POLYHEDRAL PRODUCTS, DUALITY PROPERTIES, AND COHOMOLOGY JUMP LOCI

Alex Suciu

Northeastern University

Discrete Geometry and Topological Combinatorics Seminar
Freie University Berlin
November 25, 2022

POLYHEDRAL PRODUCTS

- Let (X, A) be a pair of topological spaces, and let L be a simplicial complex on vertex set [m].
- The corresponding polyhedral product (or, generalized moment-angle complex) is defined as

$$
\mathcal{Z}_{L}(X, A)=\bigcup_{\sigma \in L}(X, A)^{\sigma} \subset X^{\times m}
$$

where $(X, A)^{\sigma}=\left\{x \in X^{\times m} \mid x_{i} \in A\right.$ if $\left.i \notin \sigma\right\}$.

- Homotopy invariance:

$$
(X, A) \simeq\left(X^{\prime}, A^{\prime}\right) \Longrightarrow \mathcal{Z}_{L}(X, A) \simeq \mathcal{Z}_{L}\left(X^{\prime}, A^{\prime}\right)
$$

- Converts simplicial joins to direct products:

$$
\mathcal{Z}_{K * L}(X, A) \cong \mathcal{Z}_{K}(X, A) \times \mathcal{Z}_{L}(X, A)
$$

- Takes a cellular pair (X, A) to a cellular subcomplex of $X^{\times m}$.

The usual moment-angle complexes are:

- Complex moment-angle complex, $\mathcal{Z}_{L}\left(D^{2}, S^{1}\right)$.
- $\pi_{1}=\pi_{2}=\{1\}$.
- Real moment-angle complex, $\mathcal{Z}_{L}\left(D^{1}, S^{0}\right)$.
- $\pi_{1}=W_{L}^{\prime}$, the derived subgroup of W_{Γ}, the right-angled Coxeter group associated to $\Gamma=L^{(1)}$.

EXAMPLE

Let $L=$ two points. Then:

Example

Let L be a circuit on 4 vertices. Then:

$$
\begin{aligned}
& \mathcal{Z}_{L}\left(D^{2}, S^{1}\right)=S^{3} \times S^{3} \\
& \mathcal{Z}_{L}\left(D^{1}, S^{0}\right)=S^{1} \times S^{1}
\end{aligned}
$$

Example

More generally, let L be an m-gon. Then:

$$
\mathcal{Z}_{L}\left(D^{2}, S^{1}\right)=\#_{r=1}^{m-3} r \cdot\binom{m-2}{r+1} S^{r+2} \times S^{m-r} .
$$

(McGavran 1979)
$\mathcal{Z}_{L}\left(D^{1}, S^{0}\right)=$ an orientable surface of genus $1+2^{m-3}(m-4)$.
(Coxeter 1937)

- If $(M, \partial M)$ is a compact manifold of dimension d, and L is a PL-triangulation of S^{m} on n vertices, then $\mathcal{Z}_{L}(M, \partial M)$ is a compact manifold of dimension $(d-1) n+m+1$.
- (Bosio-Meersseman 2006) If K is a polytopal triangulation of S^{m}, then
- $\mathcal{Z}_{L}\left(D^{2}, S^{1}\right)$ if $n+m+1$ is even, or
- $\mathcal{Z}_{L}\left(D^{2}, S^{1}\right) \times S^{1}$ if $n+m+1$ is odd is a complex manifold.
- This construction generalizes the classical constructions of complex structures on $S^{2 p-1} \times S^{1}$ (Hopf) and $S^{2 p-1} \times S^{2 q-1}$ (Calabi-Eckmann).
- In general, the resulting complex manifolds are not symplectic, thus, not Kähler. In fact, they may even be non-formal (Denham-Suciu 2007, Grbić-Linton 2021).
- The GMAC construction enjoys nice functoriality properties in both arguments. E.g:
- Let $f:(X, A) \rightarrow(Y, B)$ be a (cellular) map. Then $f^{\times n}: X^{\times n} \rightarrow Y^{\times n}$ restricts to a (cellular) map $\mathcal{Z}_{L}(f): \mathcal{Z}_{L}(X, A) \rightarrow \mathcal{Z}_{L}(Y, B)$.
- Much is known from work of M. Davis about the fundamental group and the asphericity problem for $\mathcal{Z}_{L}(X)=\mathcal{Z}_{L}(X, *)$. E.g.:
- $\pi_{1}\left(\mathcal{Z}_{L}(X, *)\right)$ is the graph product of $G_{V}=\pi_{1}(X, *)$ along the graph $\Gamma=L^{(1)}=(\mathrm{V}, \mathrm{E})$, where

$$
\operatorname{Prod}\left(G_{v}\right)=\underset{v \in V}{*} G_{v} /\left\{\left[g_{v}, g_{w}\right]=1 \text { if }\{v, w\} \in \mathrm{E}, g_{v} \in G_{v}, g_{w} \in G_{w}\right\} .
$$

- Suppose X is aspherical. Then: $\mathcal{Z}_{L}(X, *)$ is aspherical iff L is a flag complex.

TORIC COMPLEXES

- Let L be a simplicial complex on vertex set $\mathrm{V}=\left\{v_{1}, \ldots, v_{m}\right\}$.
- Let $T_{L}=\mathcal{Z}_{L}\left(S^{1}, *\right)$ be the subcomplex of T^{m} obtained by deleting the cells corresponding to the missing simplices of L.
- T_{L} is a connected, minimal CW-complex, of dimension $\operatorname{dim} L+1$.
- T_{L} is formal (Notbohm-Ray 2005).
- (Kim-Roush 1980, Charney-Davis 1995) The cohomology algebra $H^{*}\left(T_{L}, \mathbb{k}\right)$ is the exterior Stanley-Reisner ring

$$
\mathbb{k}\langle L\rangle=\Lambda V^{*} /\left(v_{\sigma}^{*} \mid \sigma \notin L\right),
$$

where $\mathbb{k}=\mathbb{Z}$ or a field, V is the free \mathbb{k}-module on V , and $V^{*}=\operatorname{Hom}_{\mathbb{k}}(V, \mathbb{k})$, while $v_{\sigma}^{*}=v_{i_{1}}^{*} \cdots v_{i_{s}}^{*}$ for $\sigma=\left\{i_{1}, \ldots, i_{s}\right\}$.

Right angled Artin groups

- The fundamental group $\Gamma_{\Gamma}:=\pi_{1}\left(T_{L}, *\right)$ is the RAAG associated to the graph $\Gamma:=L^{(1)}=(\mathrm{V}, \mathrm{E})$,

$$
\left.G_{\Gamma}=\langle v \in V|[v, w]=1 \text { if }\{v, w\} \in E\right\rangle .
$$

- Moreover, $K\left(G_{\Gamma}, 1\right)=T_{\Delta_{\Gamma}}$, where Δ_{Γ} is the flag complex of Γ.
- (Kim-Makar-Limanov-Neggers-Roush 1980, Droms 1987)

$$
\Gamma \cong \Gamma^{\prime} \Longleftrightarrow G_{\Gamma} \cong G_{\Gamma^{\prime}} .
$$

- (Papadima-S. 2006) The associated graded Lie algebra of G_{Γ} has (quadratic) presentation

$$
\operatorname{gr}\left(G_{\Gamma}\right)=\mathbb{L}(\mathrm{V}) /([v, w]=0 \text { if }\{v, w\} \in E) .
$$

- (Duchamp-Krob 1992, PS06) The lower central series quotients of G_{Γ} are torsion-free, with ranks ϕ_{k} given by

$$
\prod_{k=1}^{\infty}\left(1-t^{k}\right)^{\phi_{k}}=\operatorname{Pr}(-t),
$$

where $P_{\Gamma}(t)=\sum_{k \geqslant 0} f_{k}\left(\Delta_{\Gamma}\right) t^{k}$ is the clique polynomial of Γ.

CHEN RANKS

- The Chen Lie algebra of a f.g. group π is the associated graded Lie algebra of its maximal metabelian quotient, $\operatorname{gr}\left(\pi / \pi^{\prime \prime}\right)$.
- Write $\theta_{k}(\pi)=\operatorname{rankgr}_{k}\left(\pi / \pi^{\prime \prime}\right)$ for the Chen ranks.
- (K.-T. Chen 1951) $\operatorname{gr}\left(F_{n} / F_{n}^{\prime \prime}\right)$ is torsion-free, with ranks $\theta_{1}=n$ and $\theta_{k}=(k-1)\binom{n+k-2}{k}$ for $k \geqslant 2$.
- (PS 06) $\operatorname{gr}\left(G_{\Gamma} / G_{\Gamma}^{\prime \prime}\right)$ is torsion-free, with ranks given by $\theta_{1}=|\mathrm{V}|$ and

$$
\sum_{k=2}^{\infty} \theta_{k} t^{k}=Q_{\Gamma}\left(\frac{t}{1-t}\right)
$$

- Here $Q_{\Gamma}(t)=\sum_{j \geqslant 2} c_{j}(\Gamma) t^{j}$ is the "cut polynomial" of Γ, with

$$
c_{j}(\Gamma)=\sum_{\mathrm{W} \subset \mathrm{~V}:|\mathrm{W}|=j} \tilde{b}_{0}(\Gamma \mathrm{~W}) .
$$

EXAMPLE

Let Γ be a pentagon, and Γ^{\prime} a square with an edge attached to a vertex. Then:

- $P_{\Gamma}=P_{\Gamma^{\prime}}=1+5 t+5 t^{2}$, and so

$$
\phi_{k}\left(G_{\Gamma}\right)=\phi_{k}\left(G_{\Gamma^{\prime}}\right), \quad \text { for all } k \geqslant 1 .
$$

- $Q_{\Gamma}=5 t^{2}+5 t^{3}$ but $Q_{\Gamma^{\prime}}=5 t^{2}+5 t^{3}+t^{4}$, and so

$$
\theta_{k}\left(G_{\Gamma}\right) \neq \theta_{k}\left(G_{\Gamma^{\prime}}\right), \quad \text { for } k \geqslant 4
$$

COHOMOLOGY JUMP LOCI

- Let X be a connected, finite CW-complex X with $\pi:=\pi_{1}(X)$.
- Fix a field \mathbb{k} and set $A=H^{\bullet}(X, \mathbb{k})$. If char $(\mathbb{k})=2$, assume $H_{1}(X, \mathbb{Z})$ is torsion-free. Then, for each $a \in A^{1}$, we have $a^{2}=0$, and so we get a cochain complex, $(A, \cdot a): A^{0} \xrightarrow{\cdot a} A^{1} \xrightarrow{\cdot a} A^{2}$ \qquad
- The resonance varieties of X are defined as

$$
\mathcal{R}_{s}^{i}(X)=\left\{a \in A^{1} \mid \operatorname{dim} H^{i}(A, \cdot a) \geqslant s\right\} .
$$

- They are Zariski closed, homogeneous subsets of $A^{1}=H^{1}(X, \mathbb{k})$.
- The characteristic varieties of X are the jump loci for homology with coefficients in rank-1 local systems,

$$
\mathcal{V}_{s}^{i}(X, \mathbb{k})=\left\{\rho \in \operatorname{Hom}\left(\pi, \mathbb{k}^{*}\right) \mid \operatorname{dim} H_{i}\left(X, \mathbb{k}_{\rho}\right) \geqslant s\right\} .
$$

- These loci are Zariski closed subsets of the character group. For $i=1$, they depend only on $\pi / \pi^{\prime \prime}$ (and \mathbb{k}).

JUMP LOCI OF TORIC COMPLEXES

For a field \mathbb{k}, identify $H^{1}\left(T_{L}, \mathbb{k}\right)=\mathbb{k}^{\vee}$, the \mathbb{k}-vector space with basis V .
THEOREM (PAPADIMA-S. 2009)

$$
\mathcal{R}_{s}^{i}\left(T_{L}, \mathbb{k}\right)=\bigcup_{\sum_{\sigma \in L_{\mathrm{V} W}}} \bigcup_{\mathrm{W} \in \mathrm{~V}} \mathbb{d i m}_{\mathbb{k}} \tilde{H}_{i-1-|\sigma|}\left(\mathbb{k}_{L_{\mathrm{W}}}(\sigma), \mathbb{k}\right) \geqslant s,
$$

where L_{W} is the subcomplex induced by L on W , and $\mathrm{I}_{K}(\sigma)$ is the link of a simplex σ in a subcomplex $K \subseteq L$.

In particular,

$$
\mathcal{R}_{1}^{1}\left(G_{\Gamma}\right)=\bigcup_{\Gamma_{\mathrm{w}} \text { disconnected }} \mathbb{k}^{\mathrm{W}}
$$

Similar formulas hold for the characteristic varieties $\mathcal{V}_{S}^{i}\left(T_{L}, \mathbb{k}\right)$.

EXAMPLE

Let Γ and Γ^{\prime} be the two graphs above. Both have

$$
P(t)=1+6 t+9 t^{2}+4 t^{3}, \quad \text { and } \quad Q(t)=t^{2}\left(6+8 t+3 t^{2}\right)
$$

Thus, G_{Γ} and G_{Γ}, have the same LCS and Chen ranks.
Each resonance variety has 3 components, of codimension 2 :

$$
\mathcal{R}_{1}\left(G_{\Gamma}, \mathbb{k}\right)=\mathbb{k}^{\overline{23}} \cup \mathbb{k}^{\overline{25}} \cup \mathbb{k}^{\overline{35}}, \quad \mathcal{R}_{1}\left(G_{\Gamma^{\prime}}, \mathbb{k}\right)=\mathbb{k}^{\overline{15}} \cup \mathbb{k}^{\overline{25}} \cup \mathbb{k}^{\overline{26}}
$$

Yet the two varieties are not isomorphic, since

$$
\operatorname{dim}\left(\mathbb{k}^{\overline{23}} \cap \mathbb{k}^{\overline{25}} \cap \mathbb{k}^{\overline{35}}\right)=3, \quad \text { but } \quad \operatorname{dim}\left(\mathbb{k}^{\overline{15}} \cap \mathbb{k}^{\overline{25}} \cap \mathbb{k}^{\overline{26}}\right)=2
$$

Propagation of jump loci

- We say that the resonance varieties of a graded algebra $A=\oplus_{i=0}^{n} A^{i}$ propagate if

$$
\mathcal{R}_{1}^{1}(A) \subseteq \cdots \subseteq \mathcal{R}_{1}^{n}(A)
$$

- (Eisenbud-Popescu-Yuzvinsky 2003) If $M(\mathcal{A})$ is the complement of a hyperplane arrangement, then the resonance varieties of the Orlik-Solomon algebra $A=H^{*}(M(\mathcal{A}), \mathbb{C})$ propagate.
- The resonance varieties of $A=H^{*}\left(T_{L}, \mathbb{k}\right)$ may not propagate. E.g., if $L=\propto \longleftrightarrow$, then $\mathcal{R}_{1}^{1}(A)=\mathbb{k}^{4}$, yet $\mathcal{R}_{1}^{2}(A)=\mathbb{k}^{2} \cup \mathbb{k}^{2}$.

THEOREM (DENHAM-S.-YUZVINSKY 2016/17)

Suppose the \mathbb{k}-dual of A has a linear free resolution over $E=\bigwedge A^{1}$. Then the resonance varieties of A propagate.

DUALITY SPACES

In order to study propagation of jump loci in a topological setting, we turn to a notion due to Bieri and Eckmann (1978).

- X is a duality space of dimension n if $H^{i}(X, \mathbb{Z} \pi)=0$ for $i \neq n$ and $H^{n}(X, \mathbb{Z} \pi) \neq 0$ and torsion-free.
- Let $D=H^{n}(X, \mathbb{Z} \pi)$ be the dualizing $\mathbb{Z} \pi$-module. Given any $\mathbb{Z} \pi$-module A, we have $H^{i}(X, A) \cong H_{n-i}(X, D \otimes A)$.
- If $D=\mathbb{Z}$, with trivial $\mathbb{Z} \pi$-action, then X is a Poincaré duality space.
- If $X=K(\pi, 1)$ is a duality space, then π is a duality group.

Abelian duality spaces

We introduce in (DSY18) an analogous notion, by replacing $\pi \leadsto \pi_{\mathrm{ab}}$.

- X is an abelian duality space of dimension n if $H^{i}\left(X, \mathbb{Z} \pi_{\mathrm{ab}}\right)=0$ for $i \neq n$ and $H^{n}\left(X, \mathbb{Z} \pi_{\mathrm{ab}}\right) \neq 0$ and torsion-free.
- Let $B=H^{n}\left(X, \mathbb{Z} \pi_{\mathrm{ab}}\right)$ be the dualizing $\mathbb{Z} \pi_{\mathrm{ab}}$-module. Given any $\mathbb{Z} \pi_{\text {ab }}$-module A, we have $H^{i}(X, A) \cong H_{n-i}(X, B \otimes A)$.
- The two notions of duality are independent.

Theorem (DSY)

Let X be an abelian duality space of dimension n. If $\rho: \pi_{1}(X) \rightarrow \mathbb{k}^{*}$ satisfies $H^{i}\left(X, \mathbb{k}_{\rho}\right) \neq 0$, then $H^{j}\left(X, \mathbb{k}_{\rho}\right) \neq 0$, for all $i \leqslant j \leqslant n$.

COROLLARY (DSY)
Let X be an abelian duality space of dimension n. Then:

- The characteristic varieties propagate: $\mathcal{V}_{1}^{1}(X, \mathbb{k}) \subseteq \cdots \subseteq \mathcal{V}_{1}^{n}(X, \mathbb{k})$.
- $\operatorname{dim}_{\mathbb{k}} H^{1}(X, \mathbb{k}) \geqslant n-1$.
- If $n \geqslant 2$, then $H^{i}(X, \mathbb{k}) \neq 0$, for all $0 \leqslant i \leqslant n$.

PROPOSITION (DSY)

Let M be a closed, orientable 3-manifold. If $b_{1}(M)$ is even and non-zero, then the resonance varieties of M do not propagate.

EXAMPLE

- Let M be the 3-dimensional Heisenberg nilmanifold.
- Characteristic varieties propagate: $\mathcal{V}_{1}^{i}(M, \mathbb{k})=\{1\}$ for $i \leqslant 3$.
- Resonance does not propagate: $\mathcal{R}_{1}^{1}(M, \mathbb{k})=\mathbb{k}^{2}, \mathcal{R}_{1}^{3}(M, \mathbb{k})=0$.

ARRANGEMENTS OF SMOOTH HYPERSURFACES

Theorem (Denham-S. 2018)

Let U be a connected, smooth, complex quasi-projective variety of dimension n. Suppose U has a smooth compactification Y for which

- Components of Y form an arrangement of hypersurfaces \mathcal{A};
- For each submanifold X in the intersection poset $L(\mathcal{A})$, the complement of the restriction of \mathcal{A} to X is a Stein manifold.
Then:
- U is both a duality space and an abelian duality space of dimension n.
- If A is a finite-dimensional representation of $\pi=\pi_{1}(U)$, and if $A^{\gamma_{g}}=0$ for all g in a building set \mathcal{G}_{X}, for some $X \in L(\mathcal{A})$, then $H^{i}(U, A)=0$ for all $i \neq n$.
- The ℓ_{2}-Betti numbers of U vanish for all $i \neq n$.

Linear, ELLIPTIC, AND TORIC ARRANGEMENTS

Theorem (DS17)

Suppose that \mathcal{A} is one of the following:

- An affine-linear arrangement in \mathbb{C}^{n}, or a hyperplane arrangement in $\mathbb{C P}^{n}$;
- A non-empty elliptic arrangement in E^{n};
- A toric arrangement in $\left(\mathbb{C}^{*}\right)^{n}$.

Then the complement $M(\mathcal{A})$ is both a duality space and an abelian duality space of dimension $n-r, n+r$, and n, respectively, where r is the corank of the arrangement.

This theorem extends several previous results:

- Davis, Januszkiewicz, Leary, and Okun (2011);
- Levin and Varchenko (2012);
- Davis and Settepanella (2013), Esterov and Takeuchi (2014).

THE COHEN-MACAULAY PROPERTY

- A simplicial complex L is Cohen-Macaulay if for each simplex $\sigma \in L$, the reduced cohomology $\widetilde{H}^{\bullet}(\operatorname{lk}(\sigma), \mathbb{Z})$ is concentrated in degree $\operatorname{dim} L-|\sigma|$ and is torsion-free.
- An analogous definition works over any coefficient field \mathbb{k}.
- For a fixed \mathbb{k}, the Cohen-Macaulayness of L is a topological property: it depends only on the homeomorphism type of L.
- For $\sigma=\varnothing$, the condition means that $\tilde{H}^{\bullet}(L, \mathbb{Z})$ is concentrated in degree n; it also implies that L is pure, i.e., all its maximal simplices have dimension n.

Theorem (N. Brady-Meier 2001, Jensen-Meier 2005)

A RAAG G_{Γ} is a duality group if and only if Δ_{Γ} is Cohen-Macaulay. Moreover, G_{Γ} is a Poincaré duality group if and only if Γ is a complete graph.

THEOREM (DSY17)

A toric complex T_{L} is an abelian duality space (of dimension $\operatorname{dim} L+1$) if and only if L is Cohen-Macaulay, in which case both the resonance and characteristic varieties of T_{L} propagate.

Corollary

Let L be a Cohen-Macaulay complex over \mathfrak{k}. Suppose there is a subset $\mathrm{W} \subset \mathrm{V}$ of the vertex set and a simplex σ supported on $\mathrm{V} \backslash \mathrm{W}$ such that

$$
\widetilde{H}_{i-1-|\sigma|}\left(\operatorname{lk}_{L_{W}}(\sigma), \mathbb{k}\right) \neq 0,
$$

for some $i \geqslant|\sigma|$. Then, for all $i \leqslant j \leqslant \operatorname{dim}(L)+1$, there exists a subset $\mathrm{W} \subset \mathrm{W}^{\prime} \subset \mathrm{V}$ and a simplex σ^{\prime} supported on $\mathrm{V} \backslash \mathrm{W}^{\prime}$ such that

$$
\tilde{H}_{j-1-\left|\sigma^{\prime}\right|}\left(\operatorname{lk}_{L_{W^{\prime}}}\left(\sigma^{\prime}\right), \mathbb{k}\right) \neq 0 .
$$

- Is there a direct, combinatorial proof of this result?
- Is there a simplicial complex L which is not Cohen-Macaulay but for which the resonance varieties of T_{L} still propagate?

BESTVINA-BRADY GROUPS

- The Bestvina-Brady group associated to a graph Γ is defined as $N_{\Gamma}=\operatorname{ker}\left(\nu: G_{\Gamma} \rightarrow \mathbb{Z}\right)$, where $\nu(v)=1$, for each $v \in V(\Gamma)$.
- Meier-VanWyck 1995: N_{Γ} is finitely generated iff Γ is connected.
- Bestvina-Brady 1997: N_{Γ} is finitely presented iff the flag complex Δ_{Γ} is simply connected.
- In this case, an explicit finite presentation for N_{Γ} (with generators the edges of Г) was given by Dicks-Leary 1999.
- E.g:
- If $\Gamma=\bar{K}_{2}$, then $G_{\Gamma}=F_{2}$ and $N_{\Gamma}=F_{\infty}$.
- If $\Gamma=K_{2,2}$, then $G_{\Gamma}=F_{2} \times F_{2}$ and N_{Γ} is finitely generated but not finitely presented, since $H_{2}\left(N_{\Gamma} ; \mathbb{Z}\right)=\mathbb{Z}^{\infty}$ (Stallings 1963).
- If Γ is a tree on n vertices, then $N_{\Gamma}=F_{n-1}$.
- BB97: A counterexample to either the Eilenberg-Ganea conjecture or the Whitehead asphericity conjecture can be constructed from N_{Γ}, where Γ is the 1 -skeleton of a triangulation of the Poincaré sphere.
- (Papadima-S. 2007): if Γ is connected, then \mathbb{Z} acts trivially on $H_{1}\left(N_{\Gamma}, \mathbb{Z}\right)$.
- The cohomology ring $H^{*}\left(N_{\Gamma}, \mathbb{k}\right)$ was computed in PSO7 and by Leary-Saadetoğlu (2011).
- The jump loci $\mathcal{R}_{1}^{1}\left(N_{\Gamma}, \mathbb{k}\right)$ and $\mathcal{V}_{1}^{1}\left(N_{\Gamma}, \mathbb{k}\right)$ were computed in PS07.

Theorem (Davis-Okun 2012)

Suppose Δ_{Γ} is acyclic. Then N_{Γ} is a duality group if and only if Δ_{Γ} is Cohen-Macaulay.

THEOREM (DSY18)

A Bestvina-Brady group N_{Γ} is an abelian duality group if and only if Δ_{Γ} is acyclic and Cohen-Macaulay.

