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LIE ALGEBRAS ATTACHED TO GROUPS LOWER CENTRAL SERIES

LOWER CENTRAL SERIES

Let G be a group. The lower central series tγk pGqukě1 is defined
inductively by γ1pGq “ G and γk`1pGq “ rG, γk pGqs.

Here, if H,K ă G, then rH,K s is the subgroup of G generated by
tra,bs :“ aba´1b´1 | a P H,b P K u. If H,K ŸG, then rH,K s ŸG.

The subgroups γk pGq are, in fact, characteristic subgroups of G.
Moreover rγk pGq, γ`pGqs Ď γk``pGq, @k , ` ě 1.

γ2pGq “ rG,Gs is the derived subgroup, and so G{γ2pGq “ Gab.

rγk pGq, γk pGqs Ÿ γk`1pGq, and thus the LCS quotients,

grk pGq :“ γk pGq{γk`1pGq

are abelian.

If G is finitely generated, then so are its LCS quotients. Set
φk pGq :“ rank grk pGq.

ALEX SUCIU (NORTHEASTERN) ARRANGEMENT GROUPS, LCS & MASSEY MARCH 22, 2019 2 / 22



LIE ALGEBRAS ATTACHED TO GROUPS ASSOCIATED GRADED LIE ALGEBRA

ASSOCIATED GRADED LIE ALGEBRA

Fix a coefficient ring k. Given a group G, we let

grpG,kq “
à

kě1
grk pGq b k.

This is a graded Lie algebra, with Lie bracket
r , s : grk ˆ gr` Ñ grk`` induced by the group commutator.

For k “ Z, we simply write grpGq “ grpG,Zq.

The construction is functorial.

Example: if Fn is the free group of rank n, then
grpFnq is the free Lie algebra LiepZnq.
grk pFnq is free abelian, of rank φk pFnq “

1
k

ř

d|k µpdqn
k
d .
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LIE ALGEBRAS ATTACHED TO GROUPS CHEN LIE ALGEBRAS

CHEN LIE ALGEBRAS

Let Gpiq be the derived series of G, starting at Gp1q “ G1,
Gp2q “ G2, and defined inductively by Gpi`1q “ rGpiq,Gpiqs.

The quotient groups, G{Gpiq, are solvable; G{G1 “ Gab, while
G{G2 is the maximal metabelian quotient of G.

The i -th Chen Lie algebra of G is defined as grpG{Gpiq, kq. Clearly,
this construction is functorial.

The projection qi : G � G{Gpiq, induces a surjection
grk pG;kq� grk pG{Gpiq; kq, which is an iso for k ď 2i ´ 1.

Assuming G is finitely generated, write θk pGq “ rank grk pG{G2q for
the Chen ranks. We have φk pGq ě θk pGq, with equality for k ď 3.

Example (K.-T. Chen 1951): θk pFnq “ pk ´ 1q
`n`k´2

k

˘

, for k ě 2.
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LIE ALGEBRAS ATTACHED TO GROUPS HOLONOMY LIE ALGEBRA

HOLONOMY LIE ALGEBRA

A quadratic approximation of the Lie algebra grpG,kq, where k is a
field, is the holonomy Lie algebra of G, which is defined as

hpG, kq :“ LiepH1pG, kqq{ximpµ_Gqy,
where

L “ LiepV q the free Lie algebra on the k-vector space V “ H1pG;kq,
with L1 “ V and L2 “ V ^ V .
µ_G : H2pG,kq Ñ V ^ V is the dual of the cup product map
µG : H1pG;kq ^ H1pG;kq Ñ H2pG;kq.

There is a surjective morphism of graded Lie algebras,

hpG, kq // // grpG; kq , (*)

which restricts to isomorphisms hk pG,kq Ñ grk pG;kq for k ď 2.
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LIE ALGEBRAS ATTACHED TO GROUPS ARRANGEMENT GROUPS AND LIE ALGEBRAS

ARRANGEMENT GROUPS AND LIE ALGEBRAS

Let A “ t`1, . . . , `nu be an affine line arrangement in C2, and let
G “ GpAq be the fundamental group of the complement of A.

The holonomy Lie algebra hpAq :“ hpGpAqq has (combinatorially
determined) presentation

hpAq “
@

x1, . . . , xn |
ÿ

kPP

rxj , xk s, j P pP, P P P
D

where xi represents the meridian about the i-th line, P Ă 2rns is
the set of multiple points, and pP “ Pztmax Pu for P P P.

Thus, every double point P “ Li X Lj contributes a relation rxi , xj s,
each triple point P “ Li X Lj X Lk contributes two relations,
rxi , xj s ` rxi , xk s and ´rxi , xj s ` rxj , xk s, etc.

Consequently, h1pAq is free abelian with basis tx1, . . . , xnu, while
h2pAq is free abelian of rank φ2 “

`n
2

˘

´
ř

PPPp|P| ´ 1q, with basis
trxi , xj s : i , j P pP, P P Pu.
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LIE ALGEBRAS ATTACHED TO GROUPS ARRANGEMENT GROUPS AND LIE ALGEBRAS

The canonical projection hpG,Qq� grpG,Qq is an isomorphism.
Thus, the LCS ranks φk pGq are combinatorially determined.

(Falk–Randell 1985) If A is supersolvable, with exponents
d1, . . . ,d`, then G “ Fd`

¸ ¨ ¨ ¨ ¸ Fd2 ¸ Fd1 (almost direct product)
and

φk pGq “
ÿ̀

i“1

φk pFdi q.

(Papadima–S. 2006) If A is decomposable, then hpGq� grpGq is
an isomorphism, and grk pGq is free abelian of rank

φk pGq “
ÿ

XPL2pAq
φk pFµpXqq for k ě 2.

(S. 2001) For G “ GpAq, the groups grk pGq may have non-zero
torsion. Question: Is that torsion combinatorially determined?

(Artal Bartolo, Guerville-Ballé, and Viu-Sos 2018): Answer: No!
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FORMALITY PROPERTIES MALCEV LIE ALGEBRA

MALCEV LIE ALGEBRA

Let k be a field of characteristic 0. The group-algebra kG has a
natural Hopf algebra structure, with comultiplication ∆pgq “ g b g
and counit ε : kG Ñ k.

Let I “ ker ε. The I-adic completion xkG “ lim
ÐÝk kG{Ik is a filtered,

complete Hopf algebra.

An element x P xkG is called primitive if p∆x “ x pb1` 1pbx . The set
of all such elements,

mpG,kq “ PrimpxkGq,

with bracket rx , ys “ xy ´ yx , is a complete, filtered Lie algebra,
called the Malcev Lie algebra of G.

If G is finitely generated, then mpG, kq “ lim
ÐÝk LpG{γk pGq b kq, and

grpmpG,kqq – grpG,kq.
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FORMALITY PROPERTIES FORMALITY AND FILTERED FORMALITY

FORMALITY AND FILTERED FORMALITY

Let G be a finitely generated group, k a field of characteristic 0.

G is filtered-formal (over k), if there is an isomorphism of filtered
Lie algebras,

mpG;kq – pgrpG;kq.

G is 1-formal (over k) if it is filtered formal and the canonical
projection hpG,kq� grpG; kq is an isomorphism; that is,

mpG; kq – phpG;kq.
An obstruction to 1-formality is provided by the Massey products
xα1, α2, α3y P H2pG,kq, for αi P H1pG,kq with α1α2 “ α2α3 “ 0.

THEOREM (S.–WANG)

The above formality properties are preserved under finite direct
products and coproducts, split injections, passing to solvable quotients,
as well as extension or restriction of coefficient fields.
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FORMALITY PROPERTIES FORMALITY AND FILTERED FORMALITY

Examples of 1-formal groups

Fundamental groups of compact Kähler manifolds; e.g., surface
groups.
Fundamental groups of complements of complex algebraic affine
hypersurfaces; e.g., arrangement groups, free groups.
Right-angled Artin groups.

Examples of filtered formal groups

Finitely generated, torsion-free, 2-step nilpotent groups with
torsion-free abelianization; e.g., the Heisenberg group.
Fundamental groups of Sasakian manifolds.
Fundamental groups of graphic configuration spaces of surfaces of
genus g ě 1; e.g., pure braid groups of elliptic curves.

Examples of non-filtered formal groups

Certain finitely generated, torsion-free, 3-step nilpotent groups.
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FORMALITY PROPERTIES CHEN LIE ALGEBRAS AND FILTERED FORMALITY

CHEN LIE ALGEBRAS AND FILTERED FORMALITY

THEOREM (PAPADIMA–S., S.–WANG)

For each i ě 2, there is an isomorphism of complete, separated,
filtered Lie algebras,

mpG{Gpiq;kq – mpG; kq{mpG;kqpiq.

THEOREM (SW)

For each i ě 2, the quotient map G � G{Gpiq induces a natural
epimorphism of graded k-Lie algebras,

grpG; kq{ grpG;kqpiq // // grpG{Gpiq;kq .

Moreover, if G is filtered formal, this map is an isomorphism and
G{Gpiq is also filtered formal.
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FORMALITY PROPERTIES CHEN LIE ALGEBRAS AND FILTERED FORMALITY

The map hpG;kq� grpG; kq induces hpG;kq{hpG; kqpiq � grpG{Gpiqq.

COROLLARY (PAPADIMA–S. 2004)

If G is 1-formal, then hpG;kq{hpG,kqpiq »ÝÑ grpG{Gpiq,kq.

THEOREM

Let G1 and G2 be two k-filtered formal groups. Then every morphism
of graded Lie algebras, α : grpG1; kq Ñ grpG2, kq, induces a morphism
αi : grpG1{G

piq
1 ; kq Ñ grpG2{G

piq
2 ;kq, for each i ě 1. Consequently,

grpG1;kq – grpG2;kq ùñ grpG1{G
piq
1 ; kq – grpG2{G

piq
2 ; kq.

Taking i “ 2, we obtain:

COROLLARY

If G1 and G2 are k-filtered formal and θk pG1q ‰ θk pG2q for some k ě 1,
then grpG1,kq fl grpG2,kq, as graded Lie algebras.
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FORMALITY PROPERTIES PURE BRAID GROUPS AND THEIR FRIENDS

PURE BRAID GROUPS AND THEIR FRIENDS

Consider the groups
Pn “ π1pConfnpCqq—the pure braid group on n strings.
PΣ`n —the upper McCool group.
Πn “

śn´1
i“1 Fi .

For each n ě 1, they have the same LCS ranks and Betti numbers.
For each n ď 3, they are pairwise isomorphic.

PROPOSITION (SW)

For each n ě 4, the graded Lie algebras grpPn,Qq, grpPΣ`n ,Qq, and
grpΠn,Qq are pairwise non-isomorphic.

Follows from previous corollary (with, say, k “ 4), and:
All these groups are 1-formal (Brieskorn/Berceanu–Papadima/—).
θk pPnq “ pk ´ 1q

`n`1
4

˘

for k ě 3. [Cohen–S.]
θk pPΣ`n q “

`n`1
4

˘

`
řk

i“3
`n`i´2

i`1

˘

for k ě 3. [S.–Wang]
θk pΠnq “ pk ´ 1q

`k`n´2
k`1

˘

for k ě 2. [Chen, CS]
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POSTNIKOV TOWERS AND MASSEY PRODUCTS NILPOTENT QUOTIENTS

NILPOTENT QUOTIENTS

Consider the tower of nilpotent quotients of a group G,

¨ ¨ ¨ // G{γ4pGq
q3 // G{γ3pGq

q2 // G{γ2pGq .

We then have central extensions

0 // grk pGq // G{γk`1pGq
qk // G{γk pGq // 0 .

Passing to classifying spaces, we obtain commutative diagrams,

K pG{γk`1pGq,1q

πk

��
G

ψk`1

88

ψk

// K pG{γk pGq,1q

The map πk may be viewed as the fibration with fiber K pgrk pGq,1q
obtained as the pullback of the path space fibration with base
K pgrk pGq,2q via a k -invariant χk : K pG{γk pGq,1q Ñ K pgrk pGq,2q.
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POSTNIKOV TOWERS AND MASSEY PRODUCTS NILPOTENT QUOTIENTS

Let X be a connected CW-complex, and let G “ π1pX q.

A K pG,1q can be constructed by adding to X cells of dimension 3
or higher. Thus, H2pG,Zq is a quotient of H2pX ,Zq.

Let ι : X Ñ K pG,1q be the inclusion, and let

hk “ ψk ˝ ι : X Ñ K pG{γk pGq,1q.

We obtain a Postnikov tower of fibrations,

��
K pG{Γ4pGq,1q

π4

��
K pG{Γ3pGq,1q

π3

��
X

h2

//
h3

55
h4

;;

K pG{Γ2pGq,1q
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POSTNIKOV TOWERS AND MASSEY PRODUCTS INJECTIVE HOLONOMY AND k -INVARIANTS

INJECTIVE HOLONOMY AND k -INVARIANTS

As noted by Stallings, there is an exact sequence,

H2pX ;Zq
phk q˚ // H2pG{γk pGq;Zq

χk // grk pGq // 0 .

In general, this sequence is natural but not split exact.

The homomorphism

ph2q˚ : H2pX ;Zq // H2pG{γ2pGq;Zq – H1pG;Zq ^ H1pG;Zq

is the holonomy map of X (over Z).

When H1pG;Zq is torsion-free, set

hpGq “ LiepH1pG;Zqq{ximpph2q˚qy.

As before, get surjective morphism hpGq� grpGq, which is
injective in degrees k ď 2.
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POSTNIKOV TOWERS AND MASSEY PRODUCTS INJECTIVE HOLONOMY AND k -INVARIANTS

Suppose H “ H1pG;Zq is a finitely-generated, free abelian group, and
the map ph2q˚ : H2pG;Zq Ñ H ^ H is injective.

THEOREM (RYBNIKOV, PORTER–S.)

The canonical projection h3pGq Ñ gr3pGq is an isomorphism.

THEOREM (PORTER–S.)
For each k ě 3, there is a split exact sequence,

0 // grk pGq
i // H2pG{γk pGq;Zq

π //

σ

hh
H2pX ;Zq // 0 . (:)

Moreover, the k-invariant of the extension from G{γk pGq to G{γk`1pGq,

χk P HompH2pG{γk pGqq, grk pGqq,

with respect to the direct sum decomposition defined by σ, is given by
χk px , cq “ x ´ λpcq, where λ “ σ ˝ phk q˚.
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POSTNIKOV TOWERS AND MASSEY PRODUCTS A HOMOLOGICAL VERSION OF RYBNIKOV’S THEOREM

A HOMOLOGICAL VERSION OF RYBNIKOV’S THEOREM

Let Xa and Xb be two path-connected spaces with
Finitely generated, torsion-free H1.
Injective holonomy map H2 Ñ H1 ^ H1.

Let Ga and Gb be the respective fundamental groups.

A homomorphism f : Ga Ñ Gb induces homomorphisms on
nilpotent quotients, fk : Ga{γk pGaq Ñ Gb{γk pGbq.

Suppose there is an isomorphism of graded algebras,

g : Hď2pXbq Ñ Hď2pXaq.

Set g “ g_ : Hď2pXaq Ñ Hď2pXbq.

There is then an isomorphism Ga{γ3pGaq
»ÝÑ Gb{γ3pGbq.

Moreover, the isomorphism g1 : H1pXaq Ñ H1pXbq induces an
isomorphism g7 : h3pGaq Ñ h3pGbq.
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POSTNIKOV TOWERS AND MASSEY PRODUCTS A HOMOLOGICAL VERSION OF RYBNIKOV’S THEOREM

THEOREM (RYBNIKOV, PORTER–S.)

Let σb : H2pGb{Γ3pGbqq Ñ h3pGbq be any left splitting of p:q, and let
f3 : Ga{γ3pGaq

»ÝÑ Gb{γ3pGbq be any extension of g. Then f3 extends to
an isomorphism

f4 : Ga{γ4pGaq
– // Gb{γ4pGbq

if and only if there are liftings hc
3 : Xc Ñ K pGc{γ3pGcq,1q for c “ a and

b such that the following diagram commutes

h3pGaq
g7
–

// h3pGbq

H2pGa{γ3pGaqq
pf3q˚ //

σa

OO

H2pGb{γ3pGbqq

σb

OO

H2pXaq

pha
3q˚

OO

g2

– //

λb

::

H2pXbq .

phb
3q˚

OO
λb

dd
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POSTNIKOV TOWERS AND MASSEY PRODUCTS AN EXTENSION TO CHARACTERISTIC p

AN EXTENSION TO CHARACTERISTIC p

Let p “ 0 or a prime.

Given a group G, define subgroups γp
k pGq as γp

1 pGq “ G and

γp
k`1pGq “ xgug´1u´1vp : g P G, u, v P γp

k pGqy.

tγp
k pGqukě1 is a descending central series of normal subgroups.

For p “ 0 it is the LCS; for p ‰ 0 it is the most rapidly descending
central series whose successive quotients are Zp-vector spaces.

All the above results work for p ą 0, by replacing γk pGq ; γp
k pGq,

hk pGq ; hk pG,Zpq, and H˚p´,Zq ; H˚p´,Zpq.

The entries of the matrices λa and λb are generalized Massey
triple products in H2pXb,Zpq and H2pXa,Zpq, respectively.
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POSTNIKOV TOWERS AND MASSEY PRODUCTS RYBNIKOV’S ARRANGEMENTS

RYBNIKOV’S ARRANGEMENTS

For groups of hyperplane arrangements, h2 and h3 are torsion
free. Moreover, the holonomy map is injective, and so h3 – gr3.

The obstruction to extending g to an isomorphism from G{γ4pGaq

to G{γ4pGbq is computed by generalized Massey triple products.

Rybnikov used the above theorem (with n “ 3) to show that
arrangement groups are not combinatorially determined.

Starting from a realization A of the MacLane matroid over C, he
constructed a pair of arrangements of 13 planes in C3, A` and
A´, such that

LpA`q – LpA´q, and thus G`{γ3pG`q – G´{γ3pG´q.
G`{γ4pG`q fl G´{γ4pG´q.

Goal: Make explicit the generalized Massey products (over Z3)
that distinguish these two nilpotent quotients.
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