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HYPERPLANE ARRANGEMENTS

HYPERPLANE ARRANGEMENTS

An arrangement of hyperplanes is a finite set A of codimension-1
linear subspaces in C`.

Intersection lattice L(A): poset of all intersections of A, ordered
by reverse inclusion, and ranked by codimension.

Complement: M(A) = C`z
Ť

HPA H.

The Boolean arrangement Bn
Bn: all coordinate hyperplanes zi = 0 in Cn.
L(Bn): Boolean lattice of subsets of t0,1un.
M(Bn): complex algebraic torus (C˚)n.

The braid arrangement An (or, reflection arr. of type An´1)
An: all diagonal hyperplanes zi ´ zj = 0 in Cn.
L(An): lattice of partitions of [n] = t1, . . . ,nu.
M(An): configuration space of n ordered points in C (a classifying
space for the pure braid group on n strings).
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HYPERPLANE ARRANGEMENTS

‚ ‚

‚

‚

x2 ´ x4 x1 ´ x2

x1 ´ x4

x2 ´ x3

x1 ´ x3 x3 ´ x4

FIGURE : A planar slice of the braid arrangement A4
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HYPERPLANE ARRANGEMENTS

We may assume that A is essential, i.e.,
Ş

HPA H = t0u.

Fix an ordering A = tH1, . . . ,Hnu, and choose linear forms
fi : C` Ñ C with ker(fi) = Hi .

Define an injective linear map

ιA : C` Ñ Cn, z ÞÑ (f1(z), . . . , fn(z)).

This map restricts to an inclusion ι : M(A) ãÑ M(Bn). Thus,

M(A) = ιA(C
`)X (C˚)n,

a “very affine" subvariety of (C˚)n.

The tropicalization of this sub variety is a fan in Rn. Feichtner and
Sturmfels: this is the Bergman fan of L(A).
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HYPERPLANE ARRANGEMENTS

M(A) has the homotopy type of a connected, finite cell complex of
dimension `.

In fact, M = M(A) admits a minimal cell structure. Consequently,
H˚(M,Z) is torsion-free.

The Betti numbers bq(M) := rank Hq(M,Z) are given by

ÿ̀

q=0

bq(M)tq =
ÿ

XPL(A)

µ(X )(´t)rank(X ),

where µ : L(A)Ñ Z is the Möbius function, defined recursively by
µ(C`) = 1 and µ(X ) = ´

ř

YĽX µ(Y ).

The Orlik–Solomon algebra H˚(M,Z) is the quotient of the
exterior algebra on generators teH | H P Au by an ideal
determined by the circuits in the matroid of A.

Thus, the ring H˚(M,k) is determined by L(A), for every field k.
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MULTINETS

MULTINETS

Let A be an arrangement of planes in C3. Its projectivization, Ā, is
an arrangement of lines in CP2.
L1(A)ÐÑ lines of Ā, L2(A)ÐÑ intersection points of Ā,
poset structure of Lď2(A)ÐÑ incidence structure of Ā.
A flat X P L2(A) has multiplicity q if the point X̄ has exactly q lines
from Ā passing through it.

DEFINITION (FALK AND YUZVINSKY)

A multinet on A is a partition of the set A into k ě 3 subsets
A1, . . . ,Ak , together with an assignment of multiplicities, m : AÑ N,
and a subset X Ď L2(A), called the base locus, such that:

1 There is an integer d such that
ř

HPAα
mH = d , for all α P [k ].

2 If H and H 1 are in different classes, then H XH 1 P X .
3 For each X P X , the sum nX =

ř

HPAα :HĄX mH is independent of α.
4 Each

(
Ť

HPAα
H
)
zX is connected.
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MULTINETS

A multinet as above is also called a (k ,d)-multinet, or a k -multinet.

If mH = 1, for all H P A, the multinet is reduced.

If, furthermore, nX = 1, for all X P X , this is a net. In this case,
|Aα| = |A|/k = d , for all α. Moreover, X̄ has size d2, and is
encoded by a (k ´ 2)-tuple of orthogonal Latin squares.

‚ ‚

‚

‚

2

2

2

A (3,2)-net on the A3 arrangement A (3,4)-multinet on the B3 arrangement
X̄ consists of 4 triple points (nX = 1) X̄ consists of 4 triple points (nX = 1)

and 3 triple points (nX = 2)
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MULTINETS

A (3,3)-net on the Ceva matroid. A (4,3)-net on the Hessian matroid.

If A has no flats of multiplicity kr , for some r ą 1, then every
reduced k -multinet is a k -net.
(Yuzvinsky and Pereira–Yuzvinsky): If A supports a k -multinet
with |X | ą 1, then k = 3 or 4; moreover, if the multinet is not
reduced, then k = 3.
Conjecture (Yuz): The only 4-multinet is the Hessian (4,3)-net.
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COHOMOLOGY JUMP LOCI CHARACTERISTIC VARIETIES

COHOMOLOGY JUMP LOCI

Let X be a connected, finite cell complex, and let π = π1(X , x0).

Let k be an algebraically closed field, and let Hom(π,k˚) be the
affine algebraic group of k-valued, multiplicative characters on π.

The characteristic varieties of X are the jump loci for homology
with coefficients in rank-1 local systems on X :

Vq
s (X ,k) = tρ P Hom(π,k˚) | dimk Hq(X , kρ) ě su.

Here, kρ is the local system defined by ρ, i.e, k viewed as a kπ-module,
via g ¨ x = ρ(g)x , and Hi (X ,kρ) = Hi (C˚(rX ,k)bkπ kρ).

These loci are Zariski closed subsets of the character group.

The sets V1
s (X , k) depend only on π/π2.
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COHOMOLOGY JUMP LOCI CHARACTERISTIC VARIETIES

EXAMPLE (CIRCLE)

We have ĂS1 = R. Identify π1(S1, ˚) = Z = xty and kZ = k[t˘1].
Then:

C˚(ĂS1,k) : 0 // k[t˘1]
t´1 // k[t˘1] // 0 .

For ρ P Hom(Z, k˚) = k˚, we get

C˚(ĂS1,k)bkZ kρ : 0 // k
ρ´1 // k // 0 ,

which is exact, except for ρ = 1, when H0(S1,k) = H1(S1, k) = k.
Hence: V0

1 (S
1,k) = V1

1 (S
1, k) = t1u and V i

s(S1, k) = H, otherwise.

EXAMPLE (PUNCTURED COMPLEX LINE)

Identify π1(Cztn pointsu) = Fn, and xFn = (k˚)n. Then:

V1
s (Cztn pointsu, k) =

$

&

%

(k˚)n if s ă n,
t1u if s = n,
H if s ą n.
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COHOMOLOGY JUMP LOCI RESONANCE VARIETIES

Let A = H˚(X ,k). If chark = 2, assume that H1(X ,Z) has no
2-torsion. Then: a P A1 ñ a2 = 0.

Thus, we get a cochain complex

(A, ¨a) : A0 a // A1 a // A2 // ¨ ¨ ¨ ,

known as the Aomoto complex of A.

The resonance varieties of X are the jump loci for the
Aomoto-Betti numbers

Rq
s (X ,k) = ta P A1 | dimk Hq(A, ¨a) ě su,

These loci are homogeneous subvarieties of A1 = H1(X ,k).

EXAMPLE

R1
1(T

n,k) = t0u, for all n ą 0.
R1

1(Cztn pointsu,k) = kn, for all n ą 1.
R1

1(Σg ,k) = k2g , for all g ą 1.
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JUMP LOCI OF ARRANGEMENTS

JUMP LOCI OF ARRANGEMENTS

Let A = tH1, . . . ,Hnu be an arrangement in C3, and identify
H1(M(A), k) = kn, with basis dual to the meridians.

The resonance varieties R1
s(A, k) := R1

s(M(A), k) Ă kn lie in the
hyperplane tx P kn | x1 + ¨ ¨ ¨+ xn = 0u.

R(A) = R1
1(A,C) is a union of linear subspaces in Cn.

Each subspace has dimension at least 2, and each pair of
subspaces meets transversely at 0.

R1
s(A,C) is the union of those linear subspaces that have

dimension at least s + 1.
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JUMP LOCI OF ARRANGEMENTS

Each flat X P L2(A) of multiplicity k ě 3 gives rise to a local
component of R(A), of dimension k ´ 1.

More generally, every k -multinet of a sub-arrangement B Ď A
gives rise to a component of dimension k ´ 1, and all components
of R(A) arise in this way.

The resonance varieties R1(A, k) can be more complicated, e.g.,
they may have non-linear components.
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JUMP LOCI OF ARRANGEMENTS

EXAMPLE (BRAID ARRANGEMENT A4)

��
��

��
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�
�

HH
HH

HH

A
A
A
A
A
A
A

4
2

1 3 5
6

R1(A,C) Ă C6 has 4 local components (from triple points), and one
non-local component, from the (3,2)-net:

L124 = tx1 + x2 + x4 = x3 = x5 = x6 = 0u,
L135 = tx1 + x3 + x5 = x2 = x4 = x6 = 0u,
L236 = tx2 + x3 + x6 = x1 = x4 = x5 = 0u,
L456 = tx4 + x5 + x6 = x1 = x2 = x3 = 0u,
L = tx1 + x2 + x3 = x1 ´ x6 = x2 ´ x5 = x3 ´ x4 = 0u.
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JUMP LOCI OF ARRANGEMENTS

Let Hom(π1(M), k˚) = (k˚)n be the character torus.

The characteristic variety V1(A,k) := V1
1 (M(A),k) Ă (k˚)n lies in

the substorus tt P (k˚)n | t1 ¨ ¨ ¨ tn = 1u.

V1(A,C) is a finite union of torsion-translates of algebraic subtori
of (C˚)n.

If a linear subspace L Ă Cn is a component of R1(A,C), then the
algebraic torus T = exp(L) is a component of V1(A,C).

All components of V1(A,C) passing through the origin 1 P (C˚)n

arise in this way (and thus, are combinatorially determined).
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JUMP LOCI OF ARRANGEMENTS

1T

ρT ρ

/C

vs

1Tk /k

In general, though, there are translated subtori in V1(A, k).

When this happens, the characteristic varieties V1(A, k) may
depend (qualitatively) on char(k).
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MILNOR FIBRATIONS

THE MILNOR FIBRATION(S) OF AN ARRANGEMENT

For each H P A, let fH : C` Ñ C be a linear form with kernel H.

For each choice of multiplicities m = (mH)HPA with mH P N, let

Qm := Qm(A) =
ź

HPA
f mH
H ,

a homogeneous polynomial of degree N =
ř

HPA mH .

The map Qm : C` Ñ C restricts to a map Qm : M(A)Ñ C˚.

This is the projection of a smooth, locally trivial bundle, known as
the Milnor fibration of the multi-arrangement (A,m),

Fm(A) // M(A)
Qm // C˚.
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MILNOR FIBRATIONS

The typical fiber, Fm(A) = Q´1
m (1), is called the Milnor fiber of the

multi-arrangement.

Fm(A) has the homotopy type of a finite cell complex, with gcd(m)
connected components, and of dimension `´ 1.

The (geometric) monodromy is the diffeomorphism

h : Fm(A)Ñ Fm(A), z ÞÑ e2πi/Nz.

If all mH = 1, the polynomial Q = Qm(A) is the usual defining
polynomial, and F (A) = Fm(A) is the usual Milnor fiber of A.

EXAMPLE

Let A be the single hyperplane t0u inside C. Then:
M(A) = C˚.
Qm(A) = zm.
Fm(A) = m-roots of 1.
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MILNOR FIBRATIONS

EXAMPLE

Let A be a pencil of 3 lines through the origin of C2. Then F (A) is a
thrice-punctured torus, and h is an automorphism of order 3:

A

F (A)

h

F (A)

More generally, if A is a pencil of n lines in C2, then F (A) is a
Riemann surface of genus (n´1

2 ), with n punctures.
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MILNOR FIBRATIONS

Let Bn be the Boolean arrangement, with Qm(Bn) = zm1
1 ¨ ¨ ¨ zmn

n .
Then M(Bn) = (C˚)n and

Fm(Bn) = ker(Qm) – (C˚)n´1 ˆZgcd(m)

Let A = tH1, . . . ,Hnu be an essential arrangement. The inclusion
ιA : M(A)Ñ M(Bn) restricts to a bundle map

Fm(A) //

��

M(A)
Qm(A) //

ιA
��

C˚

Fm(Bn) // M(Bn)
Qm(Bn) // C˚

Thus,
Fm(A) = M(A)X Fm(Bn)

The tropicalization of Fm(A) is a fan in Rn´1. Question: Is this fan
determined by L(A) (and the multiplicity vector m)?
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THE HOMOLOGY OF THE MILNOR FIBER

THE HOMOLOGY OF THE MILNOR FIBER

Two basic questions about the topology of the Milnor fibration(s):

(Q1) Are the homology groups Hq(F (A),C) determined by L(A)?
If so, is the characteristic polynomial of the algebraic monodromy,
h˚ : Hq(F (A),C)Ñ Hq(F (A),C), also determined by L(A)?

(Q2) Are the homology groups Hq(F (A),Z) torsion-free?
If so, does F (A) admit a minimal cell structure?

Some recent progress on these questions:

A partial, positive answer to (Q1): joint work with Stefan Papadima
(in progress).
A negative answer to (Q2): joint work with Graham Denham (to
appear).
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THE HOMOLOGY OF THE MILNOR FIBER

Let (A,m) be a multi-arrangement with gcdtmH | H P Au = 1. Set
N =

ř

HPA mH .

The Milnor fiber Fm(A) is a regular ZN -cover of U = P(M(A))
defined by the homomorphism δm : π1(U)� ZN ,
xH ÞÑ mH mod N.

Let xδm : Hom(ZN , k˚)Ñ Hom(π1(U), k˚). If char(k) - N, then

dimk Hq(Fm(A),k) =
ÿ

sě1

ˇ

ˇ

ˇ
Vq

s (U, k)X im(xδm)
ˇ

ˇ

ˇ
.
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THE HOMOLOGY OF THE MILNOR FIBER MULTINETS AND H1(F (A),C)

MULTINETS AND H1(F (A),C)

Recall: the monodromy h : F (A)Ñ F (A) has order n = |A|.
Thus, the characteristic polynomial of h˚ acting on H1(F (A),C)
can be written as

∆(t) := det(h˚ ´ t ¨ id) =
ź

d |n

Φd (t)ed (A),

where Φ1 = t ´ 1, Φ2 = t + 1, Φ3 = t2 + t + 1, . . .
are the cyclotomic polynomials, and ed (A) P Zě0.

Easy to see: e1(A) = n´ 1. Thus, for q = 1, question (Q1) is
equivalent to: are the integers ed (A) determined by Lď2(A)?

PROPOSITION

If A admits a reduced k-multinet, then ek (A) ě k ´ 2.
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THE HOMOLOGY OF THE MILNOR FIBER MULTINETS AND H1(F (A),C)

Let A˚ = H˚(M(A),k), where k is a field of characteristic p ą 0.

Let σ =
ř

HPA eH P A1 be the “diagonal" vector.

Define the mod-p Aomoto-Betti number of A as

βp(A) = dimk H1(A, ¨σ).

βp(A) depends only on L(A) and p, and 0 ď βp(A) ď |A| ´ 2.

(Cohen–Orlik 2000, Papadima–S. 2010) eps(A) ď βp(A).

THEOREM (PAPADIMA–S. 2013)

Suppose L2(A) has no flats of multiplicity 3r , for some r ą 1. Then
β3(A) ď 2.
Moreover, e3(A) = β3(A), and so e3(A) is combinatorially
determined.

A similar result holds for e2(A).
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THE HOMOLOGY OF THE MILNOR FIBER MULTINETS AND H1(F (A),C)

LEMMA (PS)

If A supports a 3-net with parts Aα, then:
1 1 ď β3(A) ď β3(Aα) + 1, for all α.
2 If β3(Aα) = 0, for some α, then β3(A) = 1.
3 If β3(Aα) = 1, for some α, then β3(A) = 1 or 2.

All possibilities do occur:
Braid arrangement: has a (3,2)-net from the Latin square of Z2.
β3(Aα) = 0 (@α) and β3(A) = 1.

Pappus arrangement: has a (3,3)-net from the Latin square of Z3.
β3(A1) = β3(A2) = 0, β3(A3) = 1 and β3(A) = 1.

Ceva arrangement: has a (3,3)-net from the Latin square of Z3.
β3(Aα) = 1 (@α) and β3(A) = 2.
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THE HOMOLOGY OF THE MILNOR FIBER MULTINETS AND H1(F (A),C)

THEOREM (PS)

Suppose L2(A) has no flats of multiplicity 3r , for some r ą 1. Then
β3(A) ď 2. Moreover, the following conditions are equivalent:

1 A admits a reduced 3-multinet.
2 A admits a 3-net.
3 β3(A) ‰ 0.

REMARK

One may define βp(M) for any matroid M.
For each n P N, there exists a matroid Mn supporting a
(3,3n)-net corresponding to Zn

3, such that β3(Mn) = n + 1.
By the above, such a matroid is realizable by an arrangement in
C3 if and only if n = 1.
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THE HOMOLOGY OF THE MILNOR FIBER TORSION IN HOMOLOGY

TORSION IN HOMOLOGY

THEOREM (COHEN–DENHAM–S. 2003)

For every prime p ě 2, there is a multi-arrangement (A,m) such that
H1(Fm(A),Z) has non-zero p-torsion.

1

2

1

1

2 2
3 3

Simplest example: the arrangement of 8 hyperplanes in C3 with

Qm(A) = x2y(x2 ´ y2)3(x2 ´ z2)2(y2 ´ z2)

Then H1(Fm(A),Z) = Z7 ‘Z2 ‘Z2.
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THE HOMOLOGY OF THE MILNOR FIBER TORSION IN HOMOLOGY

We now can generalize and reinterpret these examples, as follows.

A pointed multinet on an arrangement A is a multinet structure,
together with a distinguished hyperplane H P A for which mH ą 1 and
mH | nX for each X P X such that X Ă H.

THEOREM (DENHAM–S. 2013)

Suppose A admits a pointed multinet, with distinguished hyperplane H
and multiplicity m. Let p be a prime dividing mH . There is then a
choice of multiplicities m1 on the deletion A1 = AztHu such that
H1(Fm1(A1),Z) has non-zero p-torsion.

This torsion is explained by the fact that the geometry of V(A1,k)
varies with char(k).
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THE HOMOLOGY OF THE MILNOR FIBER TORSION IN HOMOLOGY

To produce p-torsion in the homology of the usual Milnor fiber, we use
a “polarization" construction:

}  

(A,m) A }m, an arrangement of N =
ř

HPA mH hyperplanes, of
rank equal to rankA+ |tH P A : mH ě 2u|.

THEOREM (DS)

Suppose A admits a pointed multinet, with distinguished hyperplane H
and multiplicity m. Let p be a prime dividing mH .
There is then a choice of multiplicities m1 on the deletion A1 = AztHu
such that Hq(F (B),Z) has p-torsion, where B = A1}m1 and
q = 1 +

ˇ

ˇ

 

K P A1 : m1
K ě 3

(ˇ

ˇ.
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THE HOMOLOGY OF THE MILNOR FIBER TORSION IN HOMOLOGY

COROLLARY (DS)
For every prime p ě 2, there is an arrangement A such that
Hq(F (A),Z) has non-zero p-torsion, for some q ą 1.

Simplest example: the arrangement of 27 hyperplanes in C8 with
Q(A) = xy(x2´ y2)(x2´ z2)(y2´ z2)w1w2w3w4w5(x2´w2

1 )(x
2´ 2w2

1 )(x
2´ 3w2

1 )(x ´ 4w1)¨

((x ´ y)2´w2
2 )((x + y)2´w2

3 )((x ´ z)2´w2
4 )((x ´ z)2´ 2w2

4 ) ¨ ((x + z)2´w2
5 )((x + z)2´ 2w2

5 ).

Then H6(F (A),Z) has 2-torsion (of rank 108).
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THE HOMOLOGY OF THE MILNOR FIBER TORSION IN HOMOLOGY
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