpAq Qm // C˚.

ALEX SUCIU ARRANGEMENTS AND MILNOR FIBRATIONS ICERM, JULY 8, 2015 2 / 16



THE MILNOR FIBRATIONS OF AN ARRANGEMENT THE MILNOR FIBRATIONS OF AN ARRANGEMENT

THE MILNOR FIBRATION(S) OF AN ARRANGEMENT

Let A be a (central) hyperplane arrangement in C`.

For each H P A, let fH : C` Ñ C be a linear form with kernel H.

For each choice of multiplicities m “ pmHqHPA with mH P N, let

Qm :“ QmpAq “
ź

HPA
f mH
H ,

a homogeneous polynomial of degree N “
ř

HPA mH .

The map Qm : C` Ñ C restricts to a map Qm : MpAq Ñ C˚.

This is the projection of a smooth, locally trivial bundle, known as
the Milnor fibration of the multi-arrangement pA,mq,

FmpAq // MpAq Qm // C˚.

ALEX SUCIU ARRANGEMENTS AND MILNOR FIBRATIONS ICERM, JULY 8, 2015 2 / 16



THE MILNOR FIBRATIONS OF AN ARRANGEMENT THE MILNOR FIBRATIONS OF AN ARRANGEMENT

The typical fiber, FmpAq “ Q´1
m p1q, is called the Milnor fiber of the

multi-arrangement.

FmpAq is a Stein manifold. It has the homotopy type of a finite cell
complex, with gcdpmq connected components, of dim `´ 1.

The (geometric) monodromy is the diffeomorphism

h : FmpAq Ñ FmpAq, z ÞÑ e2πi{Nz.

If all mH “ 1, the polynomial Q “ QpAq is the usual defining
polynomial, and F pAq is the usual Milnor fiber of A.
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EXAMPLE

Let A be the single hyperplane t0u inside C. Then MpAq “ C˚,
QmpAq “ zm, and FmpAq “ m-roots of 1.

EXAMPLE

Let A be a pencil of 3 lines through the origin of C2. Then F pAq is a
thrice-punctured torus, and h is an automorphism of order 3:

A

F pAq

h

F pAq

More generally, if A is a pencil of n lines in C2, then F pAq is a Riemann
surface of genus

`n´1
2

˘

, with n punctures.

ALEX SUCIU ARRANGEMENTS AND MILNOR FIBRATIONS ICERM, JULY 8, 2015 4 / 16



THE MILNOR FIBRATIONS OF AN ARRANGEMENT THE MILNOR FIBRATIONS OF AN ARRANGEMENT

EXAMPLE

Let A be the single hyperplane t0u inside C. Then MpAq “ C˚,
QmpAq “ zm, and FmpAq “ m-roots of 1.

EXAMPLE

Let A be a pencil of 3 lines through the origin of C2. Then F pAq is a
thrice-punctured torus, and h is an automorphism of order 3:

A

F pAq

h

F pAq

More generally, if A is a pencil of n lines in C2, then F pAq is a Riemann
surface of genus

`n´1
2

˘

, with n punctures.

ALEX SUCIU ARRANGEMENTS AND MILNOR FIBRATIONS ICERM, JULY 8, 2015 4 / 16



THE MILNOR FIBRATIONS OF AN ARRANGEMENT THE MILNOR FIBRATIONS OF AN ARRANGEMENT

EXAMPLE

Let A be the single hyperplane t0u inside C. Then MpAq “ C˚,
QmpAq “ zm, and FmpAq “ m-roots of 1.

EXAMPLE

Let A be a pencil of 3 lines through the origin of C2. Then F pAq is a
thrice-punctured torus, and h is an automorphism of order 3:

A

F pAq

h

F pAq

More generally, if A is a pencil of n lines in C2, then F pAq is a Riemann
surface of genus

`n´1
2

˘

, with n punctures.

ALEX SUCIU ARRANGEMENTS AND MILNOR FIBRATIONS ICERM, JULY 8, 2015 4 / 16



THE MILNOR FIBRATIONS OF AN ARRANGEMENT THE MILNOR FIBRATIONS OF AN ARRANGEMENT

Let Bn be the Boolean arrangement, with QmpBnq “ zm1
1 ¨ ¨ ¨ zmn

n .
Then MpBnq “ pC˚qn and

FmpBnq “ kerpQmq – pC˚qn´1 ˆ Zgcdpmq

Let A “ tH1, . . . ,Hnu be an essential arrangement. The inclusion
ι : MpAq Ñ MpBnq restricts to a bundle map

FmpAq //

��

MpAq
QmpAq //

ι
��

C˚

FmpBnq // MpBnq
QmpBnq // C˚

Thus,
FmpAq “ MpAq X FmpBnq
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THE HOMOLOGY OF THE MILNOR FIBER

Some basic questions about the topology of the Milnor fibration:

(Q1) Are the homology groups HqpFmpAq, kq determined by LpAq? If so,
is the characteristic polynomial of the algebraic monodromy,
h˚ : HqpFmpAq,kq Ñ HqpFmpAq, kq, also determined by LpAq?

(Q2) Are the homology groups HqpFmpAq,Zq torsion-free? If so, does
FmpAq admit a minimal cell structure?

(Q3) Is FmpAq a (partially) formal space?
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Let pA,mq be a multi-arrangement with gcdtmH | H P Au “ 1. Set
N “

ř

HPA mH .

The Milnor fiber FmpAq is a regular ZN -cover of UpAq “ PpMpAqq
defined by the homomorphism

δm : π1pUpAqq� ZN , xH ÞÑ mH mod N

Let xδm : HompZN , k˚q Ñ Hompπ1pUpAqq,k˚q. If charpkq - N, then

dimk HqpFmpAq,kq “
ÿ

sě1

ˇ

ˇ

ˇ
Vq

s pUpAq, kq X impxδmq

ˇ

ˇ

ˇ
.

This gives a formula for the polynomial ∆qptq “ detpt ¨ id´h˚q in
terms of the characteristic varieties of UpAq.
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Write
∆ptq :“ ∆1ptq “

ź

d |n

Φdptqed pAq,

where Φdptq is the d-th cyclotomic polynomial, and edpAq P Zě0.

Transfer argument: e1pAq “ n ´ 1.

If there is a non-transverse multiple point on A of multiplicity not
divisible by d , then edpAq “ 0. (Libgober 2002).

In particular, if A has only points of multiplicity 2 and 3, then
∆ptq “ pt ´ 1qm´1pt2 ` t ` 1qe3 .

If multiplicity 4 appears, then also get factor of pt ` 1qe2 ¨ pt2 ` 1qe4 .

EXAMPLE

Let A be the braid arrangement. V1pAq has a single essential
component, T “ tt P pC˚q6 | t1t2t3 “ t1t´1

6 “ t2t´1
5 “ t3t´1

4 “ 1u.
Clearly, δ2 P T , yet δ R T ; hence, ∆ptq “ pt ´ 1q5pt2 ` t ` 1q.
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MODULAR INEQUALITIES

Let σ “
ř

HPA eH P A1 be the “diagonal" vector.

Assume k has characteristic p ą 0, and define

βppAq “ dimk H1pA, ¨σq.

That is, βppAq “ maxts | σ P R1
spA, kqu.

THEOREM (COHEN–ORLIK 2000, PAPADIMA–S. 2010)

epspAq ď βppAq, for all s ě 1.

THEOREM

1 Suppose A admits a k-net. Then βppAq “ 0 if p - k and
βppAq ě k ´ 2, otherwise.

2 If A admits a reduced k-multinet, then ek pAq ě k ´ 2.
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COMBINATORICS AND MONODROMY

THEOREM (PAPADIMA–S. 2014)

Suppose A has no points of multiplicity 3r with r ą 1. Then A admits a
reduced 3-multinet iff A admits a 3-net iff β3pAq ‰ 0. Moreover,

β3pAq ď 2.
e3pAq “ β3pAq, and thus e3pAq is combinatorially determined.

COROLLARY (PS)

Suppose all flats X P L2pAq have multiplicity 2 or 3. Then ∆ptq, and
thus b1pF pAqq, are combinatorially determined.

THEOREM (PS)

Suppose A supports a 4-net and β2pAq ď 2. Then
e2pAq “ e4pAq “ β2pAq “ 2.
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CONJECTURE (PS)

Let A be an arrangement which is not a pencil. Then epspAq “ 0 for all
primes p and integers s ě 1, with two possible exceptions:

e2pAq “ e4pAq “ β2pAq and e3pAq “ β3pAq.

If edpAq “ 0 for all divisors d of |A| which are not prime powers, this
conjecture would give:

∆Aptq “ pt ´ 1q|A|´1ppt ` 1qpt2 ` 1qqβ2pAqpt2 ` t ` 1qβ3pAq.

The conjecture has been verified for several classes of arrangements:

Complex reflection arrangements (Măcinic–Papadima–Popescu).

Certain types of real arrangements (Yoshinaga, Bailet, Torielli).

Arrangements w/ connected multiplicity graph (Salvetti–Serventi).
ALEX SUCIU ARRANGEMENTS AND MILNOR FIBRATIONS ICERM, JULY 8, 2015 11 / 16



THE MILNOR FIBRATIONS OF AN ARRANGEMENT COMBINATORICS AND MONODROMY

CONJECTURE (PS)

Let A be an arrangement which is not a pencil. Then epspAq “ 0 for all
primes p and integers s ě 1, with two possible exceptions:

e2pAq “ e4pAq “ β2pAq and e3pAq “ β3pAq.

If edpAq “ 0 for all divisors d of |A| which are not prime powers, this
conjecture would give:

∆Aptq “ pt ´ 1q|A|´1ppt ` 1qpt2 ` 1qqβ2pAqpt2 ` t ` 1qβ3pAq.

The conjecture has been verified for several classes of arrangements:

Complex reflection arrangements (Măcinic–Papadima–Popescu).
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TORSION IN HOMOLOGY

THEOREM (COHEN–DENHAM–S. 2003)

For every prime p ě 2, there is a multi-arrangement pA,mq such that
H1pFmpAq,Zq has non-zero p-torsion.

1

2

1

1

2 2
3 3

Simplest example: the arrangement of 8 hyperplanes in C3 with

QmpAq “ x2ypx2 ´ y2q3px2 ´ z2q2py2 ´ z2q

Then H1pFmpAq,Zq “ Z7 ‘ Z2 ‘ Z2.
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THE MILNOR FIBRATIONS OF AN ARRANGEMENT TORSION IN HOMOLOGY

We now can generalize and reinterpret these examples, as follows.

A pointed multinet on an arrangement A is a multinet structure,
together with a distinguished hyperplane H P A for which mH ą 1 and
mH | nX for each X P X such that X Ă H.

THEOREM (DENHAM–S. 2014)

Suppose A admits a pointed multinet, with distinguished hyperplane H
and multiplicity m. Let p be a prime dividing mH . There is then a
choice of multiplicities m1 on the deletion A1 “ AztHu such that
H1pFm1pA1q,Zq has non-zero p-torsion.

This torsion is explained by the fact that the geometry of V1
1 pMpA1q,kq

varies with charpkq.
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THE MILNOR FIBRATIONS OF AN ARRANGEMENT TORSION IN HOMOLOGY

To produce p-torsion in the homology of the usual Milnor fiber, we use
a “polarization" construction:

}  

pA,mq A }m, an arrangement of N “
ř

HPA mH hyperplanes, of
rank equal to rankA` |tH P A : mH ě 2u|.

THEOREM (DS)

Suppose A admits a pointed multinet, with distinguished hyperplane H
and multiplicity m. Let p be a prime dividing mH .
There is then a choice of multiplicities m1 on the deletion A1 “ AztHu
such that HqpF pBq,Zq has p-torsion, where B “ A1}m1 and
q “ 1`

ˇ

ˇ

 

K P A1 : m1
K ě 3

(ˇ

ˇ.
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THE MILNOR FIBRATIONS OF AN ARRANGEMENT TORSION IN HOMOLOGY

COROLLARY (DS)
For every prime p ě 2, there is an arrangement A such that
HqpF pAq,Zq has non-zero p-torsion, for some q ą 1.

Simplest example: the arrangement of 27 hyperplanes in C8 with
QpAq “ xypx2 ´ y2qpx2 ´ z2qpy2 ´ z2qw1w2w3w4w5px

2 ´ w2
1 qpx

2 ´ 2w2
1 qpx

2 ´ 3w2
1 qpx ´ 4w1q¨

ppx ´ yq2 ´ w2
2 qppx ` yq2 ´ w2

3 qppx ´ zq2 ´ w2
4 qppx ´ zq2 ´ 2w2

4 q ¨ ppx ` zq2 ´ w2
5 qppx ` zq2 ´ 2w2

5 q.

Then H6pF pAq,Zq has 2-torsion (of rank 108).
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THE MILNOR FIBRATIONS OF AN ARRANGEMENT THE FORMALITY PROBLEM

THE FORMALITY PROBLEM

EXAMPLE (ZUBER 2010)

Let A be the arrangement in C3 defined by
Q “ pz3

1 ´ z3
2 qpz

3
1 ´ z3

3 qpz
3
2 ´ z3

3 q.

The variety R1pMq Ă C9 has 12 local components (from triple
points), and 4 essential components (from 3-nets).

One of these 3-nets corresponds to the rational map CP2 99K CP1,
pz1, z2, z3q ÞÑ pz3

1 ´ z3
2 , z

3
2 ´ z3

3 q.

This map can be used to construct a 4-dimensional subtorus
T “ exppLq inside Hompπ1pF pAqq,C˚q “ pC˚q12.

The subspace L Ă H1pF pAq,Cq is not a component of R1pF pAqq.

Thus, the tangent cone formula is violated, and so the Milnor fiber
F pAq is not 1-formal.
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