ARRANGEMENT GROUPS, LOWER CENTRAL SERIES, AND MASSEY PRODUCTS

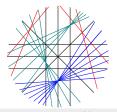
Alex Suciu

Northeastern University

Workshop on Hyperplane Arrangements

Institute of Mathematics Vietnam Academy of Science and Technology

March 22, 2019



ARRANGEMENT GROUPS, LCS & MASSEY

LOWER CENTRAL SERIES

- Let G be a group. The *lower central series* {γ_k(G)}_{k≥1} is defined inductively by γ₁(G) = G and γ_{k+1}(G) = [G, γ_k(G)].
- Here, if H, K < G, then [H, K] is the subgroup of G generated by $\{[a, b] := aba^{-1}b^{-1} \mid a \in H, b \in K\}$. If $H, K \lhd G$, then $[H, K] \lhd G$.
- The subgroups γ_k(G) are, in fact, characteristic subgroups of G. Moreover [γ_k(G), γ_ℓ(G)] ⊆ γ_{k+ℓ}(G), ∀k, ℓ ≥ 1.
- $\gamma_2(G) = [G, G]$ is the derived subgroup, and so $G/\gamma_2(G) = G_{ab}$.
- $[\gamma_k(G), \gamma_k(G)] \lhd \gamma_{k+1}(G)$, and thus the LCS quotients,

$$\operatorname{gr}_k(G) := \gamma_k(G)/\gamma_{k+1}(G)$$

are abelian.

If G is finitely generated, then so are its LCS quotients. Set
 φ_k(G) := rank gr_k(G).

Associated graded Lie Algebra

• Fix a coefficient ring \Bbbk . Given a group G, we let

$$\operatorname{gr}(G, \Bbbk) = \bigoplus_{k \ge 1} \operatorname{gr}_k(G) \otimes \Bbbk.$$

- This is a graded Lie algebra, with Lie bracket
 [,]: gr_k × gr_ℓ → gr_{k+ℓ} induced by the group commutator.
- For $\Bbbk = \mathbb{Z}$, we simply write $gr(G) = gr(G, \mathbb{Z})$.
- The construction is functorial.
- Example: if F_n is the free group of rank n, then
 - $gr(F_n)$ is the free Lie algebra $Lie(\mathbb{Z}^n)$.
 - $\operatorname{gr}_k(F_n)$ is free abelian, of rank $\phi_k(F_n) = \frac{1}{k} \sum_{d|k} \mu(d) n^{\frac{k}{d}}$.

CHEN LIE ALGEBRAS

- Let $G^{(i)}$ be the *derived series* of *G*, starting at $G^{(1)} = G'$, $G^{(2)} = G''$, and defined inductively by $G^{(i+1)} = [G^{(i)}, G^{(i)}]$.
- The quotient groups, $G/G^{(i)}$, are solvable; $G/G' = G_{ab}$, while G/G'' is the maximal metabelian quotient of G.
- The *i*-th Chen Lie algebra of G is defined as gr(G/G⁽ⁱ⁾, k). Clearly, this construction is functorial.
- The projection $q_i: G \rightarrow G/G^{(i)}$, induces a surjection $\operatorname{gr}_k(G; \Bbbk) \rightarrow \operatorname{gr}_k(G/G^{(i)}; \Bbbk)$, which is an iso for $k \leq 2^i 1$.
- Assuming *G* is finitely generated, write $\theta_k(G) = \operatorname{rank} \operatorname{gr}_k(G/G'')$ for the *Chen ranks*. We have $\phi_k(G) \ge \theta_k(G)$, with equality for $k \le 3$.
- Example (K.-T. Chen 1951): $\theta_k(F_n) = (k-1)\binom{n+k-2}{k}$, for $k \ge 2$.

HOLONOMY LIE ALGEBRA

• A quadratic approximation of the Lie algebra gr(*G*, k), where k is a field, is the *holonomy Lie algebra* of *G*, which is defined as

 $\mathfrak{h}(\boldsymbol{G}, \Bbbk) := \operatorname{Lie}(\boldsymbol{H}_1(\boldsymbol{G}, \Bbbk)) / \langle \operatorname{im}(\boldsymbol{\mu}_{\boldsymbol{G}}^{\vee}) \rangle,$

where

- L = Lie(V) the free Lie algebra on the k-vector space $V = H_1(G; k)$, with $L_1 = V$ and $L_2 = V \land V$.
- $\mu_G^{\vee}: H_2(G, \Bbbk) \to V \land V$ is the dual of the cup product map $\mu_G: H^1(G; \Bbbk) \land H^1(G; \Bbbk) \to H^2(G; \Bbbk).$
- There is a surjective morphism of graded Lie algebras,

$$\mathfrak{h}(G, \Bbbk) \longrightarrow \operatorname{gr}(G; \Bbbk) , \qquad (*)$$

which restricts to isomorphisms $\mathfrak{h}_k(G, \Bbbk) \to \mathfrak{gr}_k(G; \Bbbk)$ for $k \leq 2$.

ARRANGEMENT GROUPS AND LIE ALGEBRAS

- Let A = {ℓ₁,...,ℓ_n} be an affine line arrangement in C², and let G = G(A) be the fundamental group of the complement of A.
- The holonomy Lie algebra h(A) := h(G(A)) has (combinatorially determined) presentation

$$\mathfrak{h}(\mathcal{A}) = \left\langle x_1, \ldots, x_n \mid \sum_{k \in \mathcal{P}} [x_j, x_k], \ j \in \widehat{\mathcal{P}}, \ \mathcal{P} \in \mathcal{P} \right\rangle$$

where x_i represents the meridian about the *i*-th line, $\mathcal{P} \subset 2^{[n]}$ is the set of multiple points, and $\hat{P} = P \setminus \{\max P\}$ for $P \in \mathcal{P}$.

- Thus, every double point $P = L_i \cap L_j$ contributes a relation $[x_i, x_j]$, each triple point $P = L_i \cap L_j \cap L_k$ contributes two relations, $[x_i, x_j] + [x_i, x_k]$ and $-[x_i, x_j] + [x_j, x_k]$, etc.
- Consequently, $\mathfrak{h}_1(\mathcal{A})$ is free abelian with basis $\{x_1, \ldots, x_n\}$, while $\mathfrak{h}_2(\mathcal{A})$ is free abelian of rank $\phi_2 = \binom{n}{2} \sum_{P \in \mathcal{P}} (|P| 1)$, with basis $\{[x_i, x_j] : i, j \in \hat{P}, P \in \mathcal{P}\}$.

- The canonical projection h(G, Q) → gr(G, Q) is an isomorphism. Thus, the LCS ranks φ_k(G) are combinatorially determined.
- (Falk–Randell 1985) If \mathcal{A} is *supersolvable*, with exponents d_1, \ldots, d_ℓ , then $G = F_{d_\ell} \rtimes \cdots \rtimes F_{d_2} \rtimes F_{d_1}$ (almost direct product) and $\phi_k(G) = \sum_{i=1}^{\ell} \phi_k(F_{d_i}).$
- (Papadima–S. 2006) If \mathcal{A} is *decomposable*, then $\mathfrak{h}(G) \twoheadrightarrow \mathfrak{gr}(G)$ is an isomorphism, and $\mathfrak{gr}_k(G)$ is free abelian of rank

$$\phi_k(G) = \sum_{X \in L_2(\mathcal{A})} \phi_k(F_{\mu(X)}) \text{ for } k \ge 2.$$

- (S. 2001) For G = G(A), the groups gr_k(G) may have non-zero torsion. Question: Is that torsion combinatorially determined?
- (Artal Bartolo, Guerville-Ballé, and Viu-Sos 2018): Answer: No!

MALCEV LIE ALGEBRA

- Let k be a field of characteristic 0. The group-algebra kG has a natural Hopf algebra structure, with comultiplication Δ(g) = g ⊗ g and counit ε: kG → k.
- Let $I = \ker \varepsilon$. The *I*-adic completion $\widehat{\Bbbk G} = \lim_{k \to \infty} \underline{\Bbbk G} / I^k$ is a filtered, complete Hopf algebra.
- An element $x \in \widehat{\Bbbk G}$ is called *primitive* if $\widehat{\Delta}x = x \widehat{\otimes} 1 + 1 \widehat{\otimes}x$. The set of all such elements,

$$\mathfrak{m}(\boldsymbol{G}, \Bbbk) = \mathsf{Prim}(\widehat{\Bbbk \boldsymbol{G}}),$$

with bracket [x, y] = xy - yx, is a complete, filtered Lie algebra, called the *Malcev Lie algebra* of *G*.

• If *G* is finitely generated, then $\mathfrak{m}(G, \Bbbk) = \lim_{k \to K} \mathcal{L}(G/\gamma_k(G) \otimes \Bbbk)$, and $gr(\mathfrak{m}(G, \Bbbk)) \cong gr(G, \Bbbk)$.

FORMALITY AND FILTERED FORMALITY

- Let G be a finitely generated group, k a field of characteristic 0.
- *G* is *filtered-formal* (over k), if there is an isomorphism of filtered Lie algebras,

 $\mathfrak{m}(\mathbf{G}; \Bbbk) \cong \widehat{\mathsf{gr}}(\mathbf{G}; \Bbbk).$

- G is 1-formal (over k) if it is filtered formal and the canonical projection h(G, k) → gr(G; k) is an isomorphism; that is,
 m(G; k) ≃ h(G; k).
- An obstruction to 1-formality is provided by the Massey products $\langle \alpha_1, \alpha_2, \alpha_3 \rangle \in H^2(G, \mathbb{k})$, for $\alpha_i \in H^1(G, \mathbb{k})$ with $\alpha_1 \alpha_2 = \alpha_2 \alpha_3 = 0$.

THEOREM (S.-WANG)

The above formality properties are preserved under finite direct products and coproducts, split injections, passing to solvable quotients, as well as extension or restriction of coefficient fields.

- Examples of 1-formal groups
 - Fundamental groups of compact Kähler manifolds; e.g., surface groups.
 - Fundamental groups of complements of complex algebraic affine hypersurfaces; e.g., arrangement groups, free groups.
 - Right-angled Artin groups.
- Examples of filtered formal groups
 - Finitely generated, torsion-free, 2-step nilpotent groups with torsion-free abelianization; e.g., the Heisenberg group.
 - Fundamental groups of Sasakian manifolds.
 - Fundamental groups of graphic configuration spaces of surfaces of genus g ≥ 1; e.g., pure braid groups of elliptic curves.
- Examples of non-filtered formal groups
 - Certain finitely generated, torsion-free, 3-step nilpotent groups.

CHEN LIE ALGEBRAS AND FILTERED FORMALITY

THEOREM (PAPADIMA-S., S.-WANG)

For each $i \ge 2$, there is an isomorphism of complete, separated, filtered Lie algebras,

 $\mathfrak{m}(G/G^{(i)}; \Bbbk) \cong \mathfrak{m}(G; \Bbbk)/\mathfrak{m}(G; \Bbbk)^{(i)}.$

THEOREM (SW)

For each $i \ge 2$, the quotient map $G \twoheadrightarrow G/G^{(i)}$ induces a natural epimorphism of graded \Bbbk -Lie algebras,

$$\operatorname{gr}(G; \Bbbk) / \operatorname{gr}(G; \Bbbk)^{(i)} \longrightarrow \operatorname{gr}(G/G^{(i)}; \Bbbk)$$
 .

Moreover, if G is filtered formal, this map is an isomorphism and $G/G^{(i)}$ is also filtered formal.

The map $\mathfrak{h}(G; \Bbbk) \twoheadrightarrow \mathfrak{gr}(G; \Bbbk)$ induces $\mathfrak{h}(G; \Bbbk)/\mathfrak{h}(G; \Bbbk)^{(i)} \twoheadrightarrow \mathfrak{gr}(G/G^{(i)})$.

COROLLARY (PAPADIMA-S. 2004)

If G is 1-formal, then $\mathfrak{h}(G; \Bbbk)/\mathfrak{h}(G, \Bbbk)^{(i)} \xrightarrow{\simeq} \operatorname{gr}(G/G^{(i)}, \Bbbk)$.

THEOREM

Let G_1 and G_2 be two \Bbbk -filtered formal groups. Then every morphism of graded Lie algebras, α : $gr(G_1; \Bbbk) \rightarrow gr(G_2, \Bbbk)$, induces a morphism α_i : $gr(G_1/G_1^{(i)}; \Bbbk) \rightarrow gr(G_2/G_2^{(i)}; \Bbbk)$, for each $i \ge 1$. Consequently,

 $\operatorname{gr}(G_1; \Bbbk) \cong \operatorname{gr}(G_2; \Bbbk) \implies \operatorname{gr}(G_1/G_1^{(i)}; \Bbbk) \cong \operatorname{gr}(G_2/G_2^{(i)}; \Bbbk).$

Taking i = 2, we obtain:

COROLLARY

If G_1 and G_2 are \Bbbk -filtered formal and $\theta_k(G_1) \neq \theta_k(G_2)$ for some $k \ge 1$, then $gr(G_1, \Bbbk) \ncong gr(G_2, \Bbbk)$, as graded Lie algebras.

PURE BRAID GROUPS AND THEIR FRIENDS

- Consider the groups
 - $P_n = \pi_1(Conf_n(\mathbb{C}))$ —the pure braid group on *n* strings.
 - $P\Sigma_n^+$ —the upper McCool group.
 - $\Pi_n = \prod_{i=1}^{n-1} F_i$.
- For each $n \ge 1$, they have the same LCS ranks and Betti numbers.
- For each $n \leq 3$, they are pairwise isomorphic.

PROPOSITION (SW)

For each $n \ge 4$, the graded Lie algebras $gr(P_n, \mathbb{Q})$, $gr(P\Sigma_n^+, \mathbb{Q})$, and $gr(\Pi_n, \mathbb{Q})$ are pairwise non-isomorphic.

Follows from previous corollary (with, say, k = 4), and:

- All these groups are 1-formal (Brieskorn/Berceanu-Papadima/---).
- $\theta_k(P_n) = (k-1)\binom{n+1}{4}$ for $k \ge 3$. [Cohen–S.]
- $\theta_k(P\Sigma_n^+) = \binom{n+1}{4} + \sum_{i=3}^k \binom{n+i-2}{i+1}$ for $k \ge 3$. [S.–Wang]
- $\theta_k(\Pi_n) = (k-1)\binom{k+n-2}{k+1}$ for $k \ge 2$. [Chen, CS]

NILPOTENT QUOTIENTS

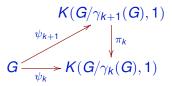
• Consider the tower of nilpotent quotients of a group G,

 $\cdots \longrightarrow G/\gamma_4(G) \xrightarrow{q_3} G/\gamma_3(G) \xrightarrow{q_2} G/\gamma_2(G) .$

We then have central extensions

 $0 \longrightarrow \operatorname{gr}_k(G) \longrightarrow G/\gamma_{k+1}(G) \xrightarrow{q_k} G/\gamma_k(G) \longrightarrow 0 .$

Passing to classifying spaces, we obtain commutative diagrams,



• The map π_k may be viewed as the fibration with fiber $K(\operatorname{gr}_k(G), 1)$ obtained as the pullback of the path space fibration with base $K(\operatorname{gr}_k(G), 2)$ via a *k*-invariant $\chi_k \colon K(G/\gamma_k(G), 1) \to K(\operatorname{gr}_k(G), 2)$.

ALEX SUCIU (NORTHEASTERN)

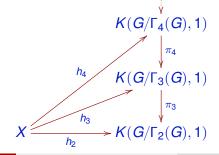
ARRANGEMENT GROUPS, LCS & MASSEY

MARCH 22, 2019 14 / 22

- Let X be a connected CW-complex, and let $G = \pi_1(X)$.
- A K(G, 1) can be constructed by adding to X cells of dimension 3 or higher. Thus, H₂(G, ℤ) is a quotient of H₂(X, ℤ).
- Let $\iota: X \to K(G, 1)$ be the inclusion, and let

 $h_k = \psi_k \circ \iota \colon X \to K(G/\gamma_k(G), 1).$

We obtain a Postnikov tower of fibrations,



ARRANGEMENT GROUPS, LCS & MASSEY

INJECTIVE HOLONOMY AND *k*-INVARIANTS

• As noted by Stallings, there is an exact sequence,

$$H_2(X;\mathbb{Z}) \xrightarrow{(h_k)*} H_2(G/\gamma_k(G);\mathbb{Z}) \xrightarrow{\chi_k} \operatorname{gr}_k(G) \longrightarrow 0.$$

In general, this sequence is natural but not split exact.

• The homomorphism

 $(h_2)_* \colon H_2(X;\mathbb{Z}) \longrightarrow H_2(G/\gamma_2(G);\mathbb{Z}) \cong H_1(G;\mathbb{Z}) \land H_1(G;\mathbb{Z})$

is the *holonomy map* of X (over \mathbb{Z}).

• When $H_1(G; \mathbb{Z})$ is torsion-free, set

 $\mathfrak{h}(\boldsymbol{G}) = \text{Lie}(\boldsymbol{H}_1(\boldsymbol{G};\mathbb{Z})) / \langle \text{im}((\boldsymbol{h}_2)_*) \rangle.$

As before, get surjective morphism h(G) → gr(G), which is injective in degrees k ≤ 2.

Suppose $H = H_1(G; \mathbb{Z})$ is a finitely-generated, free abelian group, and the map $(h_2)_* : H_2(G; \mathbb{Z}) \to H \land H$ is injective.

THEOREM (RYBNIKOV, PORTER-S.)

The canonical projection $\mathfrak{h}_3(G) \to \mathfrak{gr}_3(G)$ is an isomorphism.

THEOREM (PORTER-S.)

For each $k \ge 3$, there is a split exact sequence,

$$0 \longrightarrow \operatorname{gr}_{k}(G) \xrightarrow{i} H_{2}(G/\gamma_{k}(G); \mathbb{Z}) \xrightarrow{\pi} H_{2}(X; \mathbb{Z}) \longrightarrow 0.$$
 (†)

Moreover, the k-invariant of the extension from $G/\gamma_k(G)$ to $G/\gamma_{k+1}(G)$,

 $\chi_k \in \operatorname{Hom}(H_2(G/\gamma_k(G)), \operatorname{gr}_k(G)),$

with respect to the direct sum decomposition defined by σ , is given by $\chi_k(x, c) = x - \lambda(c)$, where $\lambda = \sigma \circ (h_k)_*$.

A HOMOLOGICAL VERSION OF RYBNIKOV'S THEOREM

- Let X_a and X_b be two path-connected spaces with
 - Finitely generated, torsion-free *H*₁.
 - Injective holonomy map $H_2 \rightarrow H_1 \wedge H_1$.
- Let G_a and G_b be the respective fundamental groups.
- A homomorphism *f*: *G_a* → *G_b* induces homomorphisms on nilpotent quotients, *f_k*: *G_a*/γ_k(*G_a*) → *G_b*/γ_k(*G_b*).
- Suppose there is an isomorphism of graded algebras,

$$g\colon H^{\leqslant 2}(X_b)\to H^{\leqslant 2}(X_a).$$

Set $\overline{g} = g^{\vee} \colon H_{\leq 2}(X_a) \to H_{\leq 2}(X_b)$.

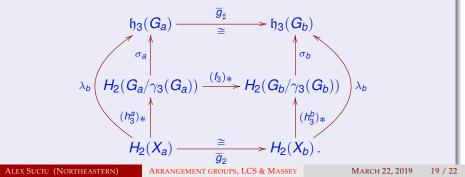
- There is then an isomorphism $G_a/\gamma_3(G_a) \xrightarrow{\simeq} G_b/\gamma_3(G_b)$.
- Moreover, the isomorphism $\overline{g}_1 : H_1(X_a) \to H_1(X_b)$ induces an isomorphism $\overline{g}_{\sharp} : \mathfrak{h}_3(G_a) \to \mathfrak{h}_3(G_b)$.

THEOREM (RYBNIKOV, PORTER-S.)

Let σ_b : $H_2(G_b/\Gamma_3(G_b)) \rightarrow \mathfrak{h}_3(G_b)$ be any left splitting of (\dagger) , and let $f_3: G_a/\gamma_3(G_a) \xrightarrow{\simeq} G_b/\gamma_3(G_b)$ be any extension of \overline{g} . Then f_3 extends to an isomorphism

 $f_4: G_a/\gamma_4(G_a) \xrightarrow{\cong} G_b/\gamma_4(G_b)$

if and only if there are liftings $h_3^c \colon X_c \to K(G_c/\gamma_3(G_c), 1)$ for c = a and b such that the following diagram commutes



AN EXTENSION TO CHARACTERISTIC *p*

- Let p = 0 or a prime.
- Given a group G, define subgroups $\gamma_k^p(G)$ as $\gamma_1^p(G) = G$ and

 $\gamma_{k+1}^{p}(G) = \langle gug^{-1}u^{-1}v^{p} : g \in G, \ u, v \in \gamma_{k}^{p}(G) \rangle.$

- $\{\gamma_k^p(G)\}_{k \ge 1}$ is a descending central series of normal subgroups.
- For p = 0 it is the LCS; for p ≠ 0 it is the most rapidly descending central series whose successive quotients are Z_p-vector spaces.
- All the above results work for p > 0, by replacing $\gamma_k(G) \rightsquigarrow \gamma_k^p(G)$, $\mathfrak{h}_k(G) \rightsquigarrow \mathfrak{h}_k(G, \mathbb{Z}_p)$, and $H_*(-, \mathbb{Z}) \rightsquigarrow H_*(-, \mathbb{Z}_p)$.
- The entries of the matrices λ_a and λ_b are generalized Massey triple products in H²(X_b, Z_p) and H²(X_a, Z_p), respectively.

Rybnikov's Arrangements

- For groups of hyperplane arrangements, h₂ and h₃ are torsion free. Moreover, the holonomy map is injective, and so h₃ ≃ gr₃.
- The obstruction to extending g to an isomorphism from G/y₄(G_a) to G/y₄(G_b) is computed by generalized Massey triple products.
- Rybnikov used the above theorem (with n = 3) to show that arrangement groups are not combinatorially determined.
- Starting from a realization A of the MacLane matroid over C, he constructed a pair of arrangements of 13 planes in C³, A⁺ and A[−], such that
 - $L(\mathcal{A}^+) \cong L(\mathcal{A}^-)$, and thus $G^+/\gamma_3(G^+) \cong G^-/\gamma_3(G^-)$.
 - $G^+/\gamma_4(G^+) \ncong G^-/\gamma_4(G^-)$.
- Goal: Make explicit the generalized Massey products (over Z₃) that distinguish these two nilpotent quotients.

REFERENCES

- Alexander I. Suciu and He Wang, *The pure braid groups and their relatives*, in: *Perspectives in Lie theory*, 403–426, Springer INdAM series, vol. 19, Springer, Cham, 2017.
- [2] Alexander I. Suciu and He Wang, *Cup products, lower central series, and holonomy Lie algebras*, Journal of Pure and Applied Algebra 223 (2019), no. 8, 3359–3385.
- [3] Alexander I. Suciu and He Wang, *Formality properties of finitely generated groups and Lie algebras*, Forum Mathematicum (2019).
- [4] Alexander I. Suciu and He Wang, *Chen ranks and resonance varieties of the upper McCool groups*, arxiv:1804.06006.
- [5] Alexander I. Suciu and He Wang, *Taylor expansions of groups and filtered-formality*, arxiv:1905.10355.
- [6] Richard D. Porter and Alexander I. Suciu, *Homology, lower central series, and hyperplane arrangements*, arxiv:1906.04885.