HYperplane arrangements and Milnor fibrations

Alex Suciu

Northeastern University

Workshop on Computational Geometric Topology in Arrangement Theory ICERM, Brown University

July 8, 2015

The Milnor fibration(s) OF an arrangement

- Let \mathcal{A} be a (central) hyperplane arrangement in \mathbb{C}^{ℓ}.
- For each $H \in \mathcal{A}$, let $f_{H}: \mathbb{C}^{\ell} \rightarrow \mathbb{C}$ be a linear form with kernel H.
- For each choice of multiplicities $m=\left(m_{H}\right)_{H \in \mathcal{A}}$ with $m_{H} \in \mathbb{N}$, let

$$
Q_{m}:=Q_{m}(\mathcal{A})=\prod_{H \in \mathcal{A}} f_{H}^{m_{H}},
$$

a homogeneous polynomial of degree $N=\sum_{H \in \mathcal{A}} m_{H}$.

- The map Q_{m} $\mathbb{C}^{\ell} \rightarrow \mathbb{C}$ restricts to a map $Q_{m}:$
- This is the projection of a smooth, locally trivial bundle, known as the Milnor fibration of the multi-arrangement (\mathcal{A}, m),

The Milnor fibration(s) OF AN ARRANGEMENT

- Let \mathcal{A} be a (central) hyperplane arrangement in \mathbb{C}^{ℓ}.
- For each $H \in \mathcal{A}$, let $f_{H}: \mathbb{C}^{\ell} \rightarrow \mathbb{C}$ be a linear form with kernel H.
- For each choice of multiplicities $m=\left(m_{H}\right)_{H \in \mathcal{A}}$ with $m_{H} \in \mathbb{N}$, let

$$
Q_{m}:=Q_{m}(\mathcal{A})=\prod_{H \in \mathcal{A}} f_{H}^{m_{H}}
$$

a homogeneous polynomial of degree $N=\sum_{H \in \mathcal{A}} m_{H}$.

- The map $Q_{m}: \mathbb{C}^{\ell} \rightarrow \mathbb{C}$ restricts to a map $Q_{m}: M(\mathcal{A}) \rightarrow \mathbb{C}^{*}$.
- This is the projection of a smooth, locally trivial bundle, known as the Milnor fibration of the multi-arrangement (\mathcal{A}, m),

$$
F_{m}(\mathcal{A}) \longrightarrow M(\mathcal{A}) \xrightarrow{Q_{m}} \mathbb{C}^{*}
$$

- The typical fiber, $F_{m}(\mathcal{A})=Q_{m}^{-1}(1)$, is called the Milnor fiber of the multi-arrangement.
- $F_{m}(\mathcal{A})$ is a Stein manifold. It has the homotopy type of a finite cell complex, with $\operatorname{gcd}(m)$ connected components, of $\operatorname{dim} \ell-1$.
- The (geometric) monodromy is the diffeomorphism
- If all $m_{H}=1$, the polynomial $Q=Q(\mathcal{A})$ is the usual defining polynomial, and $F(\mathcal{A})$ is the usual Milnor fiber of \mathcal{A}.
- The typical fiber, $F_{m}(\mathcal{A})=Q_{m}^{-1}(1)$, is called the Milnor fiber of the multi-arrangement.
- $F_{m}(\mathcal{A})$ is a Stein manifold. It has the homotopy type of a finite cell complex, with $\operatorname{gcd}(m)$ connected components, of $\operatorname{dim} \ell-1$.
- The (geometric) monodromy is the diffeomorphism

$$
h: F_{m}(\mathcal{A}) \rightarrow F_{m}(\mathcal{A}), \quad z \mapsto e^{2 \pi \mathrm{i} / N_{z}}
$$

- If all $m_{H}=1$, the polynomial $Q=Q(\mathcal{A})$ is the usual defining polynomial, and $F(\mathcal{A})$ is the usual Milnor fiber of \mathcal{A}.
- The typical fiber, $F_{m}(\mathcal{A})=Q_{m}^{-1}(1)$, is called the Milnor fiber of the multi-arrangement.
- $F_{m}(\mathcal{A})$ is a Stein manifold. It has the homotopy type of a finite cell complex, with $\operatorname{gcd}(m)$ connected components, of $\operatorname{dim} \ell-1$.
- The (geometric) monodromy is the diffeomorphism

$$
h: F_{m}(\mathcal{A}) \rightarrow F_{m}(\mathcal{A}), \quad z \mapsto e^{2 \pi \mathrm{i} / N_{z}}
$$

- If all $m_{H}=1$, the polynomial $Q=Q(\mathcal{A})$ is the usual defining polynomial, and $F(\mathcal{A})$ is the usual Milnor fiber of \mathcal{A}.

ExAMPLE

Let \mathcal{A} be the single hyperplane $\{0\}$ inside \mathbb{C}. Then $M(\mathcal{A})=\mathbb{C}^{*}$, $Q_{m}(\mathcal{A})=z^{m}$, and $F_{m}(\mathcal{A})=m$-roots of 1 .

Let \mathcal{A} be a pencil of 3 lines through the origin of \mathbb{C}^{2}. Then $F(\mathcal{A})$ is a thrice-punctured torus, and h is an automorphism of order 3 :

More generally, if \mathcal{A} is a pencil of n lines in \mathbb{C}^{2}, then $F(\mathcal{A})$ is a Riemann surface of genus $\binom{n-1}{2}$, with n punctures.

EXAMPLE

Let \mathcal{A} be the single hyperplane $\{0\}$ inside \mathbb{C}. Then $M(\mathcal{A})=\mathbb{C}^{*}$, $Q_{m}(\mathcal{A})=z^{m}$, and $F_{m}(\mathcal{A})=m$-roots of 1 .

EXAMPLE

Let \mathcal{A} be a pencil of 3 lines through the origin of \mathbb{C}^{2}. Then $F(\mathcal{A})$ is a thrice-punctured torus, and h is an automorphism of order 3:

More generally, if \mathcal{A} is a pencil of n lines in \mathbb{C}^{2}, then $F(\mathcal{A})$ is a Riemann surface of genus $\binom{n-1}{2}$, with n punctures.

EXAMPLE

Let \mathcal{A} be the single hyperplane $\{0\}$ inside \mathbb{C}. Then $M(\mathcal{A})=\mathbb{C}^{*}$, $Q_{m}(\mathcal{A})=z^{m}$, and $F_{m}(\mathcal{A})=m$-roots of 1 .

ExAMPLE

Let \mathcal{A} be a pencil of 3 lines through the origin of \mathbb{C}^{2}. Then $F(\mathcal{A})$ is a thrice-punctured torus, and h is an automorphism of order 3:

More generally, if \mathcal{A} is a pencil of n lines in \mathbb{C}^{2}, then $F(\mathcal{A})$ is a Riemann surface of genus $\binom{n-1}{2}$, with n punctures.

- Let \mathcal{B}_{n} be the Boolean arrangement, with $Q_{m}\left(\mathcal{B}_{n}\right)=z_{1}^{m_{1}} \cdots z_{n}^{m_{n}}$. Then $M\left(\mathcal{B}_{n}\right)=\left(\mathbb{C}^{*}\right)^{n}$ and

$$
F_{m}\left(\mathcal{B}_{n}\right)=\operatorname{ker}\left(\mathbb{Q}_{m}\right) \cong\left(\mathbb{C}^{*}\right)^{n-1} \times \mathbb{Z}_{\operatorname{gcd}(m)}
$$

- Let $\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\}$ be an essential arrangement. The inclusion $M(\mathcal{A}) \rightarrow M\left(\mathcal{B}_{n}\right)$ restricts to a bundle map

- Thus,

- Let \mathcal{B}_{n} be the Boolean arrangement, with $Q_{m}\left(\mathcal{B}_{n}\right)=z_{1}^{m_{1}} \cdots z_{n}^{m_{n}}$. Then $M\left(\mathcal{B}_{n}\right)=\left(\mathbb{C}^{*}\right)^{n}$ and

$$
F_{m}\left(\mathcal{B}_{n}\right)=\operatorname{ker}\left(\mathbb{Q}_{m}\right) \cong\left(\mathbb{C}^{*}\right)^{n-1} \times \mathbb{Z}_{\operatorname{gcd}(m)}
$$

- Let $\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\}$ be an essential arrangement. The inclusion $\iota: M(\mathcal{A}) \rightarrow M\left(\mathcal{B}_{n}\right)$ restricts to a bundle map

$$
\begin{array}{cc}
F_{m}(\mathcal{A}) \longrightarrow M(\mathcal{A}) \xrightarrow{Q_{m}(\mathcal{A})} \longrightarrow \mathbb{C}^{*} \\
\downarrow & \downarrow \\
F_{m}\left(\mathcal{B}_{n}\right) \longrightarrow & \\
& M\left(\mathcal{B}_{n}\right) \xrightarrow{Q_{m}\left(\mathcal{B}_{n}\right)} \mathbb{C}^{*}
\end{array}
$$

- Thus,

$$
F_{m}(\mathcal{A})=M(\mathcal{A}) \cap F_{m}\left(\mathcal{B}_{n}\right)
$$

The homology of the Milnor fiber

Some basic questions about the topology of the Milnor fibration:
(Q1) Are the homology groups $H_{q}\left(F_{m}(\mathcal{A}), \mathbb{k}\right)$ determined by $L(\mathcal{A})$? If so, is the characteristic polynomial of the algebraic monodromy, $h_{*}: H_{q}\left(F_{m}(\mathcal{A}), \mathbb{k}\right) \rightarrow H_{q}\left(F_{m}(\mathcal{A}), \mathbb{k}\right)$, also determined by $L(\mathcal{A})$?

$$
\text { Are the homology groups } H_{q}\left(F_{m}(\mathcal{A}), \mathbb{Z}\right) \text { torsion-free? If so, does }
$$ $F_{m}(\mathcal{A})$ admit a minimal cell structure? Is $F_{m}(\mathcal{A})$ a (partially) formal space?

The homology of the Milnor fiber

Some basic questions about the topology of the Milnor fibration:
(Q1) Are the homology groups $H_{q}\left(F_{m}(\mathcal{A}), \mathbb{k}\right)$ determined by $L(\mathcal{A})$? If so, is the characteristic polynomial of the algebraic monodromy, $h_{*}: H_{q}\left(F_{m}(\mathcal{A}), \mathbb{k}\right) \rightarrow H_{q}\left(F_{m}(\mathcal{A}), \mathbb{k}\right)$, also determined by $L(\mathcal{A})$?
(Q2) Are the homology groups $H_{q}\left(F_{m}(\mathcal{A}), \mathbb{Z}\right)$ torsion-free? If so, does $F_{m}(\mathcal{A})$ admit a minimal cell structure?

Is $F_{m}(\mathcal{A})$ a (partially) formal space?

The homology of the Milnor fiber

Some basic questions about the topology of the Milnor fibration:
(Q1) Are the homology groups $H_{q}\left(F_{m}(\mathcal{A}), \mathbb{k}\right)$ determined by $L(\mathcal{A})$? If so, is the characteristic polynomial of the algebraic monodromy, $h_{*}: H_{q}\left(F_{m}(\mathcal{A}), \mathbb{k}\right) \rightarrow H_{q}\left(F_{m}(\mathcal{A}), \mathbb{k}\right)$, also determined by $L(\mathcal{A})$?
(Q2) Are the homology groups $H_{q}\left(F_{m}(\mathcal{A}), \mathbb{Z}\right)$ torsion-free? If so, does $F_{m}(\mathcal{A})$ admit a minimal cell structure?
(Q3) Is $F_{m}(\mathcal{A})$ a (partially) formal space?

- Let (\mathcal{A}, m) be a multi-arrangement with $\operatorname{gcd}\left\{m_{H} \mid H \in \mathcal{A}\right\}=1$. Set $N=\sum_{H \in \mathcal{A}} m_{H}$.
- The Milnor fiber $F_{m}(\mathcal{A})$ is a regular \mathbb{Z}_{N}-cover of $U(\mathcal{A})=\mathbb{P}(M(\mathcal{A}))$ defined by the homomorphism

$$
\delta_{m}: \pi_{1}(U(\mathcal{A})) \rightarrow \mathbb{Z}_{N}, \quad x_{H} \mapsto m_{H} \bmod N
$$

- This gives a formula for the polynomial $\Delta_{q}(t)=\operatorname{det}\left(t \cdot \mathrm{id}-h_{*}\right)$ in terms of the characteristic varieties of $U(\mathcal{A})$.
- Let (\mathcal{A}, m) be a multi-arrangement with $\operatorname{gcd}\left\{m_{H} \mid H \in \mathcal{A}\right\}=1$. Set $N=\sum_{H \in \mathcal{A}} m_{H}$.
- The Milnor fiber $F_{m}(\mathcal{A})$ is a regular \mathbb{Z}_{N}-cover of $U(\mathcal{A})=\mathbb{P}(M(\mathcal{A}))$ defined by the homomorphism

$$
\delta_{m}: \pi_{1}(U(\mathcal{A})) \rightarrow \mathbb{Z}_{N}, \quad x_{H} \mapsto m_{H} \bmod N
$$

- Let $\widehat{\delta_{m}}: \operatorname{Hom}\left(\mathbb{Z}_{N}, \mathbb{k}^{*}\right) \rightarrow \operatorname{Hom}\left(\pi_{1}(U(\mathcal{A})), \mathbb{k}^{*}\right)$. If $\operatorname{char}(\mathbb{k}) \nmid N$, then

$$
\operatorname{dim}_{\mathbb{k}} H_{q}\left(F_{m}(\mathcal{A}), \mathbb{k}\right)=\sum_{s \geqslant 1}\left|\mathcal{V}_{s}^{q}(U(\mathcal{A}), \mathbb{k}) \cap \operatorname{im}\left(\widehat{\delta_{m}}\right)\right| .
$$

- This gives a formula for the polynomial $\Delta_{q}(t)=\operatorname{det}\left(t \cdot\right.$ id $\left.-h_{*}\right)$ in terms of the characteristic varieties of $U(\mathcal{A})$.
- Write

$$
\Delta(t):=\Delta_{1}(t)=\prod_{d \mid n} \Phi_{d}(t)^{e_{d}(\mathcal{A})}
$$

where $\Phi_{d}(t)$ is the d-th cyclotomic polynomial, and $e_{d}(\mathcal{A}) \in \mathbb{Z}_{\geqslant 0}$.

- Transfer argument: $e_{1}(\mathcal{A})=n-1$.
- If there is a non-transverse multiple point on \mathcal{A} of multiplicity not divisible by d, then $e_{d}(\mathcal{A})=0$. (Libgober 2002).
- In particular, if \mathcal{A} has only points of multiplicity 2 and 3 , then $\Delta(t)=(t-1)^{m-1}\left(t^{2}+t+1\right)^{e_{3}}$.
- If multiplicity 4 appears, then also get factor of $(t+1)^{e_{2}} \cdot\left(t^{2}+1\right)^{e_{4}}$. Let \mathcal{A} be the braid arrangement. $\mathcal{V}_{1}(\mathcal{A})$ has a single essential component, Clearly, $\delta^{2} \in T$, yet $\delta \notin T$; hence,
- Write

$$
\Delta(t):=\Delta_{1}(t)=\prod_{d \mid n} \Phi_{d}(t)^{e_{d}(\mathcal{A})},
$$

where $\Phi_{d}(t)$ is the d-th cyclotomic polynomial, and $e_{d}(\mathcal{A}) \in \mathbb{Z}_{\geqslant 0}$.

- Transfer argument: $e_{1}(\mathcal{A})=n-1$.
- If there is a non-transverse multiple point on \mathcal{A} of multiplicity not divisible by d, then $e_{d}(\mathcal{A})=0$. (Libgober 2002).
- In particular, if \mathcal{A} has only points of multiplicity 2 and 3 , then
- If multiplicity 4 appears, then also get factor of (
- Write

$$
\Delta(t):=\Delta_{1}(t)=\prod_{d \mid n} \Phi_{d}(t)^{e_{d}(\mathcal{A})},
$$

where $\Phi_{d}(t)$ is the d-th cyclotomic polynomial, and $e_{d}(\mathcal{A}) \in \mathbb{Z}_{\geqslant 0}$.

- Transfer argument: $e_{1}(\mathcal{A})=n-1$.
- If there is a non-transverse multiple point on \mathcal{A} of multiplicity not divisible by d, then $e_{d}(\mathcal{A})=0$. (Libgober 2002).
- In particular, if \mathcal{A} has only points of multiplicity 2 and 3 , then $\Delta(t)=(t-1)^{m-1}\left(t^{2}+t+1\right)^{e_{3}}$.
- If multiplicity 4 appears, then also get factor of $(t+1)^{e_{2}} \cdot\left(t^{2}+1\right)^{e_{4}}$.
- Write

$$
\Delta(t):=\Delta_{1}(t)=\prod_{d \mid n} \Phi_{d}(t)^{e_{d}(\mathcal{A})}
$$

where $\Phi_{d}(t)$ is the d-th cyclotomic polynomial, and $e_{d}(\mathcal{A}) \in \mathbb{Z}_{\geqslant 0}$.

- Transfer argument: $e_{1}(\mathcal{A})=n-1$.
- If there is a non-transverse multiple point on \mathcal{A} of multiplicity not divisible by d, then $e_{d}(\mathcal{A})=0$. (Libgober 2002).
- In particular, if \mathcal{A} has only points of multiplicity 2 and 3 , then $\Delta(t)=(t-1)^{m-1}\left(t^{2}+t+1\right)^{e_{3}}$.
- If multiplicity 4 appears, then also get factor of $(t+1)^{e_{2}} \cdot\left(t^{2}+1\right)^{e_{4}}$.

EXAMPLE

Let \mathcal{A} be the braid arrangement. $\mathcal{V}_{1}(\mathcal{A})$ has a single essential component, $T=\left\{t \in\left(\mathbb{C}^{*}\right)^{6} \mid t_{1} t_{2} t_{3}=t_{1} t_{6}^{-1}=t_{2} t_{5}^{-1}=t_{3} t_{4}^{-1}=1\right\}$. Clearly, $\delta^{2} \in T$, yet $\delta \notin T$; hence, $\quad \Delta(t)=(t-1)^{5}\left(t^{2}+t+1\right)$.

MODULAR INEQUALITIES

- Let $\sigma=\sum_{H \in \mathcal{A}} e_{H} \in A^{1}$ be the "diagonal" vector.
- Assume \mathbb{k} has characteristic $p>0$, and define

$$
\beta_{p}(\mathcal{A})=\operatorname{dim}_{\mathbb{k}} H^{1}(A, \cdot \sigma)
$$

That is, $\beta_{p}(\mathcal{A})=\max \left\{s \mid \sigma \in \mathcal{R}_{s}^{1}(A, \mathbb{k})\right\}$.
(1) Suppose \mathcal{A} admits a k-net. Then $\beta_{p}(\mathcal{A})=0$ if $p \nmid k$ and $\beta_{p}(\mathcal{A}) \geqslant k-2$, otherwise.

Modular inequalities

- Let $\sigma=\sum_{H \in \mathcal{A}} e_{H} \in A^{1}$ be the "diagonal" vector.
- Assume \mathbb{k} has characteristic $p>0$, and define

$$
\beta_{p}(\mathcal{A})=\operatorname{dim}_{\mathbb{k}} H^{1}(A, \cdot \sigma)
$$

That is, $\beta_{p}(\mathcal{A})=\max \left\{s \mid \sigma \in \mathcal{R}_{s}^{1}(A, \mathbb{k})\right\}$.

THEOREM (COHEN-ORLIK 2000, PAPADIMA-S. 2010)

 $e_{p^{s}}(\mathcal{A}) \leqslant \beta_{p}(\mathcal{A})$, for all $s \geqslant 1$.(1) Suppose \mathcal{A} admits a k-net. Then $\beta_{p}(\mathcal{A})=0$ if $p \nmid k$ and $\beta_{p}(\mathcal{A}) \geqslant k-2$, otherwise.

MODULAR INEQUALITIES

- Let $\sigma=\sum_{H \in \mathcal{A}} e_{H} \in A^{1}$ be the "diagonal" vector.
- Assume \mathbb{k} has characteristic $p>0$, and define

$$
\beta_{p}(\mathcal{A})=\operatorname{dim}_{\mathbb{k}} H^{1}(A, \cdot \sigma) .
$$

That is, $\beta_{p}(\mathcal{A})=\max \left\{s \mid \sigma \in \mathcal{R}_{s}^{1}(A, \mathbb{k})\right\}$.

THEOREM (COHEN-ORLIK 2000, PAPADIMA-S. 2010)

 $e_{p^{s}}(\mathcal{A}) \leqslant \beta_{p}(\mathcal{A})$, for all $s \geqslant 1$.
Theorem

(1) Suppose \mathcal{A} admits a k-net. Then $\beta_{p}(\mathcal{A})=0$ if $p \nmid k$ and $\beta_{p}(\mathcal{A}) \geqslant k-2$, otherwise.
(2) If \mathcal{A} admits a reduced k-multinet, then $e_{k}(\mathcal{A}) \geqslant k-2$.

COMBINATORICS AND MONODROMY

THEOREM (PAPADIMA-S. 2014)

Suppose \mathcal{A} has no points of multiplicity $3 r$ with $r>1$. Then \mathcal{A} admits a reduced 3 -multinet iff \mathcal{A} admits a 3-net iff $\beta_{3}(\mathcal{A}) \neq 0$. Moreover,

- $\beta_{3}(\mathcal{A}) \leqslant 2$.
- $e_{3}(\mathcal{A})=\beta_{3}(\mathcal{A})$, and thus $e_{3}(\mathcal{A})$ is combinatorially determined.

COMBINATORICS AND MONODROMY

THEOREM (PAPADIMA-S. 2014)

Suppose \mathcal{A} has no points of multiplicity $3 r$ with $r>1$. Then \mathcal{A} admits a reduced 3 -multinet iff \mathcal{A} admits a 3-net iff $\beta_{3}(\mathcal{A}) \neq 0$. Moreover,

- $\beta_{3}(\mathcal{A}) \leqslant 2$.
- $e_{3}(\mathcal{A})=\beta_{3}(\mathcal{A})$, and thus $e_{3}(\mathcal{A})$ is combinatorially determined.

Corollary (PS)

Suppose all flats $X \in L_{2}(\mathcal{A})$ have multiplicity 2 or 3 . Then $\Delta(t)$, and thus $b_{1}(F(\mathcal{A}))$, are combinatorially determined.

Suppose \mathcal{A} supports a 4-net and

COMBINATORICS AND MONODROMY

THEOREM (PAPADIMA-S. 2014)

Suppose \mathcal{A} has no points of multiplicity $3 r$ with $r>1$. Then \mathcal{A} admits a reduced 3 -multinet iff \mathcal{A} admits a 3-net iff $\beta_{3}(\mathcal{A}) \neq 0$. Moreover,

- $\beta_{3}(\mathcal{A}) \leqslant 2$.
- $e_{3}(\mathcal{A})=\beta_{3}(\mathcal{A})$, and thus $e_{3}(\mathcal{A})$ is combinatorially determined.

Corollary (PS)

Suppose all flats $X \in L_{2}(\mathcal{A})$ have multiplicity 2 or 3 . Then $\Delta(t)$, and thus $b_{1}(F(\mathcal{A}))$, are combinatorially determined.

THEOREM (PS)

Suppose \mathcal{A} supports a 4-net and $\beta_{2}(\mathcal{A}) \leqslant 2$. Then

$$
e_{2}(\mathcal{A})=e_{4}(\mathcal{A})=\beta_{2}(\mathcal{A})=2
$$

CONJECTURE (PS)

Let \mathcal{A} be an arrangement which is not a pencil. Then $e_{p^{s}}(\mathcal{A})=0$ for all primes p and integers $s \geqslant 1$, with two possible exceptions:

$$
e_{2}(\mathcal{A})=e_{4}(\mathcal{A})=\beta_{2}(\mathcal{A}) \text { and } e_{3}(\mathcal{A})=\beta_{3}(\mathcal{A})
$$

If $e_{d}(\mathcal{A})=0$ for all divisors d of $|\mathcal{A}|$ which are not prime powers, this conjecture would give:

The conjecture has been verified for several classes of arrangements:

- Complex reflection arrangements (Măcinic-Dapadima-Dopescu)
- Certain types of real arrangements (Yoshinaga, Bailet, Torielli).
- Arrangements w/ connected multiplicity graph (Salvetti-Serventi)

CONJECTURE (PS)

Let \mathcal{A} be an arrangement which is not a pencil. Then $e_{p^{s}}(\mathcal{A})=0$ for all primes p and integers $s \geqslant 1$, with two possible exceptions:

$$
e_{2}(\mathcal{A})=e_{4}(\mathcal{A})=\beta_{2}(\mathcal{A}) \text { and } e_{3}(\mathcal{A})=\beta_{3}(\mathcal{A})
$$

If $e_{d}(\mathcal{A})=0$ for all divisors d of $|\mathcal{A}|$ which are not prime powers, this conjecture would give:

$$
\Delta_{\mathcal{A}}(t)=(t-1)^{|\mathcal{A}|-1}\left((t+1)\left(t^{2}+1\right)\right)^{\beta_{2}(\mathcal{A})}\left(t^{2}+t+1\right)^{\beta_{3}(\mathcal{A})} .
$$

The conjecture has been verified for several classes of arrangements:

- Complex reflection arrangements (Măcinic-Papadima-Popescu)
- Certain types of real arrangements (Voshinaga, Bailet, Torielli)
- Arrangements w/ connected multiplicity graph (Salvetti-Serventi).

Conjecture (PS)

Let \mathcal{A} be an arrangement which is not a pencil. Then $e_{p^{s}}(\mathcal{A})=0$ for all primes p and integers $s \geqslant 1$, with two possible exceptions:

$$
e_{2}(\mathcal{A})=e_{4}(\mathcal{A})=\beta_{2}(\mathcal{A}) \text { and } e_{3}(\mathcal{A})=\beta_{3}(\mathcal{A}) \text {. }
$$

If $e_{d}(\mathcal{A})=0$ for all divisors d of $|\mathcal{A}|$ which are not prime powers, this conjecture would give:

$$
\Delta_{\mathcal{A}}(t)=(t-1)^{|\mathcal{A}|-1}\left((t+1)\left(t^{2}+1\right)\right)^{\beta_{2}(\mathcal{A})}\left(t^{2}+t+1\right)^{\beta_{3}(\mathcal{A})} .
$$

The conjecture has been verified for several classes of arrangements:

- Complex reflection arrangements (Măcinic-Papadima-Popescu).
- Certain types of real arrangements (Yoshinaga, Bailet, Torielli).
- Arrangements w/ connected multiplicity graph (Salvetti-Serventi).

TORSION IN HOMOLOGY

THEOREM (COHEN-DENHAM-S. 2003)

For every prime $p \geqslant 2$, there is a multi-arrangement (\mathcal{A}, m) such that $H_{1}\left(F_{m}(\mathcal{A}), \mathbb{Z}\right)$ has non-zero p-torsion.

Simplest example: the arrangement of 8 hyperplanes in \mathbb{C}^{3} with

TORSION IN HOMOLOGY

THEOREM (COHEN-DENHAM-S. 2003)

For every prime $p \geqslant 2$, there is a multi-arrangement (\mathcal{A}, m) such that $H_{1}\left(F_{m}(\mathcal{A}), \mathbb{Z}\right)$ has non-zero p-torsion.

Simplest example: the arrangement of 8 hyperplanes in \mathbb{C}^{3} with

$$
Q_{m}(\mathcal{A})=x^{2} y\left(x^{2}-y^{2}\right)^{3}\left(x^{2}-z^{2}\right)^{2}\left(y^{2}-z^{2}\right)
$$

Then $H_{1}\left(F_{m}(\mathcal{A}), \mathbb{Z}\right)=\mathbb{Z}^{7} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$.

We now can generalize and reinterpret these examples, as follows.

A pointed multinet on an arrangement \mathcal{A} is a multinet structure, together with a distinguished hyperplane $H \in \mathcal{A}$ for which $m_{H}>1$ and $m_{H} \mid n_{X}$ for each $X \in \mathcal{X}$ such that $X \subset H$.

Suppose \mathcal{A} admits a pointed multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_{H}. There is then a choice of multiplicities m^{\prime} on the deletion $\mathcal{A}^{\prime}=\mathcal{A} \backslash\{H\}$ such that $H_{1}\left(F_{m^{\prime}}\left(\mathcal{A}^{\prime}\right), \mathbb{Z}\right)$ has non-zero p-torsion.

This torsion is explained by the fact that the geometry of $\mathcal{V}_{1}^{1}\left(M\left(\mathcal{A}^{\prime}\right), \mathbb{k}\right)$ varies with char((\mathbb{k}).

We now can generalize and reinterpret these examples, as follows.

A pointed multinet on an arrangement \mathcal{A} is a multinet structure, together with a distinguished hyperplane $H \in \mathcal{A}$ for which $m_{H}>1$ and $m_{H} \mid n_{X}$ for each $X \in \mathcal{X}$ such that $X \subset H$.

THEOREM (DENHAM-S. 2014)

Suppose \mathcal{A} admits a pointed multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_{H}. There is then a choice of multiplicities m^{\prime} on the deletion $\mathcal{A}^{\prime}=\mathcal{A} \backslash\{H\}$ such that $H_{1}\left(F_{m^{\prime}}\left(\mathcal{A}^{\prime}\right), \mathbb{Z}\right)$ has non-zero p-torsion.

This torsion is explained by the fact that the geometry of $\mathcal{V}_{1}^{1}\left(M\left(\mathcal{A}^{\prime}\right), \mathbb{k}\right)$ varies with char((\mathbb{k}).

To produce p-torsion in the homology of the usual Milnor fiber, we use a "polarization" construction:

$(\mathcal{A}, m) \rightsquigarrow \mathcal{A} \| m$, an arrangement of $N=\sum_{H \in \mathcal{A}} m_{H}$ hyperplanes, of rank equal to $\operatorname{rank} \mathcal{A}+\left|\left\{H \in \mathcal{A}: m_{H} \geqslant 2\right\}\right|$.

Suppose \mathcal{A} admits a pointed multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_{H}.
There is then a choice of multiplicities m^{\prime} on the deletion $\mathcal{A}^{\prime}=\mathcal{A} \backslash\{H\}$ such that $H_{q}(F(\mathcal{B}), \mathbb{Z})$ has p-torsion, where $\mathcal{B}=\mathcal{A}^{\prime} \| m^{\prime}$ and

To produce p-torsion in the homology of the usual Milnor fiber, we use a "polarization" construction:

$(\mathcal{A}, m) \rightsquigarrow \mathcal{A} \| m$, an arrangement of $N=\sum_{H \in \mathcal{A}} m_{H}$ hyperplanes, of rank equal to $\operatorname{rank} \mathcal{A}+\left|\left\{H \in \mathcal{A}: m_{H} \geqslant 2\right\}\right|$.

THEOREM (DS)

Suppose \mathcal{A} admits a pointed multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_{H}.
There is then a choice of multiplicities m^{\prime} on the deletion $\mathcal{A}^{\prime}=\mathcal{A} \backslash\{H\}$ such that $H_{q}(F(\mathcal{B}), \mathbb{Z})$ has p-torsion, where $\mathcal{B}=\mathcal{A}^{\prime} \| m^{\prime}$ and $q=1+\left|\left\{K \in \mathcal{A}^{\prime}: m_{K}^{\prime} \geqslant 3\right\}\right|$.

Corollary (DS)

For every prime $p \geqslant 2$, there is an arrangement \mathcal{A} such that $H_{q}(F(\mathcal{A}), \mathbb{Z})$ has non-zero p-torsion, for some $q>1$.

Corollary (DS)

For every prime $p \geqslant 2$, there is an arrangement \mathcal{A} such that $H_{q}(F(\mathcal{A}), \mathbb{Z})$ has non-zero p-torsion, for some $q>1$.

Simplest example: the arrangement of 27 hyperplanes in \mathbb{C}^{8} with

$$
\begin{aligned}
& Q(\mathcal{A})=x y\left(x^{2}-y^{2}\right)\left(x^{2}-z^{2}\right)\left(y^{2}-z^{2}\right) w_{1} w_{2} w_{3} w_{4} w_{5}\left(x^{2}-w_{1}^{2}\right)\left(x^{2}-2 w_{1}^{2}\right)\left(x^{2}-3 w_{1}^{2}\right)\left(x-4 w_{1}\right) \\
& \quad\left((x-y)^{2}-w_{2}^{2}\right)\left((x+y)^{2}-w_{3}^{2}\right)\left((x-z)^{2}-w_{4}^{2}\right)\left((x-z)^{2}-2 w_{4}^{2}\right) \cdot\left((x+z)^{2}-w_{5}^{2}\right)\left((x+z)^{2}-2 w_{5}^{2}\right) .
\end{aligned}
$$

Then $H_{6}(F(\mathcal{A}), \mathbb{Z})$ has 2-torsion (of rank 108).

THE FORMALITY PROBLEM

Example (Zuber 2010)

- Let \mathcal{A} be the arrangement in \mathbb{C}^{3} defined by

$$
Q=\left(z_{1}^{3}-z_{2}^{3}\right)\left(z_{1}^{3}-z_{3}^{3}\right)\left(z_{2}^{3}-z_{3}^{3}\right)
$$

- The variety $\mathcal{R}^{1}(M) \subset \mathbb{C}^{9}$ has 12 local components (from triple points), and 4 essential components (from 3 -nets).
- One of these 3-nets corresponds to the rational map $\mathbb{C P}^{2} \cdots$
$\left(z_{1}, z_{2}, z_{3}\right) \mapsto\left(z_{1}^{3}-z_{2}^{3}, z_{2}^{3}-z_{3}^{3}\right)$.
- This map can be used to construct a 4-dimensional subtorus $T=\exp (L)$ inside $\operatorname{Hom}\left(\pi_{1}(F(\mathcal{A})), \mathbb{C}^{*}\right)=\left(\mathbb{C}^{*}\right)^{12}$.
- The subsnace $1 \subset H^{1}(F(A), \mathbb{C})$ is not a comnonent of $\mathbb{R}^{1}(F(\mathcal{A}))$.
- Thus, the tangent cone formula is violated, and so the Milnor fiber $F(\mathcal{A})$ is not 1 -formal.

THE FORMALITY PROBLEM

EXAMPLE (Zuber 2010)

- Let \mathcal{A} be the arrangement in \mathbb{C}^{3} defined by

$$
Q=\left(z_{1}^{3}-z_{2}^{3}\right)\left(z_{1}^{3}-z_{3}^{3}\right)\left(z_{2}^{3}-z_{3}^{3}\right)
$$

- The variety $\mathcal{R}^{1}(M) \subset \mathbb{C}^{9}$ has 12 local components (from triple points), and 4 essential components (from 3 -nets).
- One of these 3 -nets corresponds to the rational map $\mathbb{C P}^{2} \rightarrow \mathbb{C P}^{1}$, $\left(z_{1}, z_{2}, z_{3}\right) \mapsto\left(z_{1}^{3}-z_{2}^{3}, z_{2}^{3}-z_{3}^{3}\right)$.
- This map can be used to construct a 4-dimensional subtorus $T=\exp (L)$ inside $\operatorname{Hom}\left(\pi_{1}(F(\mathcal{A})), \mathbb{C}^{*}\right)=\left(\mathbb{C}^{*}\right)^{12}$.
- The subspace
- Thus, the tangent cone formula is violated, and so the Milnor fiber

THE FORMALITY PROBLEM

Example (Zuber 2010)

- Let \mathcal{A} be the arrangement in \mathbb{C}^{3} defined by

$$
Q=\left(z_{1}^{3}-z_{2}^{3}\right)\left(z_{1}^{3}-z_{3}^{3}\right)\left(z_{2}^{3}-z_{3}^{3}\right)
$$

- The variety $\mathcal{R}^{1}(M) \subset \mathbb{C}^{9}$ has 12 local components (from triple points), and 4 essential components (from 3 -nets).
- One of these 3 -nets corresponds to the rational map $\mathbb{C P}^{2} \rightarrow \mathbb{C P}^{1}$, $\left(z_{1}, z_{2}, z_{3}\right) \mapsto\left(z_{1}^{3}-z_{2}^{3}, z_{2}^{3}-z_{3}^{3}\right)$.
- This map can be used to construct a 4-dimensional subtorus $T=\exp (L)$ inside $\operatorname{Hom}\left(\pi_{1}(F(\mathcal{A})), \mathbb{C}^{*}\right)=\left(\mathbb{C}^{*}\right)^{12}$.
- The subspace $L \subset H^{1}(F(\mathcal{A}), \mathbb{C})$ is not a component of $\mathcal{R}^{1}(F(\mathcal{A}))$.
- Thus, the tangent cone formula is violated, and so the Milnor fiber $F(\mathcal{A})$ is not 1 -formal.

