POINCARÉ DUALITY AND RESONANCE VARIETIES DOI:10.1017/PRM.2019.55 • ARXIV:1809.01801

Alex Suciu

GASC Seminar

Northeastern University
November 25, 2019

POINCARÉ DUALITY ALGEBRAS

- Let A be a graded, graded-commutative algebra over a field \mathbb{k}.
- $A=\oplus_{i \geqslant 0} A^{i}$, where A^{i} are \mathbb{k}-vector spaces.
- $\cdot A^{i} \otimes_{\mathbb{k}} A^{j} \rightarrow A^{i+j}$.
- $a b=(-1)^{i j}$ ba for all $a \in A^{i}, b \in A^{j}$.
- We will assume that A is connected ($A^{0}=\mathbb{k} \cdot 1$), and locally finite (all the Betti numbers $b_{i}(A):=\operatorname{dim}_{k} A^{i}$ are finite).
- A is a Poincaré duality \mathbb{k}-algebra of dimension m if there is a \mathbb{k}-linear map $\varepsilon: A^{m} \rightarrow \mathbb{k}$ (called an orientation) such that all the bilinear forms $A^{i} \otimes_{\mathbb{k}} A^{m-i} \rightarrow \mathbb{k}, a \otimes b \mapsto \varepsilon(a b)$ are non-singular.
- That is, A is a graded, graded-commutative Gorenstein Artin algebra of socle degree m.
- If A is a PD_{m} algebra, then:
- $b_{i}(A)=b_{m-i}(A)$, and $A^{i}=0$ for $i>m$.
- ε is an isomorphism.
- The maps PD: $A^{i} \rightarrow\left(A^{m-i}\right)^{*}, \operatorname{PD}(a)(b)=\varepsilon(a b)$ are isomorphisms.
- Each $a \in A^{i}$ has a Poincaré dual, $a^{\vee} \in A^{m-i}$, such that $\varepsilon\left(a a^{\vee}\right)=1$.
- The orientation class is $\omega_{A}:=1^{\vee}$.
- We have $\varepsilon\left(\omega_{A}\right)=1$, and thus $a a^{\vee}=\omega_{A}$.
- The class of \mathbb{k}-PD algebras is closed under taking tensor products and connected sums.
- If A is PD_{m} and B is PD_{n}, then $A \otimes_{\mathbb{k}} B$ is PD_{m+n}.
- If A and B are PD_{m}, then $A \# B$ is PD_{m}, where

THE ASSOCIATED ALTERNATING FORM

- Associated to a $\mathbb{k}-\mathrm{PD}_{m}$ algebra there is an alternating m-form,

$$
\mu_{A}: \wedge^{m} A^{1} \rightarrow \mathbb{k}, \quad \mu_{A}\left(a_{1} \wedge \cdots \wedge a_{m}\right)=\varepsilon\left(a_{1} \cdots a_{m}\right)
$$

- Assume now that $m=3$, and set $n=b_{1}(A)$. Fix a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ for A^{1}, and let $\left\{e_{1}^{\vee}, \ldots, e_{n}^{\vee}\right\}$ be the dual basis for A^{2}.
- The multiplication in A, then, is given on basis elements by

$$
e_{i} e_{j}=\sum_{k=1}^{r} \mu_{i j k} e_{k}^{\vee}, \quad e_{i} e_{j}^{\vee}=\delta_{i j} \omega
$$

where $\mu_{i j k}=\mu\left(e_{i} \wedge e_{j} \wedge e_{k}\right)$.

- Let $A_{i}=\left(A^{i}\right)^{*}$. We may then view μ dually as a trivector,

$$
\mu=\sum \mu_{i j k} e^{i} \wedge e^{j} \wedge e^{k} \in \bigwedge^{3} A_{1}
$$

which encodes the algebra structure of A.

- For instance, $\mu_{A \# B}=\mu_{A}+\mu_{B}$.

CLASSIFICATION OF ALTERNATING FORMS

(Following J. Schouten, G. Gurevich, D. Djoković, A. Cohen-A. Helminck, ...)

- Let V be a \mathbb{k}-vector space of dimension n. The group $G L(V)$ acts on $\wedge^{m}\left(V^{*}\right)$ by $(g \cdot \mu)\left(a_{1} \wedge \cdots \wedge a_{m}\right)=\mu\left(g^{-1} a_{1} \wedge \cdots \wedge g^{-1} a_{m}\right)$.
- The orbits of this action are the equivalence classes of alternating m-forms on V. (We write $\mu \sim \mu^{\prime}$ if $\mu^{\prime}=g \cdot \mu$.)
- Over $\overline{\mathbb{k}}$, the Zariski closures of these orbits define affine algebraic varieties.
- There are finitely many orbits over $\overline{\mathbb{k}}$ only if $n^{2} \geqslant\binom{ n}{m}$, that is, $m \leqslant 2$ or $m=3$ and $n \leqslant 8$.
- For $\overline{\mathbb{k}}=\mathbb{C}$, each complex orbit has only finitely many real forms.
- When $m=3$, and $n=8$, there are 23 complex orbits, which split into either 1, 2, or 3 real orbits, for a total of 35 real orbits.
- Let A and B be two PD_{m} algebras. We say that a morphism of graded algebras $\varphi: A \rightarrow B$ has non-zero degree if the linear map $\varphi^{m}: A^{m} \rightarrow B^{m}$ is non-zero. (Equivalently, φ is injective.)
- A and B are isomorphic as PD_{m} algebras if and only if they are isomorphic as graded algebras, in which case $\mu_{A} \sim \mu_{B}$.

Proposition

For two PD_{3} algebras A and B, the following are equivalent.
(1) $A \cong B$, as PD_{3} algebras.
(2) $A \cong B$, as graded algebras.
(3) $\mu_{A} \sim \mu_{B}$.

- We thus have a bijection between isomorphism classes of 3-dimensional Poincaré duality algebras and equivalence classes of alternating 3 -forms, given by $A \leadsto \leadsto \mu_{A}$.

POINCARÉ DUALITY IN ORIENTABLE MANIFOLDS

- If M is a compact, connected, orientable, m-dimensional manifold, then the cohomology ring $A=H^{\cdot}(M, \mathbb{k})$ is a PD_{m} algebra over \mathbb{k}.
- Sullivan (1975): for every finite-dimensional Q-vector space V and every alternating 3-form $\mu \in \bigwedge^{3} V^{*}$, there is a closed 3-manifold M with $H^{1}(M, \mathbb{Q})=V$ and cup-product form $\mu_{M}=\mu$.
- Such a 3-manifold can be constructed via "Borromean surgery."

- If M bounds an oriented 4-manifold W such that the cup-product pairing on $H^{2}(W, M)$ is non-degenerate (e.g., if M is the link of an isolated surface singularity), then $\mu_{M}=0$.

Resonance varieties

- Let A be a graded, graded-commutative, connected, locally finite algebra over a field \mathbb{k} (with char $\mathbb{k} \neq 2$).
- For each $a \in A^{1}$ we have $a^{2}=-a^{2}$, and so $a^{2}=0$. We then obtain a cochain complex of \mathbb{k}-vector spaces,

$$
\left(A, \delta_{a}\right): A^{0} \xrightarrow{\delta_{a}^{0}} A^{1} \xrightarrow{\delta_{a}^{1}} A^{2} \xrightarrow{\delta_{a}^{2}} \cdots,
$$

with differentials $\delta_{a}^{i}(u)=a \cdot u$, for all $u \in A^{i}$.

- The resonance varieties of A (in degree $i \geqslant 0$ and depth $k \geqslant 0$):

$$
\mathcal{R}_{k}^{i}(A)=\left\{a \in A^{1} \mid \operatorname{dim}_{k} H^{i}\left(A, \delta_{a}\right) \geqslant k\right\} .
$$

- An element $a \in A^{1}$ belongs to $\mathcal{R}_{k}^{i}(A)$ if and only if there exist $u_{1}, \ldots, u_{k} \in A^{i}$ such that $a u_{1}=\cdots=a u_{k}=0$ in A^{i+1}, and the set $\left\{a u, u_{1}, \ldots, u_{k}\right\}$ is linearly independent in A^{i}, for all $u \in A^{i-1}$.
- Set $b_{j}=b_{j}(A)$. For each $i \geqslant 0$, we have a descending filtration,

$$
A^{1}=\mathcal{R}_{0}^{i}(A) \supseteq \mathcal{R}_{1}^{i}(A) \supseteq \cdots \supseteq \mathcal{R}_{b_{i}}^{i}(A)=\{0\} \supset \mathcal{R}_{b_{i+1}}^{i}(A)=\varnothing .
$$

- A linear subspace $U \subset A^{1}$ is isotropic if the restriction of $\cdot A^{1} \wedge A^{1} \rightarrow A^{2}$ to $U \wedge U$ is the zero map (i.e., $a b=0, \forall a, b \in U$).
- If $U \subseteq A^{1}$ is an isotropic subspace of dimension k, then $U \subseteq \mathcal{R}_{k-1}^{1}(A)$.
- $\mathcal{R}_{1}^{1}(A)$ is the union of all isotropic planes in A^{1}.
- If $\mathbb{k} \subset \mathbb{K}$ is a field extension, then the \mathbb{k}-points on $\mathcal{R}_{k}^{i}\left(A \otimes_{\mathbb{k}} \mathbb{K}\right)$ coincide with $\mathcal{R}_{k}^{i}(A)$.
- Let $\varphi: A \rightarrow B$ be a morphism of graded, connected algebras. If the $\operatorname{map} \varphi^{1}: A^{1} \rightarrow B^{1}$ is injective, then $\varphi^{1}\left(\mathcal{R}_{k}^{1}(A)\right) \subseteq \mathcal{R}_{k}^{1}(B), \forall k$.

Resonance and the BGG correspondence

- Fix a \mathbb{k}-basis $\left\{e_{1}, \ldots, e_{n}\right\}$ for A^{1}, and let $\left\{x_{1}, \ldots, x_{n}\right\}$ be the dual basis for $A_{1}=\left(A^{1}\right)^{*}$.
- Identify $\operatorname{Sym}\left(A_{1}\right)$ with $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$, the coordinate ring of the affine space A^{1}.
- The Bernstein-Gelfand-Gelfand correspondence yields a cochain complex of finitely generated, free S-modules, $\mathbf{L}(A):=\left(A^{\bullet} \otimes S, \delta\right)$,

$$
\cdots \longrightarrow A^{i} \otimes S \xrightarrow{\delta_{A}^{i}} A^{i+1} \otimes S \xrightarrow{\delta_{A}^{i+1}} A^{i+2} \otimes S \longrightarrow \cdots,
$$

where $\delta_{A}^{i}(u \otimes s)=\sum_{j=1}^{n} e_{j} u \otimes s X_{j}$.

- The specialization of $(A \otimes S, \delta)$ at $a \in A^{1}$ coincides with $\left(A, \delta_{a}\right)$, that is, $\left.\delta_{A}^{i}\right|_{x_{j}=a_{j}}=\delta_{a}^{i}$.
- By definition, an element $a \in A^{1}$ belongs to $\mathcal{R}_{k}^{i}(A)$ if and only if

$$
\operatorname{rank} \delta_{a}^{i-1}+\operatorname{rank} \delta_{a}^{i} \leqslant b_{i}(A)-k
$$

- Let $I_{r}(\psi)$ denote the ideal of $r \times r$ minors of a $p \times q$ matrix ψ with entries in S, where $I_{0}(\psi)=S$ and $I_{r}(\psi)=0$ if $r>\min (p, q)$. Then:

$$
\begin{aligned}
\mathcal{R}_{k}^{i}(A) & =V\left(I_{b_{i}(A)-k+1}\left(\delta_{A}^{i-1} \oplus \delta_{A}^{i}\right)\right) \\
& =\bigcap_{s+t=b_{i}(A)-k+1}\left(V\left(I_{s}\left(\delta_{A}^{i-1}\right)\right) \cup V\left(I_{t}\left(\delta_{A}^{i}\right)\right)\right) .
\end{aligned}
$$

- In particular, $\mathcal{R}_{k}^{1}(A)=V\left(I_{n-k}\left(\delta_{A}^{1}\right)\right)(0 \leqslant k<n)$ and $\mathcal{R}_{n}^{1}(A)=\{0\}$.
- The (degree i, depth k) resonance scheme $\boldsymbol{R}_{k}^{i}(A)$ is defined by the ideal $I_{b_{i}(A)-k+1}\left(\delta_{A}^{i-1} \oplus \delta_{A}^{i}\right)$; its underlying set is $\mathcal{R}_{k}^{i}(A)$.

EXAMPLE (EXTERIOR ALGEBRA)

Let $E=\wedge V$, where $V=\mathbb{k}^{n}$, and $S=\operatorname{Sym}(V)$. Then $\mathbf{L}(E)$ is the Koszul complex on V. E.g., for $n=3$:

$$
S^{\left(x_{3}-x_{2} x_{1}\right)} S^{3} \xrightarrow{\left(\begin{array}{ccc}
x_{2} & x_{1} & 0 \\
x_{3} & 0 & -x_{1} \\
0 & x_{3} & -x_{2}
\end{array}\right)} S^{3} \xrightarrow{\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)} S .
$$

This chain complex provides a free resolution $\mathbf{L}(E) \rightarrow \mathbb{k}$ of the trivial S-module \mathfrak{k}. Hence,

$$
\mathcal{R}_{k}^{i}(E)= \begin{cases}\{0\} & \text { if } k \leqslant\binom{ n}{i}, \\ \varnothing & \text { otherwise } .\end{cases}
$$

EXAMPLE (NON-ZERO RESONANCE)
Let $A=\bigwedge\left(e_{1}, e_{2}, e_{3}\right) /\left\langle e_{1} e_{2}\right\rangle$, and set $S=\mathbb{k}\left[x_{1}, x_{2}, x_{3}\right]$. Then

$$
\begin{aligned}
& \mathbf{L}(A): S^{2} \xrightarrow{\left(\begin{array}{ccc}
x_{3} & 0 & -x_{1} \\
0 & x_{3} & -x_{2}
\end{array}\right)} S^{3} \xrightarrow{\binom{x_{1}}{x_{2}}} S . \\
& \mathcal{R}_{k}^{1}(A)= \begin{cases}\left\{x_{3}=0\right\} & \text { if } k=1, \\
\{0 & \text { if } k=2 \text { or } 3, \\
\varnothing & \text { if } k>3 .\end{cases}
\end{aligned}
$$

EXAMPLE (NON-LINEAR RESONANCE)
Let $A=\bigwedge\left(e_{1}, \ldots, e_{4}\right) /\left\langle e_{1} e_{3}, e_{2} e_{4}, e_{1} e_{2}+e_{3} e_{4}\right\rangle$. Then

$$
\begin{gathered}
\mathbf{L}(A): S^{3} \xrightarrow{\left(\begin{array}{cccc}
x_{4} & 0 & 0 & -x_{1} \\
0 & x_{3} & -x_{2} & 0 \\
-x_{2} & x_{1} & x_{4} & -x_{3}
\end{array}\right)} S^{4} \xrightarrow{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)} \text { (} S . \\
\mathcal{R}_{1}^{1}(A)=\left\{x_{1} x_{2}+x_{3} x_{4}=0\right\}
\end{gathered}
$$

Resonance varieties of PD-algebras

- Let A be a PD_{m} algebra. For $0 \leqslant i \leqslant m$ and $a \in A^{1}$, the square

$$
\begin{aligned}
& \left(A^{m-i}\right)^{*} \xrightarrow{\left(\delta_{-a}^{m-i-1}\right)^{*}}\left(A^{m-i-1}\right)^{*}
\end{aligned}
$$

commutes up to a sign.

- Consequently,

$$
\left(H^{i}\left(A, \delta_{a}\right)\right)^{*} \cong H^{m-i}\left(A, \delta_{-a}\right) .
$$

- Hence, for all i and k,

$$
\mathcal{R}_{k}^{i}(A)=\mathcal{R}_{k}^{m-i}(A) .
$$

- In particular, $\mathcal{R}_{1}^{m}(A)=\{0\}$.

Corollary

Let A be a PD_{3} algebra with $b_{1}(A)=n$. Then
(1) $\mathcal{R}_{0}^{i}(A)=A^{1}$.
(2) $\mathcal{R}_{1}^{3}(A)=\mathcal{R}_{1}^{0}(A)=\{0\}$ and $\mathcal{R}_{n}^{2}(A)=\mathcal{R}_{n}^{1}(A)=\{0\}$.
(3) $\mathcal{R}_{k}^{2}(A)=\mathcal{R}_{k}^{1}(A)$ for $0<k<n$.
(4) In all other cases, $\mathcal{R}_{k}^{i}(A)=\varnothing$.

THEOREM

Every PD_{3} algebra A decomposes as $A \cong B \# C$, where B are C are PD_{3} algebras such that μ_{B} is irreducible and has the same rank as μ_{A}, and $\mu_{C}=0$. Furthermore, $A^{1} \cong B^{1} \oplus C^{1}$ restricts to isomorphisms

$$
\mathcal{R}_{k}^{1}(A) \cong \mathcal{R}_{k-r+1}^{1}(B) \times C^{1} \cup \mathcal{R}_{k-r}^{1}(B) \times\{0\} \quad(\forall k \geqslant 0)
$$

where $r=$ corank μ_{A}. In particular, $\mathcal{R}_{k}^{1}(A)=A^{1}$ for all $k<\operatorname{corank} \mu_{A}$.
(The rank of a form $\mu: \bigwedge^{3} V \rightarrow \mathbb{k}$ is the minimum dimension of a linear subspace $W \subset V$ such that μ factors through $\wedge^{3} W$.)

- A linear subspace $U \subset V$ is 2-singular with respect to a 3-form $\mu: \wedge^{3} V \rightarrow \mathbb{k}$ if $\mu(a \wedge b \wedge c)=0$ for all $a, b \in U$ and $c \in V$.
- If $\operatorname{dim} U=2$, we simply say U is a singular plane.
- The nullity of μ, denoted null (μ), is the maximum dimension of a 2-singular subspace $U \subset V$.
- Clearly, V contains a singular plane if and only if null $(\mu) \geqslant 2$.
- Let A be a PD_{3} algebra. A linear subspace $U \subset A^{1}$ is 2-singular (with respect to μ_{A}) if and only if U is isotropic.
- Using a result of A. Sikora [2005], we obtain:

Theorem

Let A be a PD_{3} algebra over an algebraically closed field \mathbb{k} $(\operatorname{char}(\mathbb{k}) \neq 2)$, and let $v=\operatorname{null}\left(\mu_{A}\right)$. If $b_{1}(A) \geqslant 4$, then

$$
\operatorname{dim} \mathcal{R}_{v-1}^{1}(A) \geqslant v \geqslant 2
$$

In particular, $\operatorname{dim} \mathcal{R}_{1}^{1}(A) \geqslant v$.

REAL FORMS AND RESONANCE

- Sikora made the following conjecture: If $\mu: \Lambda^{3} V \rightarrow \mathbb{k}$ is a 3-form with $\operatorname{dim} V \geqslant 4$ and if $\operatorname{char}(\mathbb{k}) \neq 2$, then $\operatorname{null}(\mu) \geqslant 2$.
- Conjecture holds if $n:=\operatorname{dim} V$ is even or equal to 5 , or if $\mathbb{k}=\overline{\mathbb{k}}$.
- Work of J. Draisma and R. Shaw [2010, 2014] implies that the conjecture does not hold for $\mathbb{k}=\mathbb{R}$ and $n=7$. We obtain:

THEOREM

Let A be a PD_{3} algebra over \mathbb{R}. Then $\mathcal{R}_{1}^{1}(A) \neq\{0\}$, except when

- $n=1, \mu_{A}=0$.
- $n=3, \mu_{A}=e^{1} e^{2} e^{3}$.
- $n=7, \mu_{A}=-e^{1} e^{3} e^{5}+e^{1} e^{4} e^{6}+e^{2} e^{3} e^{6}+e^{2} e^{4} e^{5}+e^{1} e^{2} e^{7}+e^{3} e^{4} e^{7}+e^{5} e^{6} e^{7}$.

Sketch: If $\mathcal{R}_{1}^{1}(A)=\{0\}$, then the formula $(x \times y) \cdot z=\mu_{A}(x, y, z)$ defines a cross-product on $A^{1}=\mathbb{R}^{n}$, and thus a division algebra structure on \mathbb{R}^{n+1}, forcing $n=1,3$ or 7 by Bott-Milnor/Kervaire [1958].

EXAMPLE

- Let A be the real PD_{3} algebra corresponding to octonionic multiplication (defined as above).
- Let A^{\prime} be the real PD_{3} algebra with $\mu_{A^{\prime}}=e^{1} e^{2} e^{3}+e^{4} e^{5} e^{6}+e^{1} e^{4} e^{7}+e^{2} e^{5} e^{7}+e^{3} e^{6} e^{7}$.
- Then $\mu_{A} \sim \mu_{A^{\prime}}$ over \mathbb{C}, and so $A \otimes_{\mathbb{R}} \mathbb{C} \cong A^{\prime} \otimes_{\mathbb{R}} \mathbb{C}$.
- On the other hand, $A \not \equiv A^{\prime}$ over \mathbb{R}, since $\mu_{A} \nsim \mu_{A^{\prime}}$ over \mathbb{R}, but also because $\mathcal{R}_{1}^{1}(A)=\{0\}$, yet $\mathcal{R}_{1}^{1}\left(A^{\prime}\right) \neq\{0\}$.
- Both $\mathcal{R}_{1}^{1}\left(A \otimes_{\mathbb{R}} \mathbb{C}\right)$ and $\mathcal{R}_{1}^{1}\left(A^{\prime} \otimes_{\mathbb{R}} \mathbb{C}\right)$ are projectively smooth conics, and thus are projectively equivalent over \mathbb{C}, but

$$
\mathcal{R}_{1}^{1}\left(A \otimes_{\mathbb{R}} \mathbb{C}\right)=\left\{x \in \mathbb{C}^{7} \mid x_{1}^{2}+\cdots+x_{7}^{2}=0\right\}
$$

has only one real point $(x=0)$, whereas

$$
\mathcal{R}_{1}^{1}\left(A^{\prime} \otimes_{\mathbb{R}} \mathbb{C}\right)=\left\{x \in \mathbb{C}^{7} \mid x_{1} x_{4}+x_{2} x_{5}+x_{3} x_{6}=x_{7}^{2}\right\}
$$

contains the real (isotropic) subspace $\left\{x_{4}=x_{5}=x_{6}=x_{7}=0\right\}$.

PFAFFIANS AND RESONANCE

- For a $\mathbb{k}-\mathrm{PD}_{3}$ algebra A, the complex $\mathrm{L}(A)=\left(A \otimes_{\mathbb{k}} S, \delta_{A}\right)$ looks like

$$
A^{0} \otimes_{\mathbb{k}} S \xrightarrow{\delta_{A}^{0}} A^{1} \otimes_{\mathbb{k}} S \xrightarrow{\delta_{A}^{1}} A^{2} \otimes_{\mathbb{k}} S \xrightarrow{\delta_{A}^{2}} A^{3} \otimes_{\mathbb{k}} S,
$$

where $\delta_{A}^{0}=\left(x_{1} \cdots x_{n}\right)$ and $\delta_{A}^{2}=\left(\delta_{A}^{0}\right)^{\top}$, while δ_{A}^{1} is the skewsymmetric matrix whose are entries linear forms in S given by

$$
\delta_{A}^{1}\left(e_{i}\right)=\sum_{j=1}^{n} \sum_{k=1}^{n} \mu_{j i k} e_{k}^{\vee} \otimes x_{j}
$$

- Recall that $\mathcal{R}_{k}^{1}(A)=V\left(I_{n-k}\left(\delta_{A}^{1}\right)\right)$. Using work of Buchsbaum and Eisenbud [1977] on Pfaffians of skew-symmetric matrices, we get:

THEOREM

$$
\begin{array}{rlr}
\mathcal{R}_{2 k}^{1}(A)=\mathcal{R}_{2 k+1}^{1}(A)=V\left(\operatorname{Pf}_{n-2 k}\left(\delta_{A}^{1}\right)\right), & \text { if } n \text { is even, } \\
\mathcal{R}_{2 k-1}^{1}(A)=\mathcal{R}_{2 k}^{1}(A)=V\left(\operatorname{Pf}_{n-2 k+1}\left(\delta_{A}^{1}\right)\right), & \text { if } n \text { is odd. }
\end{array}
$$

- Hence, $A^{1}=\mathcal{R}_{0}^{1}=\mathcal{R}_{1}^{1} \supseteq \mathcal{R}_{2}^{1}=\mathcal{R}_{3}^{1} \supseteq \mathcal{R}_{4}^{1}=\cdots$ if $b_{1}(A)$ is even, and $A^{1}=\mathcal{R}_{0}^{1} \supseteq \mathcal{R}_{1}^{1}=\mathcal{R}_{2}^{1} \supseteq \mathcal{R}_{3}^{1}=\mathcal{R}_{4}^{1} \supseteq \cdots$ if $b_{1}(A)$ is odd.

BOTTOM-DEPTH RESONANCE

THEOREM

Let A be a PD_{3} algebra. If μ_{A} has maximal rank $n \geqslant 3$, then

$$
\mathcal{R}_{n-2}^{1}(A)=\mathcal{R}_{n-1}^{1}(A)=\mathcal{R}_{n}^{1}(A)=\{0\}
$$

Otherwise, write $A=B \# C$, where μ_{B} is irreducible and $\mu_{C}=0$. If $n=\operatorname{dim} A^{1}$ is at least 3 , then $\mathcal{R}_{n-2}^{1}(A)=\mathcal{R}_{n-1}^{1}(A)=C^{1}$.

LEMMA (TURAEV 2002)
Suppose $n \geqslant 3$. There is then a polynomial $\operatorname{Det}\left(\mu_{A}\right) \in S$ such that, if $\delta_{A}^{1}(i ; j)$ is the sub-matrix obtained from δ_{A}^{1} by deleting the i-th row and j-th column, then $\operatorname{det} \delta_{A}^{1}(i ; j)=(-1)^{i+j} x_{i} x_{j} \operatorname{Det}\left(\mu_{A}\right)$.
Moreover, if n is even, then $\operatorname{Det}\left(\mu_{A}\right)=0$, while if n is odd, then $\operatorname{Det}\left(\mu_{A}\right)=\operatorname{Pf}\left(\mu_{A}\right)^{2}$, where $\operatorname{pf}\left(\delta_{A}^{1}(i ; i)\right)=(-1)^{i+1} x_{i} \operatorname{Pf}\left(\mu_{A}\right)$.

TOP-DEPTH RESONANCE

Suppose $\operatorname{dim}_{\mathbb{k}} V=2 g+1>1$. We say that a 3 -form $\mu: \Lambda^{3} V \rightarrow \mathbb{k}$ is generic (in the sense of Berceanu-Papadima [1994]) if there is a $v \in V$ such that the 2-form $\gamma_{v} \in V^{*} \wedge V^{*}$ given by $\gamma_{v}(a \wedge b)=\mu_{A}(a \wedge b \wedge v)$ for $a, b \in V$ has rank $2 g$, that is, $\gamma_{v}^{g} \neq 0$ in $\Lambda^{2 g} V^{*}$.
Theorem Let A be a PD_{3} algebra. Then

$$
\mathcal{R}_{1}^{1}(A)= \begin{cases}\varnothing & \text { if } n=0 ; \\ \{0\} & \text { if } n=1 \text { or } n=3 \text { and } \mu \text { has rank } 3 ; \\ V\left(\operatorname{Pf}\left(\mu_{A}\right)\right) & \text { if } n \text { is odd, } n>3, \text { and } \mu_{A} \text { is } B P \text {-generic; } \\ A^{1} & \text { otherwise. }\end{cases}
$$

EXAMPLE

Let $M=\Sigma_{g} \times S^{1}$, where $g \geqslant 2$. Then $\mu_{M}=\sum_{i=1}^{g} a_{i} b_{i} c$ is BP-generic, and $\operatorname{Pf}\left(\mu_{M}\right)=x_{2 g+1}^{g-1}$. Hence, $\mathcal{R}_{1}^{1}(M)=\left\{x_{2 g+1}=0\right\}$. In fact,

$$
\mathcal{R}_{1}^{1}=\cdots=\mathcal{R}_{2 g-2}^{1} \text { and } \mathcal{R}_{2 g-1}^{1}=\mathcal{R}_{2 g}^{1}=\mathcal{R}_{2 g+1}^{1}=\{0\} .
$$

As a corollary, we recover a closely related result, proved by Draisma and Shaw [2010] by very different methods.

Corollary

Let V be a \mathbb{k}-vector space of odd dimension $n \geqslant 5$ and let $\mu \in \bigwedge^{3} V^{*}$.
Then the union of all singular planes is either all of V or a hypersurface defined by a homogeneous polynomial in $\mathbb{k}[V]$ of degree $(n-3) / 2$.

For $\mu \in \Lambda^{3} V^{*}$, there is another genericity condition, due to P. De Poi, D. Faenzi, E. Mezzetti, and K. Ranestad [2017]: $\operatorname{rank}\left(\gamma_{v}\right)>2$, for all non-zero $v \in V$. We may interpret some of their results, as follows.

THEOREM (DFMR)

Let A be a PD_{3} algebra over C , and suppose μ_{A} is generic. Then:

- If n is odd, then $\mathcal{R}_{1}^{1}(A)$ is a hypersurface of degree $(n-3) / 2$ which is smooth if $n \leqslant 7$, and singular in codimension 5 if $n \geqslant 9$.
- If n is even, then $\mathcal{R}_{2}^{1}(A)$ has codim 3 and degree $\frac{1}{4}\binom{n-2}{3}+1$; it is smooth if $n \leqslant 10$, and singular in codimension 7 if $n \geqslant 12$.

Resonance varieties of 3-FORMS of LOW Rank

n	μ	\mathcal{R}_{1}					
3	123	0	\quad	n	μ	$\mathcal{R}_{1}=\mathcal{R}_{2}$	\mathcal{R}_{3}
:---:	:---:	:---:	:---:				
5	$125+345$	$\left\{x_{5}=0\right\}$	0				

n	μ	\mathcal{R}_{1}	$\mathcal{R}_{2}=\mathcal{R}_{3}$	\mathcal{R}_{4}
6	$123+456$	\mathbb{C}^{6}	$\left\{x_{1}=x_{2}=x_{3}=0\right\} \cup\left\{x_{4}=x_{5}=x_{6}=0\right\}$	0
	$123+236+456$	\mathbb{C}^{6}	$\left\{x_{3}=x_{5}=x_{6}=0\right\}$	0

n	μ	$\mathcal{R}_{1}=\mathcal{R}_{2}$	$\mathcal{R}_{3}=\mathcal{R}_{4}$	\mathcal{R}_{5}
7	$147+257+367$	$\left\{x_{7}=0\right\}$	$\left\{x_{7}=0\right\}$	0
	$456+147+257+367$	$\left\{x_{7}=0\right\}$	$\left\{x_{4}=x_{5}=x_{6}=x_{7}=0\right\}$	0
	$123+456+147$	$\left\{x_{1}=0\right\} \cup\left\{x_{4}=0\right\}$	$\left\{x_{1}=x_{2}=x_{3}=x_{4}=0\right\} \cup\left\{x_{1}=x_{4}=x_{5}=x_{6}=0\right\}$	0
	$123+456+147+257$	$\left\{x_{1} x_{4}+x_{2} x_{5}=0\right\}$	$\left\{x_{1}=x_{2}=x_{4}=x_{5}=x_{7}^{2}-x_{3} x_{6}=0\right\}$	0
	$123+456+147+257+367$	$\left\{x_{1} x_{4}+x_{2} x_{5}+x_{3} x_{6}=x_{7}^{2}\right\}$	0	0

n	μ	\mathcal{R}_{1}	$\mathcal{R}_{2}=\mathcal{R}_{3}$	$\mathcal{R}_{4}=\mathcal{R}_{5}$
8	$147+257+367+358$	C^{8}	$\left\{x_{7}=0\right\}$	$\left\{x_{3}=x_{5}=x_{7}=x_{8}=0\right\} \cup\left\{x_{1}=x_{3}=x_{4}=x_{5}=x_{7}=0\right\}$
$456+147+257+367+358$	C^{8}	$\left\{x_{5}=x_{7}=0\right\}$	$\left\{x_{3}=x_{4}=x_{5}=x_{7}=x_{1} x_{8}+x_{6}^{2}=0\right\}$	
$123+456+147+358$	C^{8}	$\left\{x_{1}=x_{5}=0\right\} \cup\left\{x_{3}=x_{4}=0\right\}$	$\left\{x_{1}=x_{3}=x_{4}=x_{5}=x_{2} x_{6}+x_{7} x_{8}=0\right\}$	
$123+456+147+257+358$	C^{8}	$\left\{x_{1}=x_{5}=0\right\} \cup\left\{x_{3}=x_{4}=x_{5}=0\right\}$	$\left\{x_{1}=x_{2}=x_{3}=x_{4}=x_{5}=x_{7}=0\right\}$	
$123+456+147+257+367+358$	C^{8}	$\left\{x_{3}=x_{5}=x_{1} x_{4}-x_{7}^{2}=0\right\}$	$\left\{x_{1}=x_{2}=x_{3}=x_{4}=x_{5}=x_{6}=x_{7}=0\right\}$	
$147+268+358$	C^{8}	$\left\{x_{1}=x_{4}=x_{7}=0\right\} \cup\left\{x_{8}=0\right\}$	$\left\{x_{1}=x_{4}=x_{7}=x_{8}=0\right\} \cup\left\{x_{2}=x_{3}=x_{5}=x_{6}=x_{8}=0\right\}$	
$147+257+268+358$	C^{8}	$L_{1} \cup L_{2} \cup L_{3}$	$L_{1} \cup L_{2}$	
$456+147+257+268+358$	C^{8}	$C_{1} \cup C_{2}$	$L_{1} \cup L_{2}$	
$147+257+367+268+358$	C^{8}	$L_{1} \cup L_{2} \cup L_{3} \cup L_{4}$	$L_{1}^{\prime} \cup L_{2}^{\prime} \cup L_{3}^{\prime}$	
$456+147+257+367+268+358$	C^{8}	$C_{1} \cup C_{2} \cup C_{3}$	$L_{1} \cup L_{2} \cup L_{3}$	
$123+456+147+268+358$	C^{8}	$C_{1} \cup C_{2}$	L	
$123+456+147+257+268+358$	C^{8}	$\left\{f_{1}=\cdots=f_{20}=0\right\}$	0	
$123+456+147+257+367+268+358$	C^{8}	$\left\{g_{1}=\cdots=g_{20}=0\right\}$	0	

