HYPERPLANE ARRANGEMENTS AND COHOMOLOGY JUMP LOCI

Alex Suciu

Northeastern University

Workshop on Computational Geometric Topology in Arrangement Theory ICERM, Brown University

July 6, 2015

OUTLINE

HYPERPLANE ARRANGEMENTS

- Complement and intersection lattice
- Cohomology ring
- Fundamental group

2 COHOMOLOGY JUMP LOCI

- Characteristic varieties
- Resonance varieties
- The Tangent Cone theorem
- 3 JUMP LOCI OF ARRANGEMENTS
 - Resonance varieties
 - Multinets
 - Characteristic varieties
 - Propagation of jump loci

HYPERPLANE ARRANGEMENTS

- An arrangement of hyperplanes is a finite set A of codimension-1 linear subspaces in C^ℓ.
- *Intersection lattice* L(A): poset of all intersections of A, ordered by reverse inclusion, and ranked by codimension.
- Complement: $M(\mathcal{A}) = \mathbb{C}^{\ell} \setminus \bigcup_{H \in \mathcal{A}} H$.
- The Boolean arrangement B_n
 - \mathcal{B}_n : all coordinate hyperplanes $z_i = 0$ in \mathbb{C}^n .
 - $L(\mathcal{B}_n)$: Boolean lattice of subsets of $\{0, 1\}^n$.
 - $M(\mathcal{B}_n)$: complex algebraic torus $(\mathbb{C}^*)^n$.
- The braid arrangement A_n (or, reflection arr. of type A_{n-1})
 - A_n : all diagonal hyperplanes $z_i z_j = 0$ in \mathbb{C}^n .
 - $L(A_n)$: lattice of partitions of $[n] = \{1, \ldots, n\}$.
 - *M*(*A_n*): configuration space of *n* ordered points in ℂ (a classifying space for *P_n*, the pure braid group on *n* strings).

FIGURE : A planar slice of the braid arrangement A_4

- We may assume that A is essential, i.e., $\bigcap_{H \in A} H = \{0\}$.
- Fix an ordering $\mathcal{A} = \{H_1, \dots, H_n\}$, and choose linear forms $f_i : \mathbb{C}^{\ell} \to \mathbb{C}$ with ker $(f_i) = H_i$. Define an injective linear map

$$\iota \colon \mathbb{C}^{\ell} \to \mathbb{C}^{n}, \quad z \mapsto (f_{1}(z), \dots, f_{n}(z)).$$

- This map restricts to an inclusion *ι*: *M*(*A*) → *M*(*B_n*). Hence,
 M(*A*) = *ι*(ℂ^ℓ) ∩ (ℂ*)ⁿ, a "very affine" subvariety of (ℂ*)ⁿ, and thus, a Stein manifold.
- Therefore, M = M(A) has the homotopy type of a connected, finite cell complex of dimension ℓ .
- In fact, *M* has a minimal cell structure (Dimca–Papadima, Randell, Salvetti, Adiprasito,...). Consequently, *H*_∗(*M*, ℤ) is torsion-free.

COHOMOLOGY RING

• The Betti numbers $b_q(M) := \operatorname{rank} H_q(M, \mathbb{Z})$ are given by

$$\sum_{q=0}^{\ell} b_q(M) t^q = \sum_{X \in L(\mathcal{A})} \mu(X) (-t)^{\operatorname{rank}(X)},$$

with $\mu \colon L(\mathcal{A}) \to \mathbb{Z}$ given by $\mu(\mathbb{C}^{\ell}) = 1$ and $\mu(X) = -\sum_{Y \supseteq X} \mu(Y)$.

- Let *E* = ∧(*A*) be the Z-exterior algebra on degree-1 classes *e_H* dual to the meridians around the hyperplanes *H* ∈ *A*.
- Let $\partial: E^{\bullet} \to E^{\bullet-1}$ be the differential given by $\partial(e_H) = 1$, and set $e_{\mathcal{B}} = \prod_{H \in \mathcal{B}} e_H$ for each $\mathcal{B} \subset \mathcal{A}$.
- The cohomology ring *H*^{*}(*M*(*A*), ℤ) is isomorphic to the Orlik–Solomon algebra *A*(*A*) = *E*/*I*, where

$$I = \text{ideal} \left\langle \partial e_{\mathcal{B}} \left| \operatorname{codim} \bigcap_{H \in \mathcal{B}} H < |\mathcal{B}| \right\rangle.$$

FUNDAMENTAL GROUP

- Given a generic projection of a generic slice of A in C², the fundamental group π = π₁(M(A)) can be computed from the resulting braid monodromy α = (α₁,..., α_s), where α_r ∈ P_n.
- π has a (minimal) finite presentation with
 - Meridional generators x_1, \ldots, x_n , where $n = |\mathcal{A}|$.
 - Commutator relators $x_i \alpha_j (x_i)^{-1}$, where each α_j acts on F_n via the Artin representation.
- Let $\pi/\gamma_k(\pi)$ be the (k-1)th nilpotent quotient of π . Then:
 - $\pi_{ab} = \pi/\gamma_2$ equals \mathbb{Z}^n .
 - π/γ_3 is determined by $A^{\leq 2}(\mathcal{A})$, and thus by $L_{\leq 2}(\mathcal{A})$.
 - π/γ_4 (and thus, π) is *not* determined by L(A). (Rybnikov).

CHARACTERISTIC VARIETIES

- Let *X* be a connected, finite cell complex, and let $\pi = \pi_1(X, x_0)$.
- Let k be an algebraically closed field, and let Hom(π, k*) be the affine algebraic group of k-valued, multiplicative characters on π.
- The *characteristic varieties* of *X* are the jump loci for homology with coefficients in rank-1 local systems on *X*:

 $\mathcal{V}^{\boldsymbol{q}}_{\boldsymbol{s}}(\boldsymbol{X}, \Bbbk) = \{ \rho \in \operatorname{Hom}(\pi, \Bbbk^*) \mid \dim_{\Bbbk} H_{\boldsymbol{q}}(\boldsymbol{X}, \Bbbk_{\rho}) \geq \boldsymbol{s} \}.$

Here, \Bbbk_{ρ} is the local system defined by ρ , i.e, \Bbbk viewed as a $\Bbbk\pi$ -module, via $g \cdot x = \rho(g)x$, and $H_i(X, \Bbbk_{\rho}) = H_i(C_*(\widetilde{X}, \Bbbk) \otimes_{\Bbbk\pi} \Bbbk_{\rho})$.

- These loci are Zariski closed subsets of the character group.
- The sets $\mathcal{V}_s^1(X, \Bbbk)$ depend only on π/π'' .

EXAMPLE (CIRCLE)

We have $\widetilde{S^1} = \mathbb{R}$. Identify $\pi_1(S^1, *) = \mathbb{Z} = \langle t \rangle$ and $\mathbb{k}\mathbb{Z} = \mathbb{k}[t^{\pm 1}]$. Then:

$$\mathcal{C}_*(\widetilde{S^1}, \Bbbk): 0 \longrightarrow \Bbbk[t^{\pm 1}] \stackrel{t-1}{\longrightarrow} \Bbbk[t^{\pm 1}] \longrightarrow 0$$

For $\rho \in \text{Hom}(\mathbb{Z}, \mathbb{k}^*) = \mathbb{k}^*$, we get

$$\mathcal{C}_*(\widetilde{S^1}, \Bbbk) \otimes_{\Bbbk \mathbb{Z}} \Bbbk_{
ho} : 0 \longrightarrow \Bbbk \xrightarrow{
ho-1} \Bbbk \longrightarrow 0$$

which is exact, except for $\rho = 1$, when $H_0(S^1, \Bbbk) = H_1(S^1, \Bbbk) = \Bbbk$. Hence: $\mathcal{V}_1^0(S^1, \Bbbk) = \mathcal{V}_1^1(S^1, \Bbbk) = \{1\}$ and $\mathcal{V}_s^i(S^1, \Bbbk) = \emptyset$, otherwise.

EXAMPLE (PUNCTURED COMPLEX LINE)

Identify $\pi_1(\mathbb{C}\setminus\{n \text{ points}\}) = F_n$, and $\widehat{F}_n = (\mathbb{k}^*)^n$. Then: $\mathcal{V}_s^1(\mathbb{C}\setminus\{n \text{ points}\},\mathbb{k}) = \begin{cases} (\mathbb{k}^*)^n & \text{if } s < n, \\ \{1\} & \text{if } s = n, \\ \emptyset & \text{if } s > n. \end{cases}$

RESONANCE VARIETIES

- Let $A = H^*(X, \mathbb{k})$, where char $\mathbb{k} \neq 2$. Then: $a \in A^1 \Rightarrow a^2 = 0$.
- We thus get a cochain complex

$$(A, \cdot a): A^0 \xrightarrow{a} A^1 \xrightarrow{a} A^2 \longrightarrow \cdots$$

 The resonance varieties of X are the jump loci for the cohomology of this complex

$$\mathcal{R}^{q}_{s}(X, \Bbbk) = \{ a \in \mathcal{A}^{1} \mid \dim_{\Bbbk} \mathcal{H}^{q}(A, \cdot a) \ge s \}$$

- E.g., $\mathcal{R}_1^1(X, \mathbb{k}) = \{ a \in A^1 \mid \exists b \in A^1, b \neq \lambda a, ab = 0 \}.$
- These loci are *homogeneous* subvarieties of $A^1 = H^1(X, \mathbb{k})$.

EXAMPLE

- $\mathcal{R}_1^1(T^n, \Bbbk) = \{0\}$, for all n > 0.
- $\mathcal{R}_1^1(\mathbb{C}\setminus\{n \text{ points}\}, \mathbb{k}) = \mathbb{k}^n$, for all n > 1.

THE TANGENT CONE THEOREM

- Given a subvariety $W \subset (\mathbb{C}^*)^n$, let $\tau_1(W) = \{z \in \mathbb{C}^n \mid \exp(\lambda z) \in W, \forall \lambda \in \mathbb{C}\}.$
- (Dimca–Papadima–S. 2009) *τ*₁(*W*) is a finite union of rationally defined linear subspaces, and *τ*₁(*W*) ⊆ TC₁(*W*).
- (Libgober 2002/DPS 2009)

 $\tau_1(\mathcal{V}^i_{\boldsymbol{s}}(\boldsymbol{X})) \subseteq \mathsf{TC}_1(\mathcal{V}^i_{\boldsymbol{s}}(\boldsymbol{X})) \subseteq \mathcal{R}^i_{\boldsymbol{s}}(\boldsymbol{X}).$

(DPS 2009/DP 2014): Suppose X is a k-formal space. Then, for each *i* ≤ k and s > 0,

$$\tau_1(\mathcal{V}_s^i(\boldsymbol{X})) = \mathsf{TC}_1(\mathcal{V}_s^i(\boldsymbol{X})) = \mathcal{R}_s^i(\boldsymbol{X}).$$

Consequently, Rⁱ_s(X, ℂ) is a union of rationally defined linear subspaces in H¹(X, ℂ).

JUMP LOCI OF ARRANGEMENTS

Work of Arapura, Falk, D.Cohen–A.S., Libgober–Yuzvinsky, and Falk–Yuzvinsky completely describes the resonance varieties $\mathcal{R}_s(\mathcal{A}) = \mathcal{R}_s^1(M(\mathcal{A}), \mathbb{C})$:

- $\mathcal{R}_1(\mathcal{A})$ is a union of linear subspaces in $H^1(M(\mathcal{A}), \mathbb{C}) \cong \mathbb{C}^{|\mathcal{A}|}$.
- Each subspace has dimension at least 2, and each pair of subspaces meets transversely at 0.
- *R_s(A)* is the union of those linear subspaces that have dimension at least *s* + 1.
- Each *k*-multinet on a sub-arrangement B ⊆ A gives rise to a component of R₁(A) of dimension k − 1. Moreover, all components of R₁(A) arise in this way.

DEFINITION (FALK AND YUZVINSKY)

A *multinet* on \mathcal{A} is a partition of the set \mathcal{A} into $k \ge 3$ subsets $\mathcal{A}_1, \ldots, \mathcal{A}_k$, together with an assignment of multiplicities, $m: \mathcal{A} \to \mathbb{N}$, and a subset $\mathcal{X} \subseteq L_2(\mathcal{A})$, called the base locus, such that:

- $\exists d \in \mathbb{N}$ such that $\sum_{H \in A_{\alpha}} m_H = d$, for all $\alpha \in [k]$.
- **2** If *H* and *H'* are in different classes, then $H \cap H' \in \mathcal{X}$.
- **⑤** \forall *X* ∈ *X*, the sum $n_X = \sum_{H \in A_\alpha : H \supset X} m_H$ is independent of *α*.
- Each set $(\bigcup_{H \in A_{\alpha}} H) \setminus \mathcal{X}$ is connected.
 - A multinet as above is also called a (k, d)-multinet, or k-multinet.
 - The multinet is *reduced* if $m_H = 1$, for all $H \in A$.

• A *net* is a reduced multinet with $n_X = 1$, for all $X \in \mathcal{X}$.

 $\mathcal{R}_1(\mathcal{A}) \subset \mathbb{C}^6$ has 4 local components (from the triple points), and one essential component, from the above (3, 2)-net:

$$L_{124} = \{x_1 + x_2 + x_4 = x_3 = x_5 = x_6 = 0\},$$

$$L_{135} = \{x_1 + x_3 + x_5 = x_2 = x_4 = x_6 = 0\},$$

$$L_{236} = \{x_2 + x_3 + x_6 = x_1 = x_4 = x_5 = 0\},$$

$$L_{456} = \{x_4 + x_5 + x_6 = x_1 = x_2 = x_3 = 0\},$$

$$L = \{x_1 + x_2 + x_3 = x_1 - x_6 = x_2 - x_5 = x_3 - x_4 = 0\}.$$

- Let $\operatorname{Hom}(\pi_1(M(\mathcal{A})), \mathbb{C}^*) = (\mathbb{C}^*)^n$ be the character torus.
- The characteristic variety V₁(A) := V₁¹(M(A), C) lies in the substorus {t ∈ (C*)ⁿ | t₁ ··· t_n = 1}.
- \$\mathcal{V}_1(\mathcal{A})\$ is a finite union of torsion-translates of algebraic subtori of \$(\mathbb{C}^*)^n\$.
- If a linear subspace L ⊂ Cⁿ is a component of R₁(A), then the algebraic torus T = exp(L) is a component of V₁(A).
- All components of V₁(A) passing through the origin 1 ∈ (ℂ*)ⁿ arise in this way (and thus, are combinatorially determined).
- In general, though, there are translated subtori in $\mathcal{V}_1(\mathcal{A})$.

(Denham–S. 2014)

- Suppose there is a multinet *M* on *A*, and there is a hyperplane *H* for which *m_H* > 1 and *m_H* | *n_X* for each *X* ∈ *X* such that *X* ⊂ *H*.
- Then V₁(A \ {H}) has a component which is a 1-dimensional subtorus, translated by a character of order m_H.

The B₃ arrangement supports a (3, 4)-multinet; \mathcal{X} consists of 4 triple points ($n_X = 1$) and 3 quadruple points ($n_X = 2$). So pick *H* with $m_H = 2$ to get a translated torus in $\mathcal{V}_1(B_3 \setminus \{H\})$.

PROPAGATION OF CJLS

(Denham-S.-Yuzvinsky 2014/15)

- Suppose X is an *abelian duality space* of dimension *n*, i.e., $H^{p}(X, \mathbb{Z}\pi_{ab}) = 0$ for $p \neq n$ and $H^{n}(X, \mathbb{Z}\pi_{ab}) \neq 0$ and torsion-free.
- Let $B = H^n(X, \mathbb{Z}\pi_{ab})$ be the dualizing $\mathbb{Z}\pi_{ab}$ -module. Given any $\mathbb{Z}\pi_{ab}$ -module A, we have $H^i(X, A) \cong H_{n-i}(X, B \otimes A)$.
- Let $\rho: \pi \to \mathbb{C}^*$ be a character. If $H^p(X, \mathbb{C}_\rho) \neq 0$, then $H^q(X, \mathbb{C}_\rho) \neq 0$ for all $p \leq q \leq n$.
- Thus, the characteristic varieties of X "propagate":

 $\mathcal{V}_1^1(X) \subseteq \mathcal{V}_1^2(X) \subseteq \cdots \subseteq \mathcal{V}_1^n(X).$

• If morever X admits a minimal cell structure (or X is formal), then $\mathcal{R}_1^1(X) \subseteq \mathcal{R}_1^2(X) \subseteq \cdots \subseteq \mathcal{R}_1^n(X).$

- Let \mathcal{A} be an arrangement of rank ℓ . Then its complement, $M(\mathcal{A})$, is an abelian duality space of dimension ℓ .
- Recall M(A) is minimal (and formal). Thus, both the characteristic and the resonance varieties of M(A) propagate.
- Propagation of resonance for arrangement complements was first established by Eisenbud–Popescu–Yuzvinsky, with further results by Budur.