POINCARÉ DUALITY AND RESONANCE VARIETIES DOI:10.1017/prm.2019.55 · Arxiv:1809.01801

Alex Suciu

GASC Seminar Northeastern University November 25, 2019

ALEX SUCIU

POINCARÉ DUALITY & RESONANCE VARIETIES

GASC SEMINAR 1 / 23

POINCARÉ DUALITY ALGEBRAS

• Let *A* be a graded, graded-commutative algebra over a field k.

- $A = \bigoplus_{i \ge 0} A^i$, where A^i are k-vector spaces. • $A^i \otimes_k A^j \to A^{i+j}$. • $ab = (-1)^{ij}ba$ for all $a \in A^i$, $b \in A^j$.
- We will assume that A is connected (A⁰ = k ⋅ 1), and locally finite (all the Betti numbers b_i(A) := dim_k Aⁱ are finite).
- *A* is a *Poincaré duality* \Bbbk -*algebra* of dimension *m* if there is a \Bbbk -linear map $\varepsilon \colon A^m \to \Bbbk$ (called an *orientation*) such that all the bilinear forms $A^i \otimes_{\Bbbk} A^{m-i} \to \Bbbk$, $a \otimes b \mapsto \varepsilon(ab)$ are non-singular.
- That is, *A* is a graded, graded-commutative Gorenstein Artin algebra of socle degree *m*.

- If A is a PD_m algebra, then:
 - $b_i(A) = b_{m-i}(A)$, and $A^i = 0$ for i > m.
 - ε is an isomorphism.
 - The maps PD: $A^i \to (A^{m-i})^*$, PD $(a)(b) = \varepsilon(ab)$ are isomorphisms.
- Each $a \in A^i$ has a *Poincaré dual*, $a^{\vee} \in A^{m-i}$, such that $\varepsilon(aa^{\vee}) = 1$.
- The orientation class is $\omega_A := 1^{\vee}$.
- We have $\varepsilon(\omega_A) = 1$, and thus $aa^{\vee} = \omega_A$.
- The class of k-PD algebras is closed under taking tensor products and connected sums.
 - If A is PD_m and B is PD_n , then $A \otimes_{\mathbb{k}} B$ is PD_{m+n} .
 - If A and B are PD_m , then A # B is PD_m , where

$$\begin{array}{c} \bigwedge(\omega) \xrightarrow{\omega \mapsto \omega_A} A \\ \downarrow \\ \vdots \\ \vdots \\ B \xrightarrow{} A \# B \end{array}$$

THE ASSOCIATED ALTERNATING FORM

- Associated to a \Bbbk -PD_m algebra there is an alternating *m*-form, $\mu_A: \bigwedge^m A^1 \to \Bbbk, \quad \mu_A(a_1 \land \cdots \land a_m) = \varepsilon(a_1 \cdots a_m).$
- Assume now that m = 3, and set $n = b_1(A)$. Fix a basis $\{e_1, \ldots, e_n\}$ for A^1 , and let $\{e_1^{\vee}, \ldots, e_n^{\vee}\}$ be the dual basis for A^2 .
- The multiplication in A, then, is given on basis elements by

$$oldsymbol{e}_ioldsymbol{e}_j = \sum_{k=1} \mu_{ijk} \,oldsymbol{e}_k^{ee}, \quad oldsymbol{e}_ioldsymbol{e}_j^{ee} = \delta_{ij}\omega,$$

where $\mu_{ijk} = \mu(\boldsymbol{e}_i \wedge \boldsymbol{e}_j \wedge \boldsymbol{e}_k)$.

• Let $A_i = (A^i)^*$. We may then view μ dually as a trivector,

$$\mu = \sum \mu_{ijk} e^i \wedge e^j \wedge e^k \in \bigwedge^3 A_1,$$

which encodes the algebra structure of A.

• For instance, $\mu_{A\#B} = \mu_A + \mu_B$.

CLASSIFICATION OF ALTERNATING FORMS

(Following J. Schouten, G. Gurevich, D. Djoković, A. Cohen-A. Helminck, ...)

- Let *V* be a k-vector space of dimension *n*. The group GL(V) acts on $\bigwedge^{m}(V^{*})$ by $(g \cdot \mu)(a_{1} \wedge \cdots \wedge a_{m}) = \mu (g^{-1}a_{1} \wedge \cdots \wedge g^{-1}a_{m})$.
- The orbits of this action are the equivalence classes of alternating *m*-forms on *V*. (We write μ ∼ μ' if μ' = g ⋅ μ.)
- Over \overline{k} , the Zariski closures of these orbits define affine algebraic varieties.
- There are finitely many orbits over \overline{k} only if $n^2 \ge \binom{n}{m}$, that is, $m \le 2$ or m = 3 and $n \le 8$.
- For $\overline{k} = \mathbb{C}$, each complex orbit has only finitely many real forms.
- When m = 3, and n = 8, there are 23 complex orbits, which split into either 1, 2, or 3 real orbits, for a total of 35 real orbits.

- Let *A* and *B* be two PD_m algebras. We say that a morphism of graded algebras $\varphi \colon A \to B$ has *non-zero degree* if the linear map $\varphi^m \colon A^m \to B^m$ is non-zero. (Equivalently, φ is injective.)
- A and B are isomorphic as PD_m algebras if and only if they are isomorphic as graded algebras, in which case μ_A ~ μ_B.

PROPOSITION

For two PD₃ algebras A and B, the following are equivalent.

- 1) $A \cong B$, as PD₃ algebras.
- 2 $A \simeq B$, as graded algebras.

 We thus have a bijection between isomorphism classes of 3-dimensional Poincaré duality algebras and equivalence classes of alternating 3-forms, given by A κ→ μA.

POINCARÉ DUALITY IN ORIENTABLE MANIFOLDS

- If *M* is a compact, connected, orientable, *m*-dimensional manifold, then the cohomology ring *A* = *H*[•](*M*, k) is a PD_m algebra over k.
- Sullivan (1975): for every finite-dimensional Q-vector space V and every alternating 3-form $\mu \in \bigwedge^3 V^*$, there is a closed 3-manifold M with $H^1(M, \mathbb{Q}) = V$ and cup-product form $\mu_M = \mu$.
- Such a 3-manifold can be constructed via "Borromean surgery."

• If *M* bounds an oriented 4-manifold *W* such that the cup-product pairing on $H^2(W, M)$ is non-degenerate (e.g., if *M* is the link of an isolated surface singularity), then $\mu_M = 0$.

RESONANCE VARIETIES

- Let A be a graded, graded-commutative, connected, locally finite algebra over a field k (with char k ≠ 2).
- For each *a* ∈ *A*¹ we have *a*² = −*a*², and so *a*² = 0. We then obtain a cochain complex of k-vector spaces,

$$(A, \delta_a): A^0 \xrightarrow{\delta_a^0} A^1 \xrightarrow{\delta_a^1} A^2 \xrightarrow{\delta_a^2} \cdots,$$

with differentials $\delta_a^i(u) = a \cdot u$, for all $u \in A^i$.

- The resonance varieties of *A* (in degree $i \ge 0$ and depth $k \ge 0$): $\mathcal{R}_k^i(A) = \{a \in A^1 \mid \dim_{\mathbb{K}} H^i(A, \delta_a) \ge k\}.$
- An element $a \in A^1$ belongs to $\mathcal{R}_k^i(A)$ if and only if there exist $u_1, \ldots, u_k \in A^i$ such that $au_1 = \cdots = au_k = 0$ in A^{i+1} , and the set $\{au, u_1, \ldots, u_k\}$ is linearly independent in A^i , for all $u \in A^{i-1}$.

• Set $b_i = b_i(A)$. For each $i \ge 0$, we have a descending filtration,

 $\boldsymbol{A}^{1} = \mathcal{R}^{i}_{0}(\boldsymbol{A}) \supseteq \mathcal{R}^{i}_{1}(\boldsymbol{A}) \supseteq \cdots \supseteq \mathcal{R}^{i}_{\boldsymbol{b}_{i}}(\boldsymbol{A}) = \{0\} \supset \mathcal{R}^{i}_{\boldsymbol{b}_{i+1}}(\boldsymbol{A}) = \emptyset.$

- A linear subspace $U \subset A^1$ is *isotropic* if the restriction of $\therefore A^1 \wedge A^1 \rightarrow A^2$ to $U \wedge U$ is the zero map (i.e., $ab = 0, \forall a, b \in U$).
- If $U \subseteq A^1$ is an isotropic subspace of dimension k, then $U \subseteq \mathcal{R}^1_{k-1}(A)$.
- $\mathcal{R}^1_1(A)$ is the union of all isotropic planes in A^1 .
- If k ⊂ K is a field extension, then the k-points on Rⁱ_k(A⊗_kK) coincide with Rⁱ_k(A).
- Let φ: A → B be a morphism of graded, connected algebras. If the map φ¹: A¹ → B¹ is injective, then φ¹(R¹_k(A)) ⊆ R¹_k(B), ∀k.

RESONANCE AND THE BGG CORRESPONDENCE

- Fix a k-basis {*e*₁,..., *e_n*} for *A*¹, and let {*x*₁,..., *x_n*} be the dual basis for *A*₁ = (*A*¹)*.
- Identify $\text{Sym}(A_1)$ with $S = \Bbbk[x_1, \dots, x_n]$, the coordinate ring of the affine space A^1 .
- The Bernstein–Gelfand–Gelfand correspondence yields a cochain complex of finitely generated, free *S*-modules,
 L(A) := (A[•] ⊗ S, δ),

$$\cdots \longrightarrow A^{i} \otimes S \xrightarrow{\delta^{i}_{A}} A^{i+1} \otimes S \xrightarrow{\delta^{i+1}_{A}} A^{i+2} \otimes S \longrightarrow \cdots,$$

where $\delta_{\mathcal{A}}^{i}(u \otimes s) = \sum_{j=1}^{n} e_{j}u \otimes sx_{j}$.

• The specialization of $(A \otimes S, \delta)$ at $a \in A^1$ coincides with (A, δ_a) , that is, $\delta^i_A|_{x_i = a_i} = \delta^i_a$.

• By definition, an element $a \in A^1$ belongs to $\mathcal{R}^i_k(A)$ if and only if

$$\operatorname{rank} \delta_a^{i-1} + \operatorname{rank} \delta_a^i \leq b_i(A) - k.$$

• Let $I_r(\psi)$ denote the ideal of $r \times r$ minors of a $p \times q$ matrix ψ with entries in *S*, where $I_0(\psi) = S$ and $I_r(\psi) = 0$ if $r > \min(p, q)$. Then:

$$\mathcal{R}_{k}^{i}(A) = V\Big(I_{b_{i}(A)-k+1}\big(\delta_{A}^{i-1} \oplus \delta_{A}^{i}\big)\Big)$$
$$= \bigcap_{s+t=b_{i}(A)-k+1}\Big(V\big(I_{s}(\delta_{A}^{i-1})\big) \cup V\big(I_{t}(\delta_{A}^{i})\big)\Big).$$

- In particular, $\mathcal{R}_k^1(A) = V(I_{n-k}(\delta_A^1))$ ($0 \le k < n$) and $\mathcal{R}_n^1(A) = \{0\}$.
- The (degree *i*, depth *k*) resonance scheme *Rⁱ_k*(*A*) is defined by the ideal *I_{b_i(A)-k+1}*(δ^{*i*−1}_A ⊕ δ^{*i*}_A); its underlying set is *Rⁱ_k*(*A*).

EXAMPLE (EXTERIOR ALGEBRA)

Let $E = \bigwedge V$, where $V = \Bbbk^n$, and S = Sym(V). Then L(E) is the Koszul complex on V. E.g., for n = 3:

$$S^{(\frac{x_{3}-x_{2}}{3}x_{1})}S^{3} \xrightarrow{\begin{pmatrix} x_{2}-x_{1}&0\\x_{3}&0&-x_{1}\\0&x_{3}&-x_{2} \end{pmatrix}} S^{3} \xrightarrow{\begin{pmatrix} x_{1}\\x_{2}\\x_{3} \end{pmatrix}} S^{3} \xrightarrow{\begin{pmatrix} x_{1}\\x_{2}\\x_{3} \end{pmatrix}} S^{3}$$

This chain complex provides a free resolution $L(E) \rightarrow \Bbbk$ of the trivial *S*-module \Bbbk . Hence,

$$\mathcal{R}_{k}^{i}(E) = \begin{cases} \{0\} & \text{if } k \leq \binom{n}{i}, \\ \varnothing & \text{otherwise.} \end{cases}$$

EXAMPLE (NON-ZERO RESONANCE)

Let $A = \bigwedge (e_1, e_2, e_3) / \langle e_1 e_2 \rangle$, and set $S = \Bbbk [x_1, x_2, x_3]$. Then

$$\mathbf{L}(\mathbf{A}): S^2 \xrightarrow{\begin{pmatrix} x_3 & 0 & -x_1 \\ 0 & x_3 & -x_2 \end{pmatrix}} S^3 \xrightarrow{\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}} S.$$

$$\mathcal{R}_{k}^{1}(A) = \begin{cases} \{x_{3} = 0\} & \text{if } k = 1, \\ \{0\} & \text{if } k = 2 \text{ or } 3, \\ \emptyset & \text{if } k > 3. \end{cases}$$

EXAMPLE (NON-LINEAR RESONANCE)

Let $A = \bigwedge (e_1, \dots, e_4) / \langle e_1 e_3, e_2 e_4, e_1 e_2 + e_3 e_4 \rangle$. Then

$$L(A): S^{3} \xrightarrow{\begin{pmatrix} x_{4} & 0 & 0 & -x_{1} \\ 0 & x_{3} & -x_{2} & 0 \\ -x_{2} & x_{1} & x_{4} & -x_{3} \end{pmatrix}}{} S^{4} \xrightarrow{\begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{pmatrix}} S$$

$$\mathcal{R}_1^1(A) = \{x_1x_2 + x_3x_4 = 0\}$$

RESONANCE VARIETIES OF PD-ALGEBRAS

• Let A be a PD_m algebra. For $0 \le i \le m$ and $a \in A^1$, the square

commutes up to a sign.

• Consequently,

$$\left(H^{i}(\boldsymbol{A},\delta_{\boldsymbol{a}})\right)^{*}\cong H^{m-i}(\boldsymbol{A},\delta_{-\boldsymbol{a}}).$$

Hence, for all *i* and *k*,

$$\mathcal{R}_k^i(\mathbf{A}) = \mathcal{R}_k^{m-i}(\mathbf{A}).$$

• In particular, $\mathcal{R}_1^m(A) = \{0\}$.

COROLLARY

Let *A* be a PD_3 algebra with $b_1(A) = n$. Then

- **2** $\mathcal{R}^3_1(A) = \mathcal{R}^0_1(A) = \{0\}$ and $\mathcal{R}^2_n(A) = \mathcal{R}^1_n(A) = \{0\}.$
- (3) $\mathcal{R}_{k}^{2}(A) = \mathcal{R}_{k}^{1}(A)$ for 0 < k < n.
- ④ In all other cases, $\mathcal{R}_{k}^{i}(A) = \emptyset$.

THEOREM

Every PD₃ algebra A decomposes as $A \cong B \# C$, where B are C are PD₃ algebras such that μ_B is irreducible and has the same rank as μ_A , and $\mu_C = 0$. Furthermore, $A^1 \cong B^1 \oplus C^1$ restricts to isomorphisms

 $\mathcal{R}^1_k(A) \cong \mathcal{R}^1_{k-r+1}(B) \times C^1 \cup \mathcal{R}^1_{k-r}(B) \times \{0\} \quad (\forall k \ge 0),$

where $r = \operatorname{corank} \mu_A$. In particular, $\mathcal{R}_k^1(A) = A^1$ for all $k < \operatorname{corank} \mu_A$.

(The *rank* of a form μ : $\bigwedge^3 V \to \Bbbk$ is the minimum dimension of a linear subspace $W \subset V$ such that μ factors through $\bigwedge^3 W$.)

- A linear subspace $U \subset V$ is 2-*singular* with respect to a 3-form $\mu: \bigwedge^{3} V \to \Bbbk$ if $\mu(a \land b \land c) = 0$ for all $a, b \in U$ and $c \in V$.
- If dim U = 2, we simply say U is a singular plane.
- The *nullity* of µ, denoted null(µ), is the maximum dimension of a 2-singular subspace U ⊂ V.
- Clearly, V contains a singular plane if and only if $null(\mu) \ge 2$.
- Let A be a PD₃ algebra. A linear subspace U ⊂ A¹ is 2-singular (with respect to μ_A) if and only if U is isotropic.
- Using a result of A. Sikora [2005], we obtain:

THEOREM

Let *A* be a PD₃ algebra over an algebraically closed field \Bbbk (char(\Bbbk) \neq 2), and let ν = null(μ_A). If $b_1(A) \ge 4$, then

 $\dim \mathcal{R}^1_{\nu-1}(A) \ge \nu \ge 2.$

In particular, dim $\mathcal{R}_1^1(A) \ge \nu$.

REAL FORMS AND RESONANCE

- Sikora made the following conjecture: If µ: ³V → k is a 3-form with dim V ≥ 4 and if char(k) ≠ 2, then null(µ) ≥ 2.
- Conjecture holds if $n := \dim V$ is even or equal to 5, or if $k = \overline{k}$.
- Work of J. Draisma and R. Shaw [2010, 2014] implies that the conjecture does not hold for k = ℝ and n = 7. We obtain:

THEOREM

Let A be a PD₃ algebra over \mathbb{R} . Then $\mathcal{R}_1^1(A) \neq \{0\}$, except when

• $n = 1, \mu_A = 0.$

•
$$n = 3$$
, $\mu_A = e^1 e^2 e^3$

• n = 7, $\mu_A = -e^1 e^3 e^5 + e^1 e^4 e^6 + e^2 e^3 e^6 + e^2 e^4 e^5 + e^1 e^2 e^7 + e^3 e^4 e^7 + e^5 e^6 e^7$.

Sketch: If $\mathcal{R}_1^1(A) = \{0\}$, then the formula $(x \times y) \cdot z = \mu_A(x, y, z)$ defines a cross-product on $A^1 = \mathbb{R}^n$, and thus a division algebra structure on \mathbb{R}^{n+1} , forcing n = 1, 3 or 7 by Bott–Milnor/Kervaire [1958].

EXAMPLE

- Let *A* be the real PD₃ algebra corresponding to octonionic multiplication (defined as above).
- Let A' be the real PD₃ algebra with $\mu_{A'} = e^1 e^2 e^3 + e^4 e^5 e^6 + e^1 e^4 e^7 + e^2 e^5 e^7 + e^3 e^6 e^7.$
- Then $\mu_A \sim \mu_{A'}$ over \mathbb{C} , and so $A \otimes_{\mathbb{R}} \mathbb{C} \cong A' \otimes_{\mathbb{R}} \mathbb{C}$.
- On the other hand, A ≇ A' over ℝ, since μ_A ≁ μ_{A'} over ℝ, but also because R¹₁(A) = {0}, yet R¹₁(A') ≠ {0}.
- Both R¹₁(A⊗_ℝ C) and R¹₁(A'⊗_ℝ C) are projectively smooth conics, and thus are projectively equivalent over C, but

 $\mathcal{R}^1_1(A \otimes_{\mathbb{R}} \mathbb{C}) = \{ x \in \mathbb{C}^7 \mid x_1^2 + \dots + x_7^2 = 0 \}$

has only one real point (x = 0), whereas

$$\mathcal{R}_{1}^{1}(A' \otimes_{\mathbb{R}} \mathbb{C}) = \{ x \in \mathbb{C}^{7} \mid x_{1}x_{4} + x_{2}x_{5} + x_{3}x_{6} = x_{7}^{2} \}$$

contains the real (isotropic) subspace $\{x_4 = x_5 = x_6 = x_7 = 0\}$.

ALEX SUCIU

POINCARÉ DUALITY & RESONANCE VARIETIES

GASC SEMINAR 18 / 23

PFAFFIANS AND RESONANCE

• For a \Bbbk -PD₃ algebra A, the complex $\mathbf{L}(A) = (A \otimes_{\Bbbk} S, \delta_A)$ looks like $A^0 \otimes_{\Bbbk} S \xrightarrow{\delta^0_A} A^1 \otimes_{\Bbbk} S \xrightarrow{\delta^1_A} A^2 \otimes_{\Bbbk} S \xrightarrow{\delta^2_A} A^3 \otimes_{\Bbbk} S$,

where $\delta_A^0 = (x_1 \cdots x_n)$ and $\delta_A^2 = (\delta_A^0)^\top$, while δ_A^1 is the skew-symmetric matrix whose are entries linear forms in *S* given by

$$\delta_{\mathcal{A}}^{1}(\boldsymbol{e}_{i}) = \sum_{j=1}^{n} \sum_{k=1}^{n} \mu_{jik} \boldsymbol{e}_{k}^{\vee} \otimes \boldsymbol{x}_{j}.$$

• Recall that $\mathcal{R}_{k}^{1}(A) = V(I_{n-k}(\delta_{A}^{1}))$. Using work of Buchsbaum and Eisenbud [1977] on Pfaffians of skew-symmetric matrices, we get:

THEOREM

 $\begin{aligned} & \mathcal{R}_{2k}^{1}(A) = \mathcal{R}_{2k+1}^{1}(A) = V(\mathsf{Pf}_{n-2k}(\delta_{A}^{1})), & \text{if n is even,} \\ & \mathcal{R}_{2k-1}^{1}(A) = \mathcal{R}_{2k}^{1}(A) = V(\mathsf{Pf}_{n-2k+1}(\delta_{A}^{1})), & \text{if n is odd.} \end{aligned}$

• Hence, $A^1 = \mathcal{R}_0^1 = \mathcal{R}_1^1 \supseteq \mathcal{R}_2^1 = \mathcal{R}_3^1 \supseteq \mathcal{R}_4^1 = \cdots$ if $b_1(A)$ is even, and $A^1 = \mathcal{R}_0^1 \supseteq \mathcal{R}_1^1 = \mathcal{R}_2^1 \supseteq \mathcal{R}_3^1 = \mathcal{R}_4^1 \supseteq \cdots$ if $b_1(A)$ is odd. ALEX SUCIU POINCARÉ DUALITY & RESONANCE VARIETIES GASC SEMINAR 19 / 23

BOTTOM-DEPTH RESONANCE

THEOREM

Let A be a PD₃ algebra. If μ_A has maximal rank $n \ge 3$, then

$$\mathcal{R}_{n-2}^{1}(A) = \mathcal{R}_{n-1}^{1}(A) = \mathcal{R}_{n}^{1}(A) = \{0\}.$$

Otherwise, write A = B # C, where μ_B is irreducible and $\mu_C = 0$. If $n = \dim A^1$ is at least 3, then $\mathcal{R}^1_{n-2}(A) = \mathcal{R}^1_{n-1}(A) = C^1$.

LEMMA (TURAEV 2002)

Suppose $n \ge 3$. There is then a polynomial $\text{Det}(\mu_A) \in S$ such that, if $\delta_A^1(i; j)$ is the sub-matrix obtained from δ_A^1 by deleting the *i*-th row and *j*-th column, then $\det \delta_A^1(i; j) = (-1)^{i+j} x_i x_j \operatorname{Det}(\mu_A)$.

Moreover, if *n* is even, then $\text{Det}(\mu_A) = 0$, while if *n* is odd, then $\text{Det}(\mu_A) = \text{Pf}(\mu_A)^2$, where $\text{pf}(\delta_A^1(i; i)) = (-1)^{i+1} x_i \text{Pf}(\mu_A)$.

TOP-DEPTH RESONANCE

Suppose dim_k V = 2g + 1 > 1. We say that a 3-form $\mu : \bigwedge^{3} V \to \Bbbk$ is *generic* (in the sense of Berceanu–Papadima [1994]) if there is a $v \in V$ such that the 2-form $\gamma_{v} \in V^{*} \land V^{*}$ given by $\gamma_{v}(a \land b) = \mu_{A}(a \land b \land v)$ for $a, b \in V$ has rank 2g, that is, $\gamma_{v}^{g} \neq 0$ in $\bigwedge^{2g} V^{*}$.

THEOREM

Let A be a PD_3 algebra. Then

$$\mathcal{R}_{1}^{1}(\mathcal{A}) = \begin{cases} \emptyset & \text{if } n = 0; \\ \{0\} & \text{if } n = 1 \text{ or } n = 3 \text{ and } \mu \text{ has rank } 3; \\ V(\mathsf{Pf}(\mu_{\mathcal{A}})) & \text{if } n \text{ is odd, } n > 3, \text{ and } \mu_{\mathcal{A}} \text{ is BP-generic;} \\ \mathcal{A}^{1} & \text{otherwise.} \end{cases}$$

EXAMPLE

Let $M = \Sigma_g \times S^1$, where $g \ge 2$. Then $\mu_M = \sum_{i=1}^g a_i b_i c$ is BP-generic, and $Pf(\mu_M) = x_{2g+1}^{g-1}$. Hence, $\mathcal{R}_1^1(M) = \{x_{2g+1} = 0\}$. In fact, $\mathcal{R}_1^1 = \cdots = \mathcal{R}_{2g-2}^1$ and $\mathcal{R}_{2g-1}^1 = \mathcal{R}_{2g}^1 = \mathcal{R}_{2g+1}^1 = \{0\}$. As a corollary, we recover a closely related result, proved by Draisma and Shaw [2010] by very different methods.

COROLLARY

Let V be a k-vector space of odd dimension $n \ge 5$ and let $\mu \in \bigwedge^3 V^*$. Then the union of all singular planes is either all of V or a hypersurface defined by a homogeneous polynomial in k[V] of degree (n-3)/2.

For $\mu \in \bigwedge^{3} V^{*}$, there is another genericity condition, due to P. De Poi, D. Faenzi, E. Mezzetti, and K. Ranestad [2017]: rank(γ_{ν}) > 2, for all non-zero $\nu \in V$. We may interpret some of their results, as follows.

THEOREM (DFMR)

Let A be a PD₃ algebra over \mathbb{C} , and suppose μ_A is generic. Then:

- If n is odd, then R¹₁(A) is a hypersurface of degree (n − 3)/2 which is smooth if n ≤ 7, and singular in codimension 5 if n ≥ 9.
- If *n* is even, then $\mathcal{R}_2^1(A)$ has codim 3 and degree $\frac{1}{4}\binom{n-2}{3} + 1$; it is smooth if $n \leq 10$, and singular in codimension 7 if $n \geq 12$.

RESONANCE VARIETIES OF **3**-FORMS OF LOW RANK

		1	$\begin{array}{c c} 3 & 0 \\ \hline \mathcal{R}_1 \\ \hline \end{array}$	$\begin{array}{c c} 25+345 & \{ \\ \mathcal{R}_2 = \mathcal{R}_2 \end{array}$	$\begin{array}{c c} \mathcal{R}_{1} = \mathcal{R}_{2} & \mathcal{R}_{3} \\ x_{5} = 0 \} & 0 \end{array}$ $\begin{array}{c c} \mathcal{R}_{3} & \mathcal{R}_{4} \\ \mathbf{R}_{4} = x_{5} = x_{6} = 0 \} & 0 \end{array}$		
	123+236+456 \mathbb{C}^6 $\{x_3 = x_5 = x_6 = 0\}$ 0						
n	E Contraction of the second seco		$\mathcal{R}_1 = \mathcal{R}_2$		$\mathcal{R}_3 = \mathcal{R}_4$	\mathcal{R}_5	
7			$\{x_7 = 0\}$	$\{x_7 = 0\}$		0	
	456+147+257+367		$\{x_7 = 0\}$		$\{x_4 = x_5 = x_6 = x_7 = 0\}$	0	
	123+456+147		$x_1 = 0\} \cup \{x_4 = 0\}$		$= x_3 = x_4 = 0\} \cup \{x_1 = x_4 = x_5 = x_6 = 0\}$	0	
	123+456+147+257		$\{x_1x_4 + x_2x_5 = 0\}$	$\{x_1 = x_2 = x_4 = x_5 = x_7^2 - x_3 x_6 = 0\}$		0	
	123+456+147+257+367		$x_4 + x_2 x_5 + x_3 x_6 = x_7^2 \}$		0	0	
n	μ \mathcal{R}_1		$\mathcal{R}_2 = \mathcal{R}_3$		$\mathcal{R}_4 = \mathcal{R}_5$		
8	147+257+367+358	C ⁸			$\{x_3 = x_5 = x_7 = x_8 = 0\} \cup \{x_1 = x_3 = x_4 = x_5 = x_7 = 0\}$		
	456+147+257+367+358)}	$\{x_3 = x_4 = x_5 = x_7 = x_1 x_8 + x_6^2 = 0$		
	123+456+147+358 123+456+147+257+358 123+456+147+257+367+358		$\{x_1 = x_5 = 0\} \cup \{x_3 = x_4 = 0\}$			$\{x_1 = x_3 = x_4 = x_5 = x_2x_6 + x_7x_8 = 0\}$	
			$\{x_1 = x_5 = 0\} \cup \{x_3 = x_4 = x_5 = 0\}$		$\{x_1 = x_2 = x_3 = x_4 = x_5 = x_7 = 0\}$		
			$\{x_3 = x_5 = x_1x_4 - x_7^2 = 0\}$		$\{x_1 = x_2 = x_3 = x_4 = x_5 = x_6 = x_7 =$		
	147+268+358		{ $x_1 = x_4 = x_7 = 0$ } \cup { $x_8 = 0$ }		$\{x_1 = x_4 = x_7 = x_8 = 0\} \cup \{x_2 = x_3 = x_5 = x_6 = 0\}$	x ₈ =0}	
	147+257+268+358 C ⁸ 456-147+257+268+358 C ⁸ 147+257+367+268+358 C ⁸ 147+257+367+268+358 C ⁸ 123+456+147+268+358 C ⁸		$L_1 \cup L_2 \cup L_3$		$L_1 \cup L_2$		
			2		$L_1 \cup L_2$		
			1 - 2 - 3 - 4		$L'_1 \cup L'_2 \cup L'_3$		
					$L_1 \cup L_2 \cup L_3$		
ΙĽ			$C_1 \cup C_2$		L		
	123+456+147+257+268+358	-	$\{f_1 = \cdots = f_{20} = 0\}$		0		
1:	23+456+147+257+367+268+35	⁸ 0 8ذ	C^8 { $g_1 = \cdots = g_{20} = 0$ }		0		

ALEX SUCIU

POINCARÉ DUALITY & RESONANCE VARIETIES

GASC SEMINAR 23 / 23