FUNDAMENTAL GROUPS IN ALGEBRAIC GEOMETRY AND THREE-DIMENSIONAL TOPOLOGY

Alex Suciu

Northeastern University

Colloquium University of Fribourg June 7, 2016

FUNDAMENTAL GROUPS OF MANIFOLDS

- Every finitely presented group π can be realized as π = π₁(M), for some smooth, compact, connected manifold Mⁿ of dim n ≥ 4.
- *Mⁿ* can be chosen to be orientable.
- If *n* even, $n \ge 4$, then M^n can be chosen to be symplectic (Gompf).
- If *n* even, $n \ge 6$, then M^n can be chosen to be complex (Taubes).
- Requiring that n = 3 puts severe restrictions on the (closed) 3-manifold group $\pi = \pi_1(M^3)$.

KÄHLER GROUPS

- A Kähler manifold is a compact, connected, complex manifold, with a Hermitian metric h such that ω = im(h) is a closed 2-form.
- Smooth, complex projective varieties are K\u00e4hler manifolds.
- A group π is called a Kähler group if π = π₁(M), for some Kähler manifold M.
- The group π is a *projective group* if *M* can be chosen to be a projective manifold.
- The classes of Kähler and projective groups are closed under finite direct products and passing to finite-index subgroups.
- Every finite group is a projective group. [Serre ~1955]

• The Kähler condition puts strong restrictions on π , e.g.:

- π is finitely presented.
- $b_1(\pi)$ is even. [by Hodge theory]
- π is 1-formal [Deligne–Griffiths–Morgan–Sullivan 1975] (i.e., its Malcev Lie algebra $\mathfrak{m}(\pi) := \operatorname{Prim}(\widehat{\mathbb{Q}[\pi]})$ is quadratic)
- π cannot split non-trivially as a free product. [Gromov 1989]
- Problem: Are all Kähler groups projective groups?
- Problem [Serre]: Characterize the class of projective groups.

QUASI-PROJECTIVE GROUPS

- A group π is said to be a *quasi-projective group* if $\pi = \pi_1(M \setminus D)$, where *M* is a smooth, projective variety and *D* is a divisor.
- Qp groups are finitely presented. The class of qp groups is closed under direct products and passing to finite-index subgroups.
- For a qp group π ,
 - $b_1(\pi)$ can be arbitrary (e.g., the free groups F_n).
 - π may be non-1-formal (e.g., the Heisenberg group).
 - π can split as a non-trivial free product (e.g., $F_2 = \mathbb{Z} * \mathbb{Z}$).

COMPLEMENTS OF HYPERSURFACES

 A subclass of quasi-projective groups consists of fundamental groups of complements of hypersurfaces in CPⁿ,

 $\pi = \pi_1(\mathbb{CP}^n \setminus \{f = 0\}), \quad f \in \mathbb{C}[z_0, \dots, z_n] \text{ homogeneous.}$

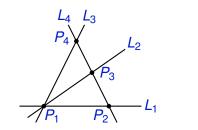
- All such groups are 1-formal. [Kohno 1983]
- By the Lefschetz hyperplane sections theorem, $\pi = \pi_1(\mathbb{CP}^2 \setminus \mathcal{C})$, for some plane algebraic curve \mathcal{C} .
- Zariski asked Van Kampen to find presentations for such groups.
- Using the Alexander polynomial, Zariski showed that π is not determined by the combinatorics of C, but depends on the position of its singularities.

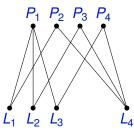
PROBLEM (ZARISKI)

Is $\pi = \pi_1(\mathbb{CP}^2 \setminus \mathcal{C})$ residually finite, *i.e.*, *is the map to the profinite completion*, $\pi \to \pi^{\text{alg}} := \lim_{G \lhd_{f_i},\pi} \pi/G$, *injective*?

HYPERPLANE ARRANGEMENTS

- Even more special are the *arrangement groups*, i.e., the fundamental groups of complements of complex hyperplane arrangements (or, equivalently, complex line arrangements).
- Let \mathcal{A} be an *arrangement of lines* in \mathbb{CP}^2 , defined by a polynomial $f = \prod_{L \in \mathcal{A}} f_L$, with f_L linear forms so that $L = \mathbb{P}(\text{ker}(f_L))$.
- The combinatorics of \mathcal{A} is encoded in the *intersection poset*, $\mathcal{L}(\mathcal{A})$, with $\mathcal{L}_1(\mathcal{A}) = \{\text{lines}\}$ and $\mathcal{L}_2(\mathcal{A}) = \{\text{intersection points}\}.$





- Let $U(\mathcal{A}) = \mathbb{CP}^2 \setminus \bigcup_{L \in \mathcal{A}} L$. The group $\pi = \pi_1(U(\mathcal{A}))$ has a finite presentation with
 - Meridional generators x_1, \ldots, x_n , where $n = |\mathcal{A}|$, and $\prod x_i = 1$.
 - Commutator relators $x_i \alpha_j(x_i)^{-1}$, where $\alpha_1, \ldots \alpha_s \in P_n \subset Aut(F_n)$, and $s = |\mathcal{L}_2(\mathcal{A})|$.
- Let $\gamma_1(\pi) = \pi$, $\gamma_2(\pi) = \pi' = [\pi, \pi]$, $\gamma_k(\pi) = [\gamma_{k-1}(\pi), \pi]$, be the lower central series of π . Then:
 - $\pi_{ab} = \pi / \gamma_2$ equals \mathbb{Z}^{n-1} .
 - π/γ_3 is determined by $L(\mathcal{A})$.
 - π/γ_4 (and thus, π) is *not* determined by $L(\mathcal{A})$ (G. Rybnikov).

PROBLEM (ORLIK)

Is π torsion-free?

• Answer is yes if U(A) is a $K(\pi, 1)$. This happens if the cone on A is a simplicial arrangement (Deligne), or supersolvable (Terao).

8 / 26

ARTIN GROUPS

Let Γ = (V, E) be a finite, simple graph, and let ℓ: E → Z_{≥2} be an edge-labeling. The associated Artin group:

$$\mathcal{A}_{\Gamma,\ell} = \langle \mathbf{v} \in V \mid \underbrace{\mathbf{vwv} \cdots}_{\ell(e)} = \underbrace{\mathbf{wvw} \cdots}_{\ell(e)}, \text{ for } \mathbf{e} = \{\mathbf{v}, \mathbf{w}\} \in E \rangle.$$

- If (Γ, ℓ) is Dynkin diagram of type A_{n-1} with $\ell(\{i, i+1\}) = 3$ and $\ell(\{i, j\}) = 2$ otherwise, then $A_{\Gamma, \ell}$ is the braid group B_n .
- If $\ell(e) = 2$, for all $e \in E$, then

$$\mathbf{A}_{\Gamma} = \langle \mathbf{v} \in \mathsf{V} \mid \mathbf{v}\mathbf{w} = \mathbf{w}\mathbf{v} \text{ if } \{\mathbf{v}, \mathbf{w}\} \in \mathsf{E} \rangle.$$

is the *right-angled Artin group* associated to Γ .

• $\Gamma \cong \Gamma' \Leftrightarrow A_{\Gamma} \cong A_{\Gamma'}$ [Kim–Makar-Limanov–Neggers–Roush 80 / Droms 87] The corresponding Coxeter group,

$$W_{\Gamma,\ell} = A_{\Gamma,\ell} / \langle v^2 = 1 \mid v \in V \rangle,$$

fits into exact sequence $1 \longrightarrow P_{\Gamma,\ell} \longrightarrow A_{\Gamma,\ell} \longrightarrow W_{\Gamma,\ell} \longrightarrow 1$.

THEOREM (BRIESKORN 1971)

If $W_{\Gamma,\ell}$ is finite, then $G_{\Gamma,\ell}$ is quasi-projective.

Idea: let

• $\mathcal{A}_{\Gamma,\ell}$ = reflection arrangement of type $W_{\Gamma,\ell}$ (over \mathbb{C})

•
$$X_{\Gamma,\ell} = \mathbb{C}^n \setminus \bigcup_{H \in \mathcal{A}_{\Gamma,\ell}} H$$
, where $n = |\mathcal{A}_{\Gamma,\ell}|$

• $P_{\Gamma,\ell} = \pi_1(X_{\Gamma,\ell})$

then:

$$A_{\Gamma,\ell} = \pi_1(X_{\Gamma,\ell} / W_{\Gamma,\ell}) = \pi_1(\mathbb{C}^n \setminus \{\delta_{\Gamma,\ell} = \mathbf{0}\})$$

THEOREM (KAPOVICH-MILLSON 1998)

There exist infinitely many (Γ, ℓ) such that $A_{\Gamma, \ell}$ is not quasi-projective.

KÄHLER GROUPS VS OTHER GROUPS

QUESTION (DONALDSON-GOLDMAN 1989)

Which 3-manifold groups are Kähler groups?

THEOREM (DIMCA-S. 2009)

Let π be the fundamental group of a closed 3-manifold. Then π is a Kähler group $\iff \pi$ is a finite subgroup of O(4), acting freely on S³.

Alternative proofs: Kotschick (2012), Biswas, Mj, and Seshadri (2012).

THEOREM (FRIEDL-S. 2014)

Let N be a 3-manifold with non-empty, toroidal boundary. If $\pi_1(N)$ is a Kähler group, then $N \cong S^1 \times S^1 \times I$.

Generalization by Kotschick: If $\pi_1(N)$ is an infinite Kähler group, then $\pi_1(N)$ is a surface group.

ALEX SUCIU (NORTHEASTERN)

THEOREM (DIMCA–PAPADIMA–S. 2009)

Let Γ be a finite simple graph, and A_{Γ} the corresponding RAAG. The following are equivalent:

- (1) A_{Γ} is a Kähler group.
- 2 A_{Γ} is a free abelian group of even rank.
- \bigcirc **I** is a complete graph on an even number of vertices.

THEOREM (S. 2011)

Let \mathcal{A} be an arrangement of lines in \mathbb{CP}^2 , with group $\pi = \pi_1(U(\mathcal{A}))$. The following are equivalent:

- 1) π is a Kähler group.
- 2 π is a free abelian group of even rank.
- 3 *A* consists of an odd number of lines in general position.

QUASI-PROJECTIVE GROUPS VS OTHER GROUPS

THEOREM (DIMCA-PAPADIMA-S. 2011)

Let π be the fundamental group of a closed, orientable 3-manifold. Assume π is 1-formal. Then the following are equivalent: (1) $\mathfrak{m}(\pi) \cong \mathfrak{m}(\pi_1(X))$, for some quasi-projective manifold X. (2) $\mathfrak{m}(\pi) \cong \mathfrak{m}(\pi_1(N))$, where N is either S^3 , $\#^n S^1 \times S^2$, or $S^1 \times \Sigma_q$.

THEOREM (FRIEDL-S. 2014)

Let N be a 3-mfd with empty or toroidal boundary. If $\pi_1(N)$ is a quasiprojective group, then all prime components of N are graph manifolds.

In particular, the fundamental group of a hyperbolic 3-manifold with empty or toroidal boundary is never a qp-group.

THEOREM (DPS 2009)

A right-angled Artin group A_{Γ} is a quasi-projective group if and only if Γ is a complete multipartite graph $K_{n_1,...,n_r} = \overline{K}_{n_1} * \cdots * \overline{K}_{n_r}$, in which case $A_{\Gamma} = F_{n_1} \times \cdots \times F_{n_r}$.

THEOREM (S. 2011)

Let $\pi = \pi_1(U(\mathcal{A}))$ be an arrangement group. The following are equivalent:

1) π is a RAAG.

(2) π is a finite direct product of finitely generated free groups.

(3) $\mathcal{G}(\mathcal{A})$ is a forest.

Here $\mathcal{G}(\mathcal{A})$ is the 'multiplicity' graph, with

- vertices: points $P \in \mathcal{L}_2(\mathcal{A})$ with multiplicity at least 3;
- edges: $\{P, Q\}$ if $P, Q \in L$, for some $L \in A$.

CHARACTERISTIC VARIETIES

- Let X be a connected, finite cell complex, and let $\pi = \pi_1(X, x_0)$.
- Let Char(X) = Hom(π, C*) be the affine algebraic group of C-valued, multiplicative characters on π.
- The *characteristic varieties* of *X* are the jump loci for homology with coefficients in rank-1 local systems on *X*:

 $\mathcal{V}^{q}_{s}(X) = \{ \rho \in \operatorname{Char}(X) \mid \dim_{\mathbb{C}} H_{q}(X, \mathbb{C}_{\rho}) \ge s \}.$

Here, \mathbb{C}_{ρ} is the local system defined by ρ , i.e, \mathbb{C} viewed as a $\mathbb{C}\pi$ -module, via $g \cdot x = \rho(g)x$, and $H_i(X, \mathbb{C}_{\rho}) = H_i(C_{\bullet}(\widetilde{X}, \Bbbk) \otimes_{\mathbb{C}\pi} \mathbb{C}_{\rho})$.

- These loci are Zariski closed subsets of the character group.
- The sets $\mathcal{V}_s^1(X)$ depend only on π/π'' .

EXAMPLE (CIRCLE)

We have $\widetilde{S}^1 = \mathbb{R}$. Identify $\pi_1(S^1, *) = \mathbb{Z} = \langle t \rangle$ and $\mathbb{C}\mathbb{Z} = \mathbb{C}[t^{\pm 1}]$. Then:

$$C_*(\widetilde{S}^1,\mathbb{C}): 0 \longrightarrow \mathbb{C}[t^{\pm 1}] \xrightarrow{t-1} \mathbb{C}[t^{\pm 1}] \longrightarrow 0$$

For $\rho \in \operatorname{Hom}(\mathbb{Z}, \mathbb{C}^*) = \mathbb{C}^*$, we get

$$\mathcal{C}_*(\widetilde{S^1},\mathbb{C})\otimes_{\mathbb{CZ}}\mathbb{C}_
ho:\ \mathbf{0}\longrightarrow\mathbb{C}\stackrel{
ho-\mathbf{1}}{\longrightarrow}\mathbb{C}\longrightarrow\mathbf{0}$$
 ,

which is exact, except for $\rho = 1$, when $H_0(S^1, \mathbb{C}) = H_1(S^1, \mathbb{C}) = \mathbb{C}$. Hence: $\mathcal{V}_1^0(S^1) = \mathcal{V}_1^1(S^1) = \{1\}$ and $\mathcal{V}_s^i(S^1) = \emptyset$, otherwise.

EXAMPLE (PUNCTURED COMPLEX LINE)

Identify $\pi_1(\mathbb{C}\setminus\{n \text{ points}\}) = F_n$, and $\widehat{F_n} = (\mathbb{C}^*)^n$. Then: $\mathcal{V}_s^1(\mathbb{C}\setminus\{n \text{ points}\}) = \begin{cases} (\mathbb{C}^*)^n & \text{if } s < n, \\ \{1\} & \text{if } s = n, \\ \emptyset & \text{if } s > n. \end{cases}$

RESONANCE VARIETIES

- Let $A = H^*(X, \mathbb{C})$. Then: $a \in A^1 \Rightarrow a^2 = 0$.
- We thus get a cochain complex

$$(A, \cdot a): A^0 \xrightarrow{a} A^1 \xrightarrow{a} A^2 \longrightarrow \cdots$$

• The *resonance varieties* of *X* are the jump loci for the cohomology of this complex

$$\mathcal{R}^{q}_{s}(X) = \{ a \in A^{1} \mid \dim_{\Bbbk} H^{q}(A, \cdot a) \ge s \}$$

- E.g., $\mathcal{R}_1^1(X) = \{ a \in A^1 \mid \exists b \in A^1, b \neq \lambda a, ab = 0 \}.$
- These loci are *homogeneous* subvarieties of $A^1 = H^1(X, \mathbb{C})$.

EXAMPLE

- $\mathcal{R}_1^1(T^n) = \{0\}$, for all n > 0.
- $\mathcal{R}_1^1(\mathbb{C}\setminus\{n \text{ points}\}) = \mathbb{C}^n$, for all n > 1.

THE TANGENT CONE THEOREM

- Given a subvariety $W \subset (\mathbb{C}^*)^n$, let $\tau_1(W) = \{z \in \mathbb{C}^n \mid \exp(\lambda z) \in W, \forall \lambda \in \mathbb{C}\}.$
- (Dimca–Papadima–S. 2009) τ₁(W) is a finite union of rationally defined linear subspaces, and τ₁(W) ⊆ TC₁(W).
- (Libgober 2002/DPS 2009)

 $\tau_1(\mathcal{V}^i_{\boldsymbol{s}}(\boldsymbol{X})) \subseteq \mathsf{TC}_1(\mathcal{V}^i_{\boldsymbol{s}}(\boldsymbol{X})) \subseteq \mathcal{R}^i_{\boldsymbol{s}}(\boldsymbol{X}).$

(DPS 2009/DP 2014): Suppose X is a k-formal space. Then, for each i ≤ k and s > 0,

$$\tau_1(\mathcal{V}_s^i(X)) = \mathsf{TC}_1(\mathcal{V}_s^i(X)) = \mathcal{R}_s^i(X).$$

Consequently, *Rⁱ_s(X)* is a union of rationally defined linear subspaces in *H*¹(*X*, ℂ).

QUASI-PROJECTIVE VARIETIES

THEOREM (ARAPURA 1997, ..., BUDUR–WANG 2015)

Let X be a smooth, quasi-projective variety. Then each $\mathcal{V}_{s}^{i}(X)$ is a finite union of torsion-translated subtori of $\operatorname{Char}(X)$.

In particular, if π is a quasi-projective group, then all components of $V_1^1(\pi)$ are torsion-translated subtori of $\text{Hom}(\pi, \mathbb{C}^*)$.

The Alexander polynomial of a f.p. group π is the Laurent polynomial Δ_{π} in $\Lambda := \mathbb{C}[\pi_{ab}/\text{Tors}]$ gotten by taking the gcd of the maximal minors of a presentation matrix for the Λ -module $H_1(\pi, \Lambda)$.

THEOREM (DIMCA-PAPADIMA-S. 2008)

Let π be a quasi-projective group.

- If $b_1(\pi) \neq 2$, then the Newton polytope of Δ_{π} is a line segment.
- If π is a Kähler group, then $\Delta_{\pi} \doteq \text{const.}$

TORIC COMPLEXES AND RAAGS

- Given a simplicial complex *L* on *n* vertices, let *T_L* be the corresponding subcomplex of the *n*-torus *Tⁿ*.
- Then $\pi_1(T_L) = A_{\Gamma}$, where $\Gamma = L^{(1)}$ and $K(A_{\Gamma}, 1) = T_{\Delta_{\Gamma}}$.
- Identify $H^1(T_L, \mathbb{C})$ with $\mathbb{C}^{\mathsf{V}} = \operatorname{span}\{v \mid v \in \mathsf{V}\}.$

THEOREM (PAPADIMA-S. 2010)

$$\mathcal{C}_{s}^{i}(\mathcal{T}_{L}) = \bigcup_{\substack{\mathsf{W} \subset \mathsf{V} \\ \sum_{\sigma \in \mathcal{L}_{\mathsf{V},\mathsf{W}}} \mathsf{dim}_{\mathsf{C}} \widetilde{\mathcal{H}}_{i-1-|\sigma|}(\mathsf{lk}_{\mathcal{L}_{\mathsf{W}}}(\sigma), \mathsf{C}) \geq s} \mathbb{C}^{\mathsf{W}}$$

where L_W is the subcomplex induced by L on W, and $lk_K(\sigma)$ is the link of a simplex σ in a subcomplex $K \subseteq L$.

In particular: $\mathcal{R}_{1}^{1}(\mathcal{A}_{\Gamma}) = \bigcup_{\substack{W \subseteq V \\ \Gamma_{W} \text{ disconnected}}} \mathbb{C}^{W}.$ ALEX SUCIU (NORTHEASTERN) FUNDAMENTAL GROUPS IN AG & GT FRIBOURG, JUNE 2016 20 / 26

CLOSED **3**-MANIFOLDS

- Let *M* be a closed, orientable 3-manifold.
- An orientation class $[M] \in H_3(M, \mathbb{Z}) \cong \mathbb{Z}$ defines an alternating 3-form μ_M on $H^1(M, \mathbb{Z})$ by $\mu_M(a, b, c) = \langle a \cup b \cup c, [M] \rangle$.

```
Theorem (S. 2016)
```

Set $n = b_1(M)$. Then $\mathcal{R}_1^1(M) = \emptyset$ if n = 0, $\mathcal{R}_1^1(M) = \{0\}$ if n = 1, and otherwise

$$\mathcal{R}_{1}^{1}(M) = V(\operatorname{Det}(\mu_{M})) = \begin{cases} H^{1}(M, \mathbb{C}) & \text{if } n \text{ is even}, \\ V(\operatorname{Pf}(\mu_{M})) & \text{if } n \text{ is odd.} \end{cases}$$

THEOREM (S. 2016)

If $b_1(M) \neq 2$, then $TC_1(V_1^1(M)) = \mathcal{R}_1^1(M)$.

In general, $\tau_1(\mathcal{V}_1^1(M)) \subsetneq \mathsf{TC}_1(\mathcal{V}_1^1(M))$, in which case *M* is not 1-formal.

THE RFRp property

Joint work with Thomas Koberda (arxiv:1604.02010)

Let G be a finitely generated group and let p be a prime.

We say that *G* is *residually finite rationally p* if there exists a sequence of subgroups $G = G_0 > \cdots > G_i > G_{i+1} > \cdots$ such that

- 3 G_i/G_{i+1} is an elementary abelian *p*-group.

Remarks:

- We may assume that each $G_i \lhd G$.
- *G* is RFR*p* if and only if $\operatorname{rad}_p(G) := \bigcap_i G_i$ is trivial.
- For each prime *p*, there exists a finitely presented group G_p which is RFR*p*, but not RFR*q* for any prime $q \neq p$.

- **G** RFR $p \Rightarrow$ residually $p \Rightarrow$ residually finite and residually nilpotent.
- $G \operatorname{RFR}_p \Rightarrow G$ torsion-free.
- G finitely presented and $RFR_p \Rightarrow G$ has solvable word problem.
- The class of RFR*p* groups is closed under taking subgroups, finite direct products, and finite free products.
- Finitely generated free groups F_n , surface groups $\pi_1(\Sigma_g)$, and right-angled Artin groups A_{Γ} are RFR*p*, for all *p*.
- Finite groups and non-abelian nilpotent groups are not RFRp, for any p.

THEOREM (A TITS ALTERNATIVE FOR RFR_p groups)

If G is a finitely presented group which is RFRp for infinitely many primes p, then either G is abelian or G is large (i.e., it virtually surjects onto a non-abelian free group).

A COMBINATION THEOREM

- The *RFRp topology* on a group *G* has basis the cosets of the standard RFR*p* filtration {*G_i*} of *G*.
- G is RFRp iff this topology is Hausdorff.

THEOREM

Fix a prime *p*. Let $X = X_{\Gamma}$ be a finite graph of connected, finite CW-complexes with vertex spaces $\{X_{\nu}\}_{\nu \in V(\Gamma)}$ and edge spaces $\{X_{e}\}_{e \in E(\Gamma)}$ satisfying the following conditions:

- **(**) For each $v \in V(\Gamma)$, the group $\pi_1(X_v)$ is RFRp.
- ② For each v ∈ V(Γ), the RFRp topology on π₁(X) induces the RFRp topology on π₁(X_ν) by restriction.
- ③ For each *e* ∈ *E*(Γ) and each *v* ∈ *e*, the subgroup $\phi_{e,v}(\pi_1(X_e))$ of $\pi_1(X_v)$ is closed in the RFRp topology on $\pi_1(X_v)$.

Then $\pi_1(X)$ is RFRp.

BOUNDARY MANIFOLDS OF LINE ARRANGEMENTS

- Let A be an arrangement of lines in CP², and let N be a regular neighborhood of U_{L∈A} L.
- The *boundary manifold* of A is $M = \partial N$, a compact, orientable, smooth manifold of dimension 3.

EXAMPLE

```
Let \mathcal{A} be a pencil of n lines in \mathbb{CP}^2, defined by f = z_1^n - z_2^n.
If n = 1, then M = S^3. If n > 1, then M = \sharp^{n-1}S^1 \times S^2.
```

EXAMPLE

Let \mathcal{A} be a near-pencil of n lines in \mathbb{CP}^2 , defined by $f = z_1(z_2^{n-1} - z_3^{n-1})$. Then $M = S^1 \times \Sigma_{n-2}$, where $\Sigma_g = \sharp^g S^1 \times S^1$.

- *M* is a graph-manifold M_{Γ} , where Γ is the incidence graph of \mathcal{A} , with $V(\Gamma) = L_1(\mathcal{A}) \cup L_2(\mathcal{A})$ and $E(\Gamma) = \{(L, P) \mid P \in L\}$.
- For each $v \in V(\Gamma)$, there is a vertex manifold $M_v = S^1 \times S_v$, with $S_v = S^2 \setminus \bigcup_{\{v,w\} \in E(\Gamma)} D^2_{v,w}$.
- Vertex manifolds are glued along edge manifolds M_e = S¹ × S¹ via flips.
- The boundary manifold of a line arrangement in \mathbb{C}^2 is defined as $M = \partial N \cap D^4$, for some sufficiently large 4-ball D^4 .

THEOREM

If *M* is the boundary manifold of a line arrangement in \mathbb{C}^2 , then $\pi_1(M)$ is RFRp, for all primes p.

CONJECTURE

Arrangement groups are RFR*p*, for all primes *p*.

ALEX SUCIU (NORTHEASTERN)

FUNDAMENTAL GROUPS IN AG & GT