
POINCARÉ DUALITY AND RESONANCE VARIETIES

DOI:10.1017/PRM.2019.55 ¨ ARXIV:1809.01801

Alex Suciu

GASC Seminar

Northeastern University

November 25, 2019

ALEX SUCIU POINCARÉ DUALITY & RESONANCE VARIETIES GASC SEMINAR 1 / 23

https://doi.org/10.1017/prm.2019.55
https://arxiv.org/abs/1809.01801


POINCARÉ DUALITY POINCARÉ DUALITY ALGEBRAS

POINCARÉ DUALITY ALGEBRAS

Let A be a graded, graded-commutative algebra over a field k.

A =
À

iě0 Ai , where Ai are k-vector spaces.
¨ : Ai bk Aj Ñ Ai+j .
ab = (´1)ijba for all a P Ai , b P Aj .

We will assume that A is connected (A0 = k ¨ 1), and locally finite
(all the Betti numbers bi(A) := dimk Ai are finite).

A is a Poincaré duality k-algebra of dimension m if there is a
k-linear map ε : Am Ñ k (called an orientation) such that all the
bilinear forms Ai bk Am´i Ñ k, ab b ÞÑ ε(ab) are non-singular.

That is, A is a graded, graded-commutative Gorenstein Artin
algebra of socle degree m.
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POINCARÉ DUALITY POINCARÉ DUALITY ALGEBRAS

If A is a PDm algebra, then:
bi (A) = bm´i (A), and Ai = 0 for i ą m.
ε is an isomorphism.
The maps PD : Ai Ñ (Am´i )˚,PD(a)(b) = ε(ab) are isomorphisms.

Each a P Ai has a Poincaré dual, a_ P Am´i , such that ε(aa_) = 1.
The orientation class is ωA := 1_.
We have ε(ωA) = 1, and thus aa_ = ωA.
The class of k-PD algebras is closed under taking tensor products
and connected sums.

If A is PDm and B is PDn, then Abk B is PDm+n.
If A and B are PDm, then A#B is PDm, where

Ź

(ω)
ω ÞÑωA //

ωÞÑ

ωB ��

A

��
B // A#B
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POINCARÉ DUALITY THE ASSOCIATED ALTERNATING FORM

THE ASSOCIATED ALTERNATING FORM

Associated to a k-PDm algebra there is an alternating m-form,

µA :
ŹmA1 Ñ k, µA(a1 ^ ¨ ¨ ¨ ^ am) = ε(a1 ¨ ¨ ¨ am).

Assume now that m = 3, and set n = b1(A). Fix a basis
te1, . . . ,enu for A1, and let te_1 , . . . ,e_n u be the dual basis for A2.

The multiplication in A, then, is given on basis elements by

eiej =
r
ÿ

k=1

µijk e_k , eie_j = δij ω,

where µijk = µ(ei ^ ej ^ ek ).

Let Ai = (Ai)˚. We may then view µ dually as a trivector,

µ =
ÿ

µijk ei ^ ej ^ ek P
Ź3A1,

which encodes the algebra structure of A.

For instance, µA#B = µA + µB.
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POINCARÉ DUALITY CLASSIFICATION OF ALTERNATING FORMS

CLASSIFICATION OF ALTERNATING FORMS

(Following J. Schouten, G. Gurevich, D. Djoković, A. Cohen–A. Helminck, . . . )

Let V be a k-vector space of dimension n. The group GL(V ) acts
on

Źm(V ˚) by (g ¨ µ)(a1 ^ ¨ ¨ ¨ ^ am) = µ
(
g´1a1 ^ ¨ ¨ ¨ ^ g´1am

)
.

The orbits of this action are the equivalence classes of alternating
m-forms on V . (We write µ „ µ1 if µ1 = g ¨ µ.)

Over k, the Zariski closures of these orbits define affine algebraic
varieties.

There are finitely many orbits over k only if n2 ě (n
m), that is,

m ď 2 or m = 3 and n ď 8.

For k = C, each complex orbit has only finitely many real forms.

When m = 3, and n = 8, there are 23 complex orbits, which split
into either 1, 2, or 3 real orbits, for a total of 35 real orbits.
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POINCARÉ DUALITY CLASSIFICATION OF ALTERNATING FORMS

Let A and B be two PDm algebras. We say that a morphism of
graded algebras ϕ : A Ñ B has non-zero degree if the linear map
ϕm : Am Ñ Bm is non-zero. (Equivalently, ϕ is injective.)
A and B are isomorphic as PDm algebras if and only if they are
isomorphic as graded algebras, in which case µA „ µB.

PROPOSITION

For two PD3 algebras A and B, the following are equivalent.

1 A – B, as PD3 algebras.

2 A – B, as graded algebras.

3 µA „ µB.

We thus have a bijection between isomorphism classes of
3-dimensional Poincaré duality algebras and equivalence classes
of alternating 3-forms, given by A ú µA.

ALEX SUCIU POINCARÉ DUALITY & RESONANCE VARIETIES GASC SEMINAR 6 / 23



POINCARÉ DUALITY POINCARÉ DUALITY IN ORIENTABLE MANIFOLDS

POINCARÉ DUALITY IN ORIENTABLE MANIFOLDS

If M is a compact, connected, orientable, m-dimensional manifold,
then the cohomology ring A = H.(M,k) is a PDm algebra over k.

Sullivan (1975): for every finite-dimensional Q-vector space V and
every alternating 3-form µ P

Ź3V ˚, there is a closed 3-manifold M
with H1(M,Q) = V and cup-product form µM = µ.

Such a 3-manifold can be constructed via “Borromean surgery."

If M bounds an oriented 4-manifold W such that the cup-product
pairing on H2(W ,M) is non-degenerate (e.g., if M is the link of an
isolated surface singularity), then µM = 0.
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RESONANCE VARIETIES OF GRADED ALGEBRAS RESONANCE VARIETIES

RESONANCE VARIETIES

Let A be a graded, graded-commutative, connected, locally finite
algebra over a field k (with chark ‰ 2).

For each a P A1 we have a2 = ´a2, and so a2 = 0. We then
obtain a cochain complex of k-vector spaces,

(A, δa) : A0 δ0
a // A1 δ1

a // A2 δ2
a // ¨ ¨ ¨ ,

with differentials δi
a(u) = a ¨ u, for all u P Ai .

The resonance varieties of A (in degree i ě 0 and depth k ě 0):

Ri
k (A) = ta P A1 | dimk H i(A, δa) ě ku.

An element a P A1 belongs to Ri
k (A) if and only if there exist

u1, . . . ,uk P Ai such that au1 = ¨ ¨ ¨ = auk = 0 in Ai+1, and the set
tau,u1, . . . ,uku is linearly independent in Ai , for all u P Ai´1.
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RESONANCE VARIETIES OF GRADED ALGEBRAS RESONANCE VARIETIES

Set bj = bj(A). For each i ě 0, we have a descending filtration,

A1 = Ri
0(A) Ě Ri

1(A) Ě ¨ ¨ ¨ Ě Ri
bi
(A) = t0u Ą Ri

bi+1
(A) = H.

A linear subspace U Ă A1 is isotropic if the restriction of
¨ : A1^A1 Ñ A2 to U ^U is the zero map (i.e., ab = 0, @a,b P U).

If U Ď A1 is an isotropic subspace of dimension k , then
U Ď R1

k´1(A).

R1
1(A) is the union of all isotropic planes in A1.

If k Ă K is a field extension, then the k-points on Ri
k (Abk K)

coincide with Ri
k (A).

Let ϕ : A Ñ B be a morphism of graded, connected algebras. If
the map ϕ1 : A1 Ñ B1 is injective, then ϕ1(R1

k (A)) Ď R1
k (B), @k .
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RESONANCE VARIETIES OF GRADED ALGEBRAS RESONANCE AND THE BGG CORRESPONDENCE

RESONANCE AND THE BGG CORRESPONDENCE

Fix a k-basis te1, . . . ,enu for A1, and let tx1, . . . , xnu be the dual
basis for A1 = (A1)˚.

Identify Sym(A1) with S = k[x1, . . . , xn], the coordinate ring of the
affine space A1.

The Bernstein–Gelfand–Gelfand correspondence yields a cochain
complex of finitely generated, free S-modules,
L(A) := (A‚ bS, δ),

¨ ¨ ¨ // Ai bS
δi

A // Ai+1 bS
δi+1

A // Ai+2 bS // ¨ ¨ ¨ ,

where δi
A(u b s) =

řn
j=1 eju b sxj .

The specialization of (AbS, δ) at a P A1 coincides with (A, δa),
that is, δi

A

ˇ

ˇ

xj=aj
= δi

a.
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RESONANCE VARIETIES OF GRADED ALGEBRAS RESONANCE AND THE BGG CORRESPONDENCE

By definition, an element a P A1 belongs to Ri
k (A) if and only if

rank δi´1
a + rank δi

a ď bi(A)´ k .

Let Ir (ψ) denote the ideal of r ˆ r minors of a pˆ q matrix ψ with
entries in S, where I0(ψ) = S and Ir (ψ) = 0 if r ą min(p,q).
Then:

Ri
k (A) = V

(
Ibi (A)´k+1

(
δi´1

A ‘ δi
A
))

=
č

s+t=bi (A)´k+1

(
V
(
Is(δi´1

A )
)
YV

(
It (δi

A)
))

.

In particular, R1
k (A) = V (In´k (δ

1
A)) (0 ď k ă n) and R1

n(A) = t0u.

The (degree i , depth k ) resonance scheme Ri
k (A) is defined by

the ideal Ibi (A)´k+1
(
δi´1

A ‘ δi
A
)
; its underlying set is Ri

k (A).
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RESONANCE VARIETIES OF GRADED ALGEBRAS RESONANCE AND THE BGG CORRESPONDENCE

EXAMPLE (EXTERIOR ALGEBRA)

Let E =
Ź

V , where V = kn, and S = Sym(V ). Then L(E) is the
Koszul complex on V . E.g., for n = 3:

S
( x3 ´x2 x1 )// S3

( x2 ´x1 0
x3 0 ´x1
0 x3 ´x2

)
// S3

( x1
x2
x3

)
// S .

This chain complex provides a free resolution L(E)Ñ k of the trivial
S-module k. Hence,

Ri
k (E) =

#

t0u if k ď (n
i ),

H otherwise.
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RESONANCE VARIETIES OF GRADED ALGEBRAS RESONANCE AND THE BGG CORRESPONDENCE

EXAMPLE (NON-ZERO RESONANCE)

Let A =
Ź

(e1,e2,e3)/xe1e2y, and set S = k[x1, x2, x3]. Then

L(A) : S2

(
x3 0 ´x1
0 x3 ´x2

)
// S3

( x1
x2
x3

)
// S .

R1
k (A) =

$

&

%

tx3 = 0u if k = 1,
t0u if k = 2 or 3,
H if k ą 3.

EXAMPLE (NON-LINEAR RESONANCE)

Let A =
Ź

(e1, . . . ,e4)/xe1e3,e2e4,e1e2 + e3e4y. Then

L(A) : S3

(
x4 0 0 ´x1
0 x3 ´x2 0
´x2 x1 x4 ´x3

)
// S4

 x1
x2
x3
x4


// S .

R1
1(A) = tx1x2 + x3x4 = 0u
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PD-ALGEBRAS AND RESONANCE RESONANCE VARIETIES OF PD-ALGEBRAS

RESONANCE VARIETIES OF PD-ALGEBRAS

Let A be a PDm algebra. For 0 ď i ď m and a P A1, the square

(Am´i)˚
(δm´i´1
´a )˚

// (Am´i´1)˚

Ai δi
a //

PD –

OO

Ai+1

PD –

OO

commutes up to a sign.

Consequently, (
H i(A, δa)

)˚
– Hm´i(A, δ´a).

Hence, for all i and k ,

Ri
k (A) = Rm´i

k (A).

In particular, Rm
1 (A) = t0u.
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PD-ALGEBRAS AND RESONANCE RESONANCE VARIETIES OF PD3 ALGEBRAS

COROLLARY

Let A be a PD3 algebra with b1(A) = n. Then
1 Ri

0(A) = A1.
2 R3

1(A) = R0
1(A) = t0u and R2

n(A) = R1
n(A) = t0u.

3 R2
k (A) = R1

k (A) for 0 ă k ă n.
4 In all other cases, Ri

k (A) = H.

THEOREM

Every PD3 algebra A decomposes as A – B#C, where B are C are
PD3 algebras such that µB is irreducible and has the same rank as µA,
and µC = 0. Furthermore, A1 – B1 ‘C1 restricts to isomorphisms

R1
k (A) – R1

k´r+1(B)ˆC1 YR1
k´r (B)ˆ t0u (@k ě 0),

where r = corank µA. In particular, R1
k (A) = A1 for all k ă corank µA.

(The rank of a form µ :
Ź3 V Ñ k is the minimum dimension of a linear

subspace W Ă V such that µ factors through
Ź3 W .)
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PD-ALGEBRAS AND RESONANCE NULLITY AND RESONANCE

A linear subspace U Ă V is 2-singular with respect to a 3-form
µ :

Ź3V Ñ k if µ(a^ b^ c) = 0 for all a,b P U and c P V .

If dim U = 2, we simply say U is a singular plane.

The nullity of µ, denoted null(µ), is the maximum dimension of a
2-singular subspace U Ă V .

Clearly, V contains a singular plane if and only if null(µ) ě 2.

Let A be a PD3 algebra. A linear subspace U Ă A1 is 2-singular
(with respect to µA) if and only if U is isotropic.

Using a result of A. Sikora [2005], we obtain:

THEOREM

Let A be a PD3 algebra over an algebraically closed field k
(char(k) ‰ 2), and let ν = null(µA). If b1(A) ě 4, then

dimR1
ν´1(A) ě ν ě 2.

In particular, dimR1
1(A) ě ν.
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PD-ALGEBRAS AND RESONANCE REAL FORMS AND RESONANCE

REAL FORMS AND RESONANCE

Sikora made the following conjecture: If µ :
Ź3V Ñ k is a 3-form

with dim V ě 4 and if char(k) ‰ 2, then null(µ) ě 2.

Conjecture holds if n := dim V is even or equal to 5, or if k = k.

Work of J. Draisma and R. Shaw [2010, 2014] implies that the
conjecture does not hold for k = R and n = 7. We obtain:

THEOREM

Let A be a PD3 algebra over R. Then R1
1(A) ‰ t0u, except when

n = 1, µA = 0.
n = 3, µA = e1e2e3.
n = 7, µA = ´e1e3e5 + e1e4e6 + e2e3e6 + e2e4e5 + e1e2e7 + e3e4e7 + e5e6e7.

Sketch: If R1
1(A) = t0u, then the formula (x ˆ y) ¨ z = µA(x , y , z)

defines a cross-product on A1 = Rn, and thus a division algebra
structure on Rn+1, forcing n = 1,3 or 7 by Bott–Milnor/Kervaire [1958].
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PD-ALGEBRAS AND RESONANCE REAL FORMS AND RESONANCE

EXAMPLE

Let A be the real PD3 algebra corresponding to octonionic
multiplication (defined as above).

Let A1 be the real PD3 algebra with
µA1 = e1e2e3 + e4e5e6 + e1e4e7 + e2e5e7 + e3e6e7.

Then µA „ µA1 over C, and so AbR C – A1 bR C.

On the other hand, A fl A1 over R, since µA  µA1 over R, but also
because R1

1(A) = t0u, yet R1
1(A

1) ‰ t0u.

Both R1
1(AbR C) and R1

1(A
1 bR C) are projectively smooth

conics, and thus are projectively equivalent over C, but

R1
1(AbR C) = tx P C7 | x2

1 + ¨ ¨ ¨+ x2
7 = 0u

has only one real point (x = 0), whereas

R1
1(A

1 bR C) = tx P C7 | x1x4 + x2x5 + x3x6 = x2
7 u

contains the real (isotropic) subspace tx4 = x5 = x6 = x7 = 0u.
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PD-ALGEBRAS AND RESONANCE PFAFFIANS AND RESONANCE

PFAFFIANS AND RESONANCE

For a k-PD3 algebra A, the complex L(A) = (Abk S, δA) looks like

A0 bk S
δ0

A // A1 bk S
δ1

A // A2 bk S
δ2

A // A3 bk S ,

where δ0
A =

(
x1 ¨ ¨ ¨ xn

)
and δ2

A = (δ0
A)
J, while δ1

A is the skew-
symmetric matrix whose are entries linear forms in S given by

δ1
A(ei) =

ÿn

j=1

ÿn

k=1
µjike_k b xj .

Recall that R1
k (A) = V (In´k (δ

1
A)). Using work of Buchsbaum and

Eisenbud [1977] on Pfaffians of skew-symmetric matrices, we get:

THEOREM

R1
2k (A) = R1

2k+1(A) = V (Pfn´2k (δ
1
A)), if n is even,

R1
2k´1(A) = R1

2k (A) = V (Pfn´2k+1(δ
1
A)), if n is odd.

Hence, A1 = R1
0 = R1

1 Ě R1
2 = R1

3 Ě R1
4 = ¨ ¨ ¨ if b1(A) is even,

and A1 = R1
0 Ě R1

1 = R1
2 Ě R1

3 = R1
4 Ě ¨ ¨ ¨ if b1(A) is odd.
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PD-ALGEBRAS AND RESONANCE BOTTOM-DEPTH RESONANCE

BOTTOM-DEPTH RESONANCE

THEOREM

Let A be a PD3 algebra. If µA has maximal rank n ě 3, then

R1
n´2(A) = R1

n´1(A) = R1
n(A) = t0u.

Otherwise, write A = B #C, where µB is irreducible and µC = 0. If
n = dim A1 is at least 3, then R1

n´2(A) = R1
n´1(A) = C1.

LEMMA (TURAEV 2002)

Suppose n ě 3. There is then a polynomial Det(µA) P S such that, if
δ1

A(i ; j) is the sub-matrix obtained from δ1
A by deleting the i-th row and

j-th column, then det δ1
A(i ; j) = (´1)i+jxixj Det(µA).

Moreover, if n is even, then Det(µA) = 0, while if n is odd, then
Det(µA) = Pf(µA)

2, where pf(δ1
A(i ; i)) = (´1)i+1xi Pf(µA).
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PD-ALGEBRAS AND RESONANCE TOP-DEPTH RESONANCE

TOP-DEPTH RESONANCE

Suppose dimk V = 2g + 1 ą 1. We say that a 3-form µ :
Ź3V Ñ k is

generic (in the sense of Berceanu–Papadima [1994]) if there is a v P V
such that the 2-form γv P V ˚ ^V ˚ given by γv (a^ b) = µA(a^ b^ v)
for a,b P V has rank 2g, that is, γ

g
v ‰ 0 in

Ź2gV ˚.

THEOREM

Let A be a PD3 algebra. Then

R1
1(A) =

$

’

’

’

&

’

’

’

%

H if n = 0;
t0u if n = 1 or n = 3 and µ has rank 3;
V (Pf(µA)) if n is odd, n ą 3, and µA is BP-generic;
A1 otherwise.

EXAMPLE

Let M = Σg ˆS1, where g ě 2. Then µM =
řg

i=1 aibic is BP-generic,
and Pf(µM) = xg´1

2g+1. Hence, R1
1(M) = tx2g+1 = 0u. In fact,

R1
1 = ¨ ¨ ¨ = R1

2g´2 and R1
2g´1 = R1

2g = R1
2g+1 = t0u.
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PD-ALGEBRAS AND RESONANCE TOP-DEPTH RESONANCE

As a corollary, we recover a closely related result, proved by Draisma
and Shaw [2010] by very different methods.

COROLLARY

Let V be a k-vector space of odd dimension n ě 5 and let µ P
Ź3 V ˚.

Then the union of all singular planes is either all of V or a hypersurface
defined by a homogeneous polynomial in k[V ] of degree (n´ 3)/2.

For µ P
Ź3 V ˚, there is another genericity condition, due to P. De Poi,

D. Faenzi, E. Mezzetti, and K. Ranestad [2017]: rank(γv ) ą 2, for all
non-zero v P V . We may interpret some of their results, as follows.

THEOREM (DFMR)
Let A be a PD3 algebra over C, and suppose µA is generic. Then:

If n is odd, then R1
1(A) is a hypersurface of degree (n´ 3)/2

which is smooth if n ď 7, and singular in codimension 5 if n ě 9.
If n is even, then R1

2(A) has codim 3 and degree 1
4 (

n´2
3 ) + 1; it is

smooth if n ď 10, and singular in codimension 7 if n ě 12.
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PD-ALGEBRAS AND RESONANCE RESONANCE VARIETIES OF 3-FORMS OF LOW RANK

RESONANCE VARIETIES OF 3-FORMS OF LOW RANK

n µ R1
3 123 0

n µ R1 = R2 R3
5 125+345 tx5 = 0u 0

n µ R1 R2 = R3 R4
6 123+456 C6 tx1 = x2 = x3 = 0uY tx4 = x5 = x6 = 0u 0

123+236+456 C6 tx3 = x5 = x6 = 0u 0

n µ R1 = R2 R3 = R4 R5
7 147+257+367 tx7 = 0u tx7 = 0u 0

456+147+257+367 tx7 = 0u tx4 = x5 = x6 = x7 = 0u 0
123+456+147 tx1 = 0uY tx4 = 0u tx1 = x2 = x3 = x4 = 0uY tx1 = x4 = x5 = x6 = 0u 0

123+456+147+257 tx1x4 + x2x5 = 0u tx1 = x2 = x4 = x5 = x2
7 ´ x3x6 = 0u 0

123+456+147+257+367 tx1x4 + x2x5 + x3x6 = x2
7 u 0 0

n µ R1 R2 = R3 R4 = R5 R6
8 147+257+367+358 C8 tx7 = 0u tx3 =x5 =x7 =x8 =0uYtx1 =x3 =x4 =x5 =x7 =0u 0

456+147+257+367+358 C8 tx5 = x7 = 0u tx3 = x4 = x5 = x7 = x1x8 + x2
6 = 0u 0

123+456+147+358 C8 tx1 = x5 = 0uY tx3 = x4 = 0u tx1 = x3 = x4 = x5 = x2x6 + x7x8 = 0u 0
123+456+147+257+358 C8 tx1 = x5 = 0uY tx3 = x4 = x5 = 0u tx1 = x2 = x3 = x4 = x5 = x7 = 0u 0

123+456+147+257+367+358 C8 tx3 = x5 = x1x4´ x2
7 = 0u tx1 = x2 = x3 = x4 = x5 = x6 = x7 = 0u 0

147+268+358 C8 tx1 = x4 = x7 = 0uY tx8 = 0u tx1 =x4 =x7 =x8 =0uYtx2 =x3 =x5 =x6 =x8 =0u 0
147+257+268+358 C8 L1Y L2Y L3 L1Y L2 0

456+147+257+268+358 C8 C1YC2 L1Y L2 0
147+257+367+268+358 C8 L1Y L2Y L3Y L4 L1

1Y L1
2Y L1

3 0
456+147+257+367+268+358 C8 C1YC2YC3 L1Y L2Y L3 0

123+456+147+268+358 C8 C1YC2 L 0
123+456+147+257+268+358 C8 tf1 = ¨ ¨ ¨ = f20 = 0u 0 0

123+456+147+257+367+268+358 C8 tg1 = ¨ ¨ ¨ = g20 = 0u 0 0
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