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HYPERPLANE ARRANGEMENTS COMPLEMENT AND INTERSECTION LATTICE

HYPERPLANE ARRANGEMENTS

@ An arrangement of hyperplanes is a finite set A of codimension-1
linear subspaces in C*.

@ Intersection lattice L(A): poset of all intersections of .4, ordered by
reverse inclusion, and ranked by codimension.

e Complement: M(A) = C*\ | Jye4 H.

@ The Boolean arrangement B,
e B,: all coordinate hyperplanes z; = 0 in C".
o L(B,): Boolean lattice of subsets of {0,1}".
e M(B,): complex algebraic torus (C*)".

@ The braid arrangement A, (or, reflection arr. of type A,_+)
e A, all diagonal hyperplanes z; — z; = 0 in C".
o L(Ap): lattice of partitions of [n] = {1,...,n}.
e M(Ap,): configuration space of n ordered points in C (a classifying
space for Pp,, the pure braid group on n strings).
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HYPERPLANE ARRANGEMENTS

COMPLEMENT AND INTERSECTION LATTICE

1~ X2

Xo — X4
C 7
X1 — X3

X1 — X4

N

X3 — X4

FIGURE : A planar slice of the braid arrangement A4
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HYPERPLANE ARRANGEMENTS COMPLEMENT AND INTERSECTION LATTICE

@ We may assume that A is essential, i.e., (.4 H = {0}.

@ Fix an ordering A = {Hj, ..., Hp}, and choose linear forms
f.: C* — C with ker(f;) = H;. Define an injective linear map

L CESC" ze ((2),...,6(2)).
@ This map restricts to an inclusion .: M(A) — M(53,). Hence,

M(A) = +(CY) n (C*)", a “very affine" subvariety of (C*)", and
thus, a Stein manifold.

@ Therefore, M = M(.A) has the homotopy type of a connected,
finite cell complex of dimension /.

@ In fact, M has a minimal cell structure (Dimca—Papadima, Randell,
Salvetti, Adiprasito,. ..). Consequently, H.(M,Z) is torsion-free.
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HYPERPLANE ARRANGEMENTS COHOMOLOGY RING

COHOMOLOGY RING

@ The Betti numbers by(M) := rank Hy(M,Z) are given by

l
Y obg(M)t9 = D pu(X)(—t)akX),
=0 XeL(A)

with i: L(A) — Z given by u(C*) = 1 and u(X) = — Syoy u(Y).

@ Let E = /\(A) be the Z-exterior algebra on degree-1 classes ey
dual to the meridians around the hyperplanes H € A.

@ Let 0: E* — E*~' be the differential given by d(ey) = 1, and set
es = | [pep €H for each B c A.

@ The cohomology ring H*(M(.A), Z) is isomorphic to the
Orlik—Solomon algebra A(A) = E/I, where

/ = ideal <ae3 ’codimIQBH < |B| >
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HYPERPLANE ARRANGEMENTS FUNDAMENTAL GROUP

FUNDAMENTAL GROUP

@ Given a generic projection of a generic slice of A in C?, the
fundamental group = = 71(M(.A)) can be computed from the
resulting braid monodromy o = (a4, ..., «as), where a, € Py.

@ 7 has a (minimal) finite presentation with

e Meridional generators xi, ..., x,, where n = | A|.

o Commutator relators x;aj(x;) ", where each o acts on F, via the
Artin representation.

@ Let 7/9x(w) be the (k — 1) nilpotent quotient of 7. Then:

e map = /72 €quals Z".
o /73 is determined by A<2(A), and thus by L.(A).
e m/v4 (and thus, ) is not determined by L(.A). (Rybnikov).
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COHOMOLOGY JUMP LOCI CHARACTERISTIC VARIETIES

CHARACTERISTIC VARIETIES

@ Let X be a connected, finite cell complex, and let 7 = 71 (X, xp).

@ Let k be an algebraically closed field, and let Hom(, k*) be the
affine algebraic group of k-valued, multiplicative characters on 7.

@ The characteristic varieties of X are the jump loci for homology
with coefficients in rank-1 local systems on X:

VI(X,k) = {p e Hom(m,k*) | dim Hg(X.k,) > s}.

Here, k,, is the local system defined by p, i.e, k viewed as a kr-module,
viag-x = p(g)x, and H;(X,k,) = Hj(Cy(X, k) Qxr k).

@ These loci are Zariski closed subsets of the character group.

@ The sets V! (X, k) depend only on 7/x".
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COHOMOLOGY JUMP LOCI CHARACTERISTIC VARIETIES

EXAMPLE (CIRCLE)

We have ST = R. Identify (S, ¥) = Z = (t) and kZ = k[t*']. Then:
C.(S',k): 0—Kk[*1] > k[=']— 0.

For p e Hom(Z,k*) = k*, we get
C(ST,k) @iz k, : 0 k"L k 0,

which is exact, except for p = 1, when Ho(S', k) = H;(S" k) = k.
Hence: V9(S' k) = V] (S",k) = {1} and VL(S', k) = &, otherwise.

EXAMPLE (PUNCTURED COMPLEX LINE)
Identify 71 (C\{n points}) = F,, and Fp = (k*)". Then:
(k*)" if s < n,
VI(C\{n points}, k) = { {1}  ifs=n,
(%] if s> n.
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COHOMOLOGY JUMP LOCI RESONANCE VARIETIES

RESONANCE VARIETIES

@ Let A= H*(X,k), where chark # 2. Then: ae A' = a2 = 0.
@ We thus get a cochain complex

(A-a): AV 2= A1 2. A2

@ The resonance varieties of X are the jump loci for the cohomology
of this complex

RIX,k) = {ac A | dim; HI(A, -a) > s}
@ E.g, RI(X,k) ={ac A" |Ibe A", b # \a, ab = 0}.
@ These loci are homogeneous subvarieties of A' = H'(X k).
EXAMPLE
o RI(T" k) = {0}, for all n > 0.
o RI(C\{n points}, k) = k", for all n > 1.
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COHOMOLOGY JUMP LOCI THE TANGENT CONE THEOREM

THE TANGENT CONE THEOREM

@ Given a subvariety W < (C*)™), let
T1(W)={zeC"|exp(Az) e W, VA e C}.

@ (Dimca—Papadima-S. 2009) = (W) is a finite union of rationally
defined linear subspaces, and (W) < TC4(W).
@ (Libgober 2002/DPS 2009)
71(Ve(X)) € TC1(Ve(X)) = R(X).
o (DPS 2009/DP 2014): Suppose X is a k-formal space. Then, for
eachi < kand s> 0,
T1(Ve(X)) = TC1 (VX)) = R(X).

@ Consequently, RL(X, C) is a union of rationally defined linear
subspaces in H'(X, C).
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]UMP LOCI OF ARRANGEMENTS

Work of Arapura, Falk, D.Cohen-A.S., Libgober—Yuzvinsky, and
Falk—Yuzvinsky completely describes the resonance varieties
Rs(A) = Ri(M(A),C):

@ R4(A) is a union of linear subspaces in H'(M(A),C) =~ CH.

@ Each subspace has dimension at least 2, and each pair of
subspaces meets transversely at 0.

@ Rs(A) is the union of those linear subspaces that have dimension
atleast s + 1.

@ Each k-multinet on a sub-arrangement B < A gives rise to a
component of R+ (A) of dimension kK — 1. Moreover, all
components of R¢(.A) arise in this way.
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JUMP LOCI OF ARRANGEMENTS MULTINETS

DEFINITION (FALK AND YUZVINSKY)

A multinet on A is a partition of the set A into k > 3 subsets
A1, ..., Ag, together with an assignment of multiplicities, m: A — N,
and a subset X < L,(.A), called the base locus, such that:

@ JdeNsuchthat . my=d,forall ae [K].
@ If H and H’ are in different classes, then Hn H' € X.

Q V X e X, the sum nx = > 14 .y—x My is independent of a.

@ Eachset (U4, H)\X is connected.

@ A multinet as above is also called a (k, d)-multinet, or k-multinet.
@ The multinet is reduced if my = 1, for all H € A.
@ A netis a reduced multinet with ny = 1, for all X € X.
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JUMP LOCI OF ARRANGEMENTS MULTINETS

EXAMPLE (BRAID ARRANGEMENT .44)

R1(A) c C® has 4 local components (from the triple points), and one
essential component, from the above (3, 2)-net:
Lizg = {X1 + X2 + X4 = X3 = X5 = Xg = 0},
Lizs = {X1 + X3 + X5
Loze = {X2 + X3 + Xg
Lise = {Xa + X5 + Xg = Xy = Xp = X3 = 0},
L={xi +Xo+X3=X1 —Xg = Xo — X5 = X3 — X4 = 0}.
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JUMP LOCI OF ARRANGEMENTS CHARACTERISTIC VARIETIES

@ Let Hom(w1(M(A)),C*) = (C*)" be the character torus.

@ The characteristic variety Vi (A) := V] (M(A), C) lies in the
substorus {t e (C*)" | t;---th = 1}.

@ V¢ (A) is a finite union of torsion-translates of algebraic subtori of
(C*)n.

@ If alinear subspace L — C" is a component of R{(A), then the
algebraic torus T = exp(L) is a component of V;(A).

@ All components of V;(A) passing through the origin 1 € (C*)"
arise in this way (and thus, are combinatorially determined).

@ In general, though, there are translated subtori in V;(A).
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(Denham-S. 2014)
@ Suppose there is a multinet M on A, and there is a hyperplane H
for which my > 1 and my | nx for each X € X such that X < H.
@ Then V4 (A\ {H}) has a component which is a 1-dimensional
subtorus, translated by a character of order my.

EXAMPLE (THE DELETED B3 ARRANGEMENT)

The B3 arrangement supports a (3, 4)-multinet; X' consists of 4 triple
points (nxy = 1) and 3 quadruple points (nx = 2). So pick H with
my = 2 to get a translated torus in V; (B3\{H}).

v
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JUMP LOCI OF ARRANGEMENTS PROPAGATION OF JUMP LOCI

PROPAGATION OF CJLs

(Denham-S.—Yuzvinsky 2014/15)

@ Suppose X is an abelian duality space of dimension n, i.e.,
HP (X, Zma) = 0 for p # nand H" (X, Zra,) # 0 and torsion-free.

@ Let B = H"(X,Zmy,) be the dualizing Zma,-module. Given any
Zmap-module A, we have H'(X,A) = H,_i(X,B® A).

@ Let p: m — C* be a character. If HP(X,C,) # 0, then
HI(X,C,) # 0forallp<g<n.

@ Thus, the characteristic varieties of X “propagate":
Vi(X) S VE(X) < - < VP(X).
@ If morever X admits a minimal cell structure (or X is formal), then

RIX) 2 RF(X) < --- < RI(X).
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JUMP LOCI OF ARRANGEMENTS PROPAGATION OF JUMP LOCI

@ Let A be an arrangement of rank ¢. Then its complement, M(A),
is an abelian duality space of dimension /.

@ Recall M(A) is minimal (and formal). Thus, both the characteristic
and the resonance varieties of M(.A) propagate.

@ Propagation of resonance for arrangement complements was first
established by Eisenbud—Popescu—Yuzvinsky, with further results
by Budur.
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