Fundamental groups in algebraic geometry AND THREE-DIMENSIONAL TOPOLOGY

Alex Suciu

Northeastern University

Colloquium
University of Fribourg June 7, 2016

Fundamental groups of manifolds

- Every finitely presented group π can be realized as $\pi=\pi_{1}(M)$, for some smooth, compact, connected manifold M^{n} of $\operatorname{dim} n \geqslant 4$.
- M^{n} can be chosen to be orientable.
- If n even, $n \geqslant 4$, then M^{n} can be chosen to be symplectic (Gompf).
- If n even, $n \geqslant 6$, then M^{n} can be chosen to be complex (Taubes).
- Requiring that $n=3$ puts severe restrictions on the (closed) 3 -manifold group $\pi=\pi_{1}\left(M^{3}\right)$.

KÄHLER GROUPS

- A Kähler manifold is a compact, connected, complex manifold, with a Hermitian metric h such that $\omega=\operatorname{im}(h)$ is a closed 2 -form.
- Smooth, complex projective varieties are Kähler manifolds.
- A group π is called a Kähler group if $\pi=\pi_{1}(M)$, for some Kähler manifold M.
- The group π is a projective group if M can be chosen to be a projective manifold.
- The classes of Kähler and projective groups are closed under finite direct products and passing to finite-index subgroups.
- Every finite group is a projective group.
[Serre ~1955]
- The Kähler condition puts strong restrictions on π, e.g.:
- π is finitely presented.
- $b_{1}(\pi)$ is even.
[by Hodge theory]
- π is 1 -formal
[Deligne-Griffiths-Morgan-Sullivan 1975] (i.e., its Malcev Lie algebra $\mathfrak{m}(\pi):=\operatorname{Prim}(\widehat{\mathbb{Q}[\pi]})$ is quadratic)
- π cannot split non-trivially as a free product.
[Gromov 1989]
- Problem: Are all Kähler groups projective groups?
- Problem [Serre]: Characterize the class of projective groups.

QUASI-PROJECTIVE GROUPS

- A group π is said to be a quasi-projective group if $\pi=\pi_{1}(M \backslash D)$, where M is a smooth, projective variety and D is a divisor.
- Qp groups are finitely presented. The class of qp groups is closed under direct products and passing to finite-index subgroups.
- For a qp group π,
- $b_{1}(\pi)$ can be arbitrary (e.g., the free groups F_{n}).
- π may be non-1-formal (e.g., the Heisenberg group).
- π can split as a non-trivial free product (e.g., $F_{2}=\mathbb{Z} * \mathbb{Z}$).

COMPLEMENTS OF HYPERSURFACES

- A subclass of quasi-projective groups consists of fundamental groups of complements of hypersurfaces in $\mathbb{C P}^{n}$,

$$
\pi=\pi_{1}\left(\mathbb{C P}^{\eta} \backslash\{f=0\}\right), \quad f \in \mathbb{C}\left[z_{0}, \ldots, z_{n}\right] \text { homogeneous. }
$$

- All such groups are 1-formal. [Kohno 1983]
- By the Lefschetz hyperplane sections theorem, $\pi=\pi_{1}\left(\mathbb{C P}^{2} \backslash \mathcal{C}\right)$, for some plane algebraic curve \mathcal{C}.
- Zariski asked Van Kampen to find presentations for such groups.
- Using the Alexander polynomial, Zariski showed that π is not determined by the combinatorics of \mathcal{C}, but depends on the position of its singularities.

PROBLEM (ZARISKI)
Is $\pi=\pi_{1}\left(\mathbb{C P}^{2} \backslash \mathcal{C}\right)$ residually finite, i.e., is the map to the profinite completion, $\pi \rightarrow \pi^{\mathrm{alg}}:=\lim _{G_{\triangle \mathrm{fi.} .} \pi} \pi / G$, injective?

Hyperplane arrangements

- Even more special are the arrangement groups, i.e., the fundamental groups of complements of complex hyperplane arrangements (or, equivalently, complex line arrangements).
- Let \mathcal{A} be an arrangement of lines in $\mathbb{C P}^{2}$, defined by a polynomial $f=\prod_{L \in \mathcal{A}} f_{L}$, with f_{L} linear forms so that $L=\mathbb{P}\left(\operatorname{ker}\left(f_{L}\right)\right)$.
- The combinatorics of \mathcal{A} is encoded in the intersection poset, $\mathcal{L}(\mathcal{A})$, with $\mathcal{L}_{1}(\mathcal{A})=\{$ lines $\}$ and $\mathcal{L}_{2}(\mathcal{A})=\{$ intersection points $\}$.

- Let $U(\mathcal{A})=\mathbb{C P}^{2} \backslash \bigcup_{L \in \mathcal{A}} L$. The group $\pi=\pi_{1}(U(\mathcal{A}))$ has a finite presentation with
- Meridional generators x_{1}, \ldots, x_{n}, where $n=|\mathcal{A}|$, and $\prod x_{i}=1$.
- Commutator relators $x_{i} \alpha_{j}\left(x_{i}\right)^{-1}$, where $\alpha_{1}, \ldots \alpha_{s} \in P_{n} \subset \operatorname{Aut}\left(F_{n}\right)$, and $s=\left|\mathcal{L}_{2}(\mathcal{A})\right|$.
- Let $\gamma_{1}(\pi)=\pi, \quad \gamma_{2}(\pi)=\pi^{\prime}=[\pi, \pi], \quad \gamma_{k}(\pi)=\left[\gamma_{k-1}(\pi), \pi\right]$, be the lower central series of π. Then:
- $\pi_{\mathrm{ab}}=\pi / \gamma_{2}$ equals \mathbb{Z}^{n-1}.
- π / γ_{3} is determined by $L(\mathcal{A})$.
- π / γ_{4} (and thus, π) is not determined by $L(\mathcal{A})$ (G. Rybnikov).

Problem (Orlik)

Is π torsion-free?

- Answer is yes if $U(\mathcal{A})$ is a $K(\pi, 1)$. This happens if the cone on \mathcal{A} is a simplicial arrangement (Deligne), or supersolvable (Terao).

Artin groups

- Let $\Gamma=(V, E)$ be a finite, simple graph, and let $\ell: E \rightarrow \mathbb{Z}_{\geqslant 2}$ be an edge-labeling. The associated Artin group:

$$
A_{\Gamma, \ell}=\langle v \in V| \underbrace{v w v \cdots}_{\ell(e)}=\underbrace{w v w \cdots}_{\ell(e)} \text {, for } e=\{v, w\} \in E\rangle \text {. }
$$

- If (Γ, ℓ) is Dynkin diagram of type A_{n-1} with $\ell(\{i, i+1\})=3$ and $\ell(\{i, j\})=2$ otherwise, then $A_{\Gamma, \ell}$ is the braid group B_{n}.
- If $\ell(e)=2$, for all $e \in E$, then

$$
\left.A_{\Gamma}=\langle v \in \mathrm{~V}| v w=w v \text { if }\{v, w\} \in \mathrm{E}\right\rangle .
$$

is the right-angled Artin group associated to Γ.

- $\Gamma \cong \Gamma^{\prime} \Leftrightarrow A_{\Gamma} \cong A_{\Gamma^{\prime}}$
[Kim-Makar-Limanov-Neggers-Roush 80 / Droms 87]

The corresponding Coxeter group,

$$
W_{\Gamma, \ell}=A_{\Gamma, \ell} /\left\langle v^{2}=1 \mid v \in V\right\rangle,
$$

fits into exact sequence $1 \rightarrow P_{\Gamma, \ell} \rightarrow A_{\Gamma, \ell} \rightarrow W_{\Gamma, \ell} \rightarrow 1$.
THEOREM (BRIESKORN 1971)
If $W_{\Gamma, \ell}$ is finite, then $G_{\Gamma, \ell}$ is quasi-projective.
Idea: let

- $\mathcal{A}_{\Gamma, \ell}=$ reflection arrangement of type $W_{\Gamma, \ell}$ (over \mathbb{C})
- $X_{\Gamma, \ell}=\mathbb{C}^{n} \backslash \bigcup_{H \in \mathcal{A}_{\Gamma, \ell}} H$, where $n=\left|\mathcal{A}_{\Gamma, \ell}\right|$
- $P_{\Gamma, \ell}=\pi_{1}\left(X_{\Gamma, \ell}\right)$
then:

$$
A_{\Gamma, \ell}=\pi_{1}\left(X_{\Gamma, \ell} / W_{\Gamma, \ell}\right)=\pi_{1}\left(\mathbb{C}^{n} \backslash\left\{\delta_{\Gamma, \ell}=0\right\}\right)
$$

THEOREM (KAPOVICH-MilLSON 1998)
There exist infinitely many (Γ, ℓ) such that $A_{\Gamma, \ell}$ is not quasi-projective.

KÄHLER GROUPS VS OTHER GROUPS

QUESTION (DONALDSON-GOLDMAN 1989)
Which 3-manifold groups are Kähler groups?

Theorem (Dimca-S. 2009)

Let π be the fundamental group of a closed 3-manifold. Then π is a Kähler group $\Longleftrightarrow \pi$ is a finite subgroup of $\mathrm{O}(4)$, acting freely on S^{3}.

Alternative proofs: Kotschick (2012), Biswas, Mj, and Seshadri (2012).

```
THEOREM (FRIEDL-S. 2014)
Let N be a 3-manifold with non-empty, toroidal boundary. If }\mp@subsup{\pi}{1}{}(N)\mathrm{ is a Kähler group, then \(N \cong S^{1} \times S^{1} \times I\).
```

Generalization by Kotschick: If $\pi_{1}(N)$ is an infinite Kähler group, then $\pi_{1}(N)$ is a surface group.

THEOREM (DIMCA-PAPADIMA-S. 2009)

Let Γ be a finite simple graph, and A_{Γ} the corresponding RAAG. The following are equivalent:
(1) A_{Γ} is a Kähler group.
(2) A_{Γ} is a free abelian group of even rank.
(3) Γ is a complete graph on an even number of vertices.

THEOREM (S. 2011)

Let \mathcal{A} be an arrangement of lines in $\mathbb{C P}^{2}$, with group $\pi=\pi_{1}(U(\mathcal{A}))$. The following are equivalent:
(1) π is a Kähler group.
(2) π is a free abelian group of even rank.
(3) \mathcal{A} consists of an odd number of lines in general position.

QUASI-PROJECTIVE GROUPS VS OTHER GROUPS

THEOREM (DIMCA-PAPADIMA-S. 2011)

Let π be the fundamental group of a closed, orientable 3-manifold. Assume π is 1 -formal. Then the following are equivalent:
(1) $\mathfrak{m}(\pi) \cong \mathfrak{m}\left(\pi_{1}(X)\right)$, for some quasi-projective manifold X.
(2) $\mathfrak{m}(\pi) \cong \mathfrak{m}\left(\pi_{1}(N)\right)$, where N is either $S^{3}, \#^{n} S^{1} \times S^{2}$, or $S^{1} \times \Sigma_{g}$.

Theorem (Friedl-S. 2014)
Let N be a 3 -mfd with empty or toroidal boundary. If $\pi_{1}(N)$ is a quasiprojective group, then all prime components of N are graph manifolds.

In particular, the fundamental group of a hyperbolic 3-manifold with empty or toroidal boundary is never a qp-group.

THEOREM (DPS 2009)

A right-angled Artin group A_{Γ} is a quasi-projective group if and only if Γ is a complete multipartite graph $K_{n_{1}, \ldots, n_{r}}=\bar{K}_{n_{1}} * \cdots * \bar{K}_{n_{r}}$, in which case $A_{\Gamma}=F_{n_{1}} \times \cdots \times F_{n_{r}}$.

THEOREM (S. 2011)

Let $\pi=\pi_{1}(U(\mathcal{A}))$ be an arrangement group. The following are equivalent:
(1) π is a RAAG.
(2) π is a finite direct product of finitely generated free groups.
(3) $\mathcal{G}(\mathcal{A})$ is a forest.

Here $\mathcal{G}(\mathcal{A})$ is the 'multiplicity' graph, with

- vertices: points $P \in \mathcal{L}_{2}(\mathcal{A})$ with multiplicity at least 3;
- edges: $\{P, Q\}$ if $P, Q \in L$, for some $L \in \mathcal{A}$.

CHARACTERISTIC VARIETIES

- Let X be a connected, finite cell complex, and let $\pi=\pi_{1}\left(X, x_{0}\right)$.
- Let $\operatorname{Char}(X)=\operatorname{Hom}\left(\pi, \mathrm{C}^{*}\right)$ be the affine algebraic group of C-valued, multiplicative characters on π.
- The characteristic varieties of X are the jump loci for homology with coefficients in rank-1 local systems on X :

$$
\mathcal{V}_{s}^{q}(X)=\left\{\rho \in \operatorname{Char}(X) \mid \operatorname{dim}_{\mathrm{C}} H_{q}\left(X, \mathrm{C}_{\rho}\right) \geqslant s\right\} .
$$

Here, C_{ρ} is the local system defined by ρ, i.e, C viewed as a $\mathrm{C} \pi$-module, via $g \cdot x=\rho(g) x$, and $H_{i}\left(X, \mathrm{C}_{\rho}\right)=H_{i}\left(C_{\mathbf{0}}(\widetilde{X}, \mathbb{k}) \otimes_{\mathcal{C} \pi} \mathrm{C}_{\rho}\right)$.

- These loci are Zariski closed subsets of the character group.
- The sets $\mathcal{V}_{s}^{1}(X)$ depend only on $\pi / \pi^{\prime \prime}$.

Example (Circle)

We have $\widetilde{S^{1}}=\mathbb{R}$. Identify $\pi_{1}\left(S^{1}, *\right)=\mathbb{Z}=\langle t\rangle$ and $\mathbb{C} \mathbb{Z}=\mathbb{C}\left[t^{ \pm 1}\right]$. Then:

$$
C_{*}\left(\widetilde{S^{1}}, \mathbb{C}\right): 0 \longrightarrow \mathbb{C}\left[t^{ \pm 1}\right] \xrightarrow{t-1} \mathbb{C}\left[t^{ \pm 1}\right] \longrightarrow 0
$$

For $\rho \in \operatorname{Hom}\left(\mathbb{Z}, \mathbb{C}^{*}\right)=\mathbb{C}^{*}$, we get

$$
C_{*}\left(\widetilde{S^{1}}, \mathbb{C}\right) \otimes_{\mathbb{C}} \mathbb{C}_{\rho}: 0 \longrightarrow \mathbb{C} \xrightarrow{\rho-1} \mathbb{C} \longrightarrow 0,
$$

which is exact, except for $\rho=1$, when $H_{0}\left(S^{1}, \mathbb{C}\right)=H_{1}\left(S^{1}, \mathbb{C}\right)=\mathbb{C}$. Hence: $\mathcal{V}_{1}^{0}\left(S^{1}\right)=\mathcal{V}_{1}^{1}\left(S^{1}\right)=\{1\}$ and $\mathcal{V}_{s}^{i}\left(S^{1}\right)=\varnothing$, otherwise.

EXAMPLE (PUNCTURED COMPLEX LINE)

 Identify $\pi_{1}(\mathbb{C} \backslash\{n$ points $\})=F_{n}$, and $\widehat{F_{n}}=\left(\mathbb{C}^{*}\right)^{n}$. Then:$$
\mathcal{V}_{s}^{1}(\mathbb{C} \backslash\{n \text { points }\})= \begin{cases}\left(\mathbb{C}^{*}\right)^{n} & \text { if } s<n \\ \{1\} & \text { if } s=n \\ \varnothing & \text { if } s>n\end{cases}
$$

Resonance varieties

- Let $A=H^{*}(X, C)$. Then: $a \in A^{1} \Rightarrow a^{2}=0$.
- We thus get a cochain complex

$$
(A, \cdot a): A^{0} \xrightarrow{a} A^{1} \xrightarrow{a} A^{2} .
$$

- The resonance varieties of X are the jump loci for the cohomology of this complex

$$
\mathcal{R}_{s}^{q}(X)=\left\{a \in A^{1} \mid \operatorname{dim}_{\mathbb{k}} H^{q}(A, \cdot a) \geqslant s\right\}
$$

- E.g., $\mathcal{R}_{1}^{1}(X)=\left\{a \in A^{1} \mid \exists b \in A^{1}, b \neq \lambda a, a b=0\right\}$.
- These loci are homogeneous subvarieties of $A^{1}=H^{1}(X, \mathrm{C})$.

EXAMPLE

- $\mathcal{R}_{1}^{1}\left(T^{n}\right)=\{0\}$, for all $n>0$.
- $\mathcal{R}_{1}^{1}(\mathbb{C} \backslash\{n$ points $\})=\mathbb{C}^{n}$, for all $n>1$.

The Tangent Cone theorem

- Given a subvariety $W \subset\left(\mathbb{C}^{*}\right)^{n}$, let $\tau_{1}(W)=\left\{z \in \mathbb{C}^{n} \mid \exp (\lambda z) \in W, \forall \lambda \in \mathbb{C}\right\}$.
- (Dimca-Papadima-S. 2009) $\tau_{1}(W)$ is a finite union of rationally defined linear subspaces, and $\tau_{1}(W) \subseteq \mathrm{TC}_{1}(W)$.
- (Libgober 2002/DPS 2009)

$$
\tau_{1}\left(\mathcal{V}_{s}^{i}(X)\right) \subseteq \mathrm{TC}_{1}\left(\mathcal{V}_{s}^{i}(X)\right) \subseteq \mathcal{R}_{s}^{i}(X)
$$

- (DPS 2009/DP 2014): Suppose X is a k-formal space. Then, for each $i \leqslant k$ and $s>0$,

$$
\tau_{1}\left(\mathcal{V}_{s}^{i}(X)\right)=\mathrm{TC}_{1}\left(\mathcal{V}_{s}^{i}(X)\right)=\mathcal{R}_{s}^{i}(X)
$$

- Consequently, $\mathcal{R}_{s}^{i}(X)$ is a union of rationally defined linear subspaces in $H^{1}(X, \mathbb{C})$.

QuAsi-PROJECTIVE VARIETIES

Theorem (Arapura 1997, ... , Budur-WANG 2015)
Let X be a smooth, quasi-projective variety. Then each $\mathcal{V}_{s}^{i}(X)$ is a finite union of torsion-translated subtori of $\operatorname{Char}(X)$.

In particular, if π is a quasi-projective group, then all components of $V_{1}^{1}(\pi)$ are torsion-translated subtori of $\operatorname{Hom}\left(\pi, \mathbb{C}^{*}\right)$.

The Alexander polynomial of a f.p. group π is the Laurent polynomial Δ_{π} in $\Lambda:=\mathbb{C}\left[\pi_{\mathrm{ab}} /\right.$ Tors $]$ gotten by taking the gcd of the maximal minors of a presentation matrix for the Λ-module $H_{1}(\pi, \Lambda)$.

THEOREM (DIMCA-PAPADIMA-S. 2008)
Let π be a quasi-projective group.

- If $b_{1}(\pi) \neq 2$, then the Newton polytope of Δ_{π} is a line segment.
- If π is a Kähler group, then $\Delta_{\pi} \doteq$ const.

TORIC COMPLEXES AND RAAGS

- Given a simplicial complex L on n vertices, let T_{L} be the corresponding subcomplex of the n-torus T^{n}.
- Then $\pi_{1}\left(T_{L}\right)=A_{\Gamma}$, where $\Gamma=L^{(1)}$ and $K\left(A_{\Gamma}, 1\right)=T_{\Delta_{\Gamma}}$.
- Identify $H^{1}\left(T_{L}, C\right)$ with $\mathbb{C}^{V}=\operatorname{span}\{v \mid v \in \mathrm{~V}\}$.

THEOREM (PAPADIMA-S. 2010)

$$
\begin{aligned}
& \mathcal{R}_{s}^{i}\left(T_{L}\right)=\quad \bigcup \quad \mathbb{C}^{W}, \\
& \sum_{\sigma \in L_{V W}} \operatorname{dim}_{C} \tilde{H}_{i-1-|\sigma|}\left(\mathbb{K}_{L_{W}}(\sigma), C\right) \geqslant s
\end{aligned}
$$

where L_{W} is the subcomplex induced by L on W , and $\mathrm{k}_{K}(\sigma)$ is the link of a simplex σ in a subcomplex $K \subseteq L$.

In particular: $\quad \mathcal{R}_{1}^{1}\left(A_{\Gamma}\right)=\bigcup_{W \in V} C^{W}$.
Γ_{W} disconnected

CLOSED 3-MANIFOLDS

- Let M be a closed, orientable 3-manifold.
- An orientation class $[M] \in H_{3}(M, \mathbb{Z}) \cong \mathbb{Z}$ defines an alternating 3 -form μ_{M} on $H^{1}(M, \mathbb{Z})$ by $\mu_{M}(a, b, c)=\langle a \cup b \cup c,[M]\rangle$.

Theorem (S. 2016)

Set $n=b_{1}(M)$. Then $\mathcal{R}_{1}^{1}(M)=\varnothing$ if $n=0, \mathcal{R}_{1}^{1}(M)=\{0\}$ if $n=1$, and otherwise

$$
\mathcal{R}_{1}^{1}(M)=V\left(\operatorname{Det}\left(\mu_{M}\right)\right)= \begin{cases}H^{1}(M, \mathbb{C}) & \text { if } n \text { is even, } \\ V\left(\operatorname{Pf}\left(\mu_{M}\right)\right) & \text { if } n \text { is odd. }\end{cases}
$$

THEOREM (S. 2016)
If $b_{1}(M) \neq 2$, then $\mathrm{TC}_{1}\left(\mathcal{V}_{1}^{1}(M)\right)=\mathcal{R}_{1}^{1}(M)$.
In general, $\tau_{1}\left(\mathcal{V}_{1}^{1}(M)\right) \subsetneq \mathrm{TC}_{1}\left(\mathcal{V}_{1}^{1}(M)\right)$, in which case M is not 1 -formal.

THE RFRp PROPERTY

Joint work with Thomas Koberda (arxiv:1604.02010)
Let G be a finitely generated group and let p be a prime.
We say that G is residually finite rationally p if there exists a sequence of subgroups $G=G_{0}>\cdots>G_{i}>G_{i+1}>\cdots$ such that
(1) $G_{i+1} \triangleleft G_{i}$.
(2) $\bigcap_{i \geqslant 0} G_{i}=\{1\}$.
(3) G_{i} / G_{i+1} is an elementary abelian p-group.
(4) $\operatorname{ker}\left(G_{i} \rightarrow H_{1}\left(G_{i}, Q\right)\right)<G_{i+1}$.

Remarks:

- We may assume that each $G_{i} \triangleleft G$.
- G is RFRp if and only if $\operatorname{rad}_{p}(G):=\bigcap_{i} G_{i}$ is trivial.
- For each prime p, there exists a finitely presented group G_{p} which is RFR p, but not RFR q for any prime $q \neq p$.
- $G R F R p \Rightarrow$ residually $p \Rightarrow$ residually finite and residually nilpotent.
- G RFR $\Rightarrow \Rightarrow G$ torsion-free.
- G finitely presented and $\operatorname{RFR} p \Rightarrow G$ has solvable word problem.
- The class of RFRp groups is closed under taking subgroups, finite direct products, and finite free products.
- Finitely generated free groups F_{n}, surface groups $\pi_{1}\left(\Sigma_{g}\right)$, and right-angled Artin groups A_{Γ} are RFRp, for all p.
- Finite groups and non-abelian nilpotent groups are not RFRp, for any p.

> Theorem (A Tits Alternative for RFRp groups)
> If G is a finitely presented group which is RFRp for infinitely many primes p, then either G is abelian or G is large (i.e., it virtually surjects onto a non-abelian free group).

A COMBINATION THEOREM

- The RFRp topology on a group G has basis the cosets of the standard RFRp filtration $\left\{G_{i}\right\}$ of G.
- G is RFRp iff this topology is Hausdorff.

Theorem

Fix a prime p. Let $X=X_{\Gamma}$ be a finite graph of connected, finite CW-complexes with vertex spaces $\left\{X_{V}\right\}_{v \in V(\Gamma)}$ and edge spaces $\left\{X_{e}\right\}_{e \in E(\Gamma)}$ satisfying the following conditions:
(1) For each $v \in V(\Gamma)$, the group $\pi_{1}\left(X_{v}\right)$ is RFRp.
(2) For each $v \in V(\Gamma)$, the RFRp topology on $\pi_{1}(X)$ induces the RFRp topology on $\pi_{1}\left(X_{v}\right)$ by restriction.
(3) For each $e \in E(\Gamma)$ and each $v \in e$, the subgroup $\phi_{e, v}\left(\pi_{1}\left(X_{e}\right)\right)$ of $\pi_{1}\left(X_{v}\right)$ is closed in the RFRp topology on $\pi_{1}\left(X_{v}\right)$.
Then $\pi_{1}(X)$ is RFRp.

BOUNDARY MANIFOLDS OF LINE ARRANGEMENTS

- Let \mathcal{A} be an arrangement of lines in $\mathbb{C P}^{2}$, and let N be a regular neighborhood of $\bigcup_{L \in \mathcal{A}} L$.
- The boundary manifold of \mathcal{A} is $M=\partial N$, a compact, orientable, smooth manifold of dimension 3.

EXAMPLE

Let \mathcal{A} be a pencil of n lines in $\mathbb{C P}^{2}$, defined by $f=z_{1}^{n}-z_{2}^{n}$. If $n=1$, then $M=S^{3}$. If $n>1$, then $M=\sharp^{n-1} S^{1} \times S^{2}$.

EXAMPLE

Let \mathcal{A} be a near-pencil of n lines in $\mathbb{C P}^{2}$, defined by $f=z_{1}\left(z_{2}^{n-1}-z_{3}^{n-1}\right)$. Then $M=S^{1} \times \Sigma_{n-2}$, where $\Sigma_{g}=\sharp^{9} S^{1} \times S^{1}$.

- M is a graph-manifold M_{Γ}, where Γ is the incidence graph of \mathcal{A}, with $V(\Gamma)=L_{1}(\mathcal{A}) \cup L_{2}(\mathcal{A})$ and $E(\Gamma)=\{(L, P) \mid P \in L\}$.
- For each $v \in V(\Gamma)$, there is a vertex manifold $M_{v}=S^{1} \times S_{v}$, with $S_{v}=S^{2} \backslash \bigcup_{\{v, w\} \in E(\Gamma)} D_{V, w}^{2}$.
- Vertex manifolds are glued along edge manifolds $M_{e}=S^{1} \times S^{1}$ via flips.
- The boundary manifold of a line arrangement in \mathbb{C}^{2} is defined as $M=\partial N \cap D^{4}$, for some sufficiently large 4-ball D^{4}.

THEOREM

If M is the boundary manifold of a line arrangement in \mathbb{C}^{2}, then $\pi_{1}(M)$ is RFRp, for all primes p.

Conjecture

Arrangement groups are RFRp, for all primes p.

