POLYHEDRAL PRODUCTS, DUALITY PROPERTIES, AND COHOMOLOGY JUMP LOCI

Alex Suciu

Northeastern University

Discrete Geometry and Topological Combinatorics Seminar
Freie University Berlin
November 25, 2022

POLYHEDRAL PRODUCTS

- Let (X, A) be a pair of topological spaces, and let L be a simplicial complex on vertex set [m].
- The corresponding polyhedral product (or, generalized moment-angle complex) is defined as

$$\mathcal{Z}_L(X,A) = \bigcup_{\sigma \in L} (X,A)^{\sigma} \subset X^{\times m},$$

where $(X, A)^{\sigma} = \{x \in X^{\times m} \mid x_i \in A \text{ if } i \notin \sigma\}.$

• Homotopy invariance:

$$(X,A) \simeq (X',A') \implies \mathcal{Z}_L(X,A) \simeq \mathcal{Z}_L(X',A').$$

Converts simplicial joins to direct products:

$$\mathcal{Z}_{K*L}(X, A) \cong \mathcal{Z}_{K}(X, A) \times \mathcal{Z}_{L}(X, A).$$

• Takes a cellular pair (X, A) to a cellular subcomplex of $X^{\times m}$.

The usual moment-angle complexes are:

- Complex moment-angle complex, $\mathcal{Z}_L(D^2, S^1)$.
 - $\pi_1 = \pi_2 = \{1\}.$
- Real moment-angle complex, $\mathcal{Z}_L(D^1, S^0)$.
 - $\pi_1 = W'_L$, the derived subgroup of W_{Γ} , the right-angled Coxeter group associated to $\Gamma = L^{(1)}$.

EXAMPLE

Let L = two points. Then:

$$\mathcal{Z}_{L}(D^{2}, S^{1}) = D^{2} \times S^{1} \cup S^{1} \times D^{2} = S^{3}$$

$$\mathcal{Z}_{L}(D^{1}, S^{0}) = D^{1} \times S^{0} \cup S^{0} \times D^{1} = S^{1}$$

$$S^{0} \times S^{0}$$

$$S^{0} \times S^{0}$$

$$S^{0} \times S^{0}$$

EXAMPLE

Let *L* be a circuit on 4 vertices. Then:

$$\mathcal{Z}_L(D^2, S^1) = S^3 \times S^3$$
$$\mathcal{Z}_L(D^1, S^0) = S^1 \times S^1$$

EXAMPLE

More generally, let L be an m-gon. Then:

$$\mathcal{Z}_L(D^2, S^1) = \#_{r=1}^{m-3} r \cdot {m-2 \choose r+1} S^{r+2} \times S^{m-r}.$$
(McGavran 1979)

 $\mathcal{Z}_L(D^1, S^0) = \text{an orientable surface of genus } 1 + 2^{m-3}(m-4).$

(Coxeter 1937)

- If $(M, \partial M)$ is a compact manifold of dimension d, and L is a PL-triangulation of S^m on n vertices, then $\mathcal{Z}_L(M, \partial M)$ is a compact manifold of dimension (d-1)n+m+1.
- (Bosio–Meersseman 2006) If K is a *polytopal* triangulation of S^m , then
 - $\mathcal{Z}_L(D^2, S^1)$ if n + m + 1 is even, or
 - $\mathcal{Z}_L(D^2, S^1) \times S^1$ if n + m + 1 is odd

is a complex manifold.

- This construction generalizes the classical constructions of complex structures on $S^{2p-1} \times S^1$ (Hopf) and $S^{2p-1} \times S^{2q-1}$ (Calabi–Eckmann).
- In general, the resulting complex manifolds are not symplectic, thus, not Kähler. In fact, they may even be non-formal (Denham–Suciu 2007, Grbić–Linton 2021).

- The GMAC construction enjoys nice functoriality properties in both arguments. E.g:
 - Let $f: (X, A) \to (Y, B)$ be a (cellular) map. Then $f^{\times n}: X^{\times n} \to Y^{\times n}$ restricts to a (cellular) map $\mathcal{Z}_L(f): \mathcal{Z}_L(X, A) \to \mathcal{Z}_L(Y, B)$.
- Much is known from work of M. Davis about the fundamental group and the asphericity problem for $\mathcal{Z}_L(X) = \mathcal{Z}_L(X,*)$. E.g.:
 - $\pi_1(\mathcal{Z}_L(X,*))$ is the graph product of $G_v = \pi_1(X,*)$ along the graph $\Gamma = L^{(1)} = (V, E)$, where

$$\mathsf{Prod}_{\Gamma}(\textit{G}_{\textit{v}}) = \underset{\textit{v} \in \textit{V}}{*} \textit{G}_{\textit{v}}/\{[\textit{g}_{\textit{v}},\textit{g}_{\textit{w}}] = 1 \text{ if } \{\textit{v},\textit{w}\} \in \mathsf{E}, \textit{g}_{\textit{v}} \in \textit{G}_{\textit{v}}, \textit{g}_{\textit{w}} \in \textit{G}_{\textit{w}}\}.$$

• Suppose X is aspherical. Then: $\mathcal{Z}_L(X,*)$ is aspherical iff L is a flag complex.

TORIC COMPLEXES

- Let L be a simplicial complex on vertex set $V = \{v_1, \dots, v_m\}$.
- Let $T_L = \mathcal{Z}_L(S^1, *)$ be the subcomplex of T^m obtained by deleting the cells corresponding to the missing simplices of L.
- T_L is a connected, minimal CW-complex, of dimension dim L + 1.
- T_L is formal (Notbohm–Ray 2005).
- (Kim–Roush 1980, Charney–Davis 1995) The cohomology algebra $H^*(T_L, \mathbb{k})$ is the exterior Stanley–Reisner ring

$$\Bbbk \langle L \rangle = \bigwedge V^* / (v_\sigma^* \mid \sigma \notin L),$$

where $\mathbb{k} = \mathbb{Z}$ or a field, V is the free \mathbb{k} -module on V, and $V^* = \operatorname{Hom}_{\mathbb{k}}(V, \mathbb{k})$, while $v_{\sigma}^* = v_{i_1}^* \cdots v_{i_s}^*$ for $\sigma = \{i_1, \dots, i_s\}$.

RIGHT ANGLED ARTIN GROUPS

The fundamental group Γ_Γ := π₁(T_L,*) is the RAAG associated to the graph Γ := L⁽¹⁾ = (V, E),
 G_Γ = ⟨v ∈ V | [v, w] = 1 if {v, w} ∈ E⟩.

- Moreover, $K(G_{\Gamma}, 1) = T_{\Delta_{\Gamma}}$, where Δ_{Γ} is the flag complex of Γ .
- (Kim-Makar-Limanov-Neggers-Roush 1980, Droms 1987)

$$\Gamma \cong \Gamma' \Longleftrightarrow G_{\Gamma} \cong G_{\Gamma'}.$$

• (Papadima–S. 2006) The associated graded Lie algebra of G_{Γ} has (quadratic) presentation

$$\operatorname{gr}(G_{\Gamma}) = \mathbb{L}(V)/([v,w] = 0 \text{ if } \{v,w\} \in E).$$

• (Duchamp–Krob 1992, PS06) The lower central series quotients of G_{Γ} are torsion-free, with ranks ϕ_{k} given by

$$\prod\nolimits_{k=1}^{\infty}(1-t^k)^{\phi_k}=P_{\Gamma}(-t),$$

where $P_{\Gamma}(t) = \sum_{k>0} f_k(\Delta_{\Gamma}) t^k$ is the clique polynomial of Γ.

CHEN RANKS

- The *Chen Lie algebra* of a f.g. group π is the associated graded Lie algebra of its maximal metabelian quotient, $\operatorname{gr}(\pi/\pi'')$.
- Write $\theta_k(\pi) = \operatorname{rank} \operatorname{gr}_k(\pi/\pi'')$ for the Chen ranks.
- (K.-T. Chen 1951) $\operatorname{gr}(F_n/F_n'')$ is torsion-free, with ranks $\theta_1 = n$ and $\theta_k = (k-1)\binom{n+k-2}{k}$ for $k \ge 2$.
- ullet (PS 06) $\operatorname{gr}(G_{\Gamma}/G_{\Gamma}'')$ is torsion-free, with ranks given by $\theta_1=|V|$ and

$$\sum_{k=2}^{\infty} \theta_k t^k = Q_{\Gamma} \left(\frac{t}{1-t} \right).$$

• Here $Q_{\Gamma}(t) = \sum_{i \ge 2} c_i(\Gamma) t^i$ is the "cut polynomial" of Γ , with

$$c_j(\Gamma) = \sum_{\mathsf{W} \subset \mathsf{V} \colon |\mathsf{W}| = j} \tilde{b}_0(\Gamma_\mathsf{W}).$$

EXAMPLE

Let Γ be a pentagon, and Γ' a square with an edge attached to a vertex. Then:

•
$$P_\Gamma=P_{\Gamma'}=1+5t+5t^2$$
, and so $\phi_k(G_\Gamma)=\phi_k(G_{\Gamma'}), \quad \text{for all } k\geqslant 1.$

•
$$Q_{\Gamma}=5t^2+5t^3$$
 but $Q_{\Gamma'}=5t^2+5t^3+t^4$, and so $\theta_k(G_{\Gamma}) \neq \theta_k(G_{\Gamma'})$, for $k\geqslant 4$.

COHOMOLOGY JUMP LOCI

- Let X be a connected, finite CW-complex X with $\pi := \pi_1(X)$.
- Fix a field k and set $A = H^{\bullet}(X, k)$. If $\operatorname{char}(k) = 2$, assume $H_1(X, \mathbb{Z})$ is torsion-free. Then, for each $a \in A^1$, we have $a^2 = 0$, and so we get a cochain complex, $(A, \cdot a) : A^0 \xrightarrow{\cdot a} A^1 \xrightarrow{\cdot a} A^2 \longrightarrow \cdots$.
- The resonance varieties of X are defined as

$$\mathcal{R}_s^i(X) = \{a \in A^1 \mid \dim H^i(A, \cdot a) \geqslant s\}.$$

- They are Zariski closed, homogeneous subsets of $A^1 = H^1(X, \mathbb{k})$.
- The characteristic varieties of X are the jump loci for homology with coefficients in rank-1 local systems,

$$\mathcal{V}_{s}^{i}(X, \mathbb{k}) = \{ \rho \in \mathsf{Hom}(\pi, \mathbb{k}^{*}) \mid \mathsf{dim}\, H_{i}(X, \mathbb{k}_{\rho}) \geqslant s \}.$$

• These loci are Zariski closed subsets of the character group. For i=1, they depend only on π/π'' (and k).

JUMP LOCI OF TORIC COMPLEXES

For a field \mathbb{k} , identify $H^1(T_L, \mathbb{k}) = \mathbb{k}^V$, the \mathbb{k} -vector space with basis V.

THEOREM (PAPADIMA-S. 2009)

$$\mathcal{R}_s^i(\textit{T}_L, \Bbbk) = \bigcup_{\substack{W \subset V \\ \sum_{\sigma \in \textit{L}_{V \setminus W}} \text{dim}_{\Bbbk} \, \widetilde{\textit{H}}_{i-1-|\sigma|}(\text{lk}_{\textit{L}_W}(\sigma), \Bbbk) \geqslant s}} \Bbbk^W,$$

where L_W is the subcomplex induced by L on W, and $lk_K(\sigma)$ is the link of a simplex σ in a subcomplex $K \subseteq L$.

In particular,

$$\mathcal{R}_1^1(\textit{G}_\Gamma) = \bigcup_{\substack{W \subseteq V \\ \Gamma_W \text{ disconnected}}} \mathbb{k}^W.$$

Similar formulas hold for the characteristic varieties $\mathcal{V}_s^i(T_L, \mathbb{k})$.

EXAMPLE

Let Γ and Γ' be the two graphs above. Both have

$$P(t) = 1 + 6t + 9t^2 + 4t^3$$
, and $Q(t) = t^2(6 + 8t + 3t^2)$.

Thus, G_{Γ} and $G_{\Gamma'}$ have the same LCS and Chen ranks. Each resonance variety has 3 components, of codimension 2:

$$\mathcal{R}_1(\textit{G}_{\Gamma}, \Bbbk) = \Bbbk^{\overline{23}} \cup \Bbbk^{\overline{25}} \cup \Bbbk^{\overline{35}}, \qquad \mathcal{R}_1(\textit{G}_{\Gamma'}, \Bbbk) = \Bbbk^{\overline{15}} \cup \Bbbk^{\overline{25}} \cup \Bbbk^{\overline{26}}.$$

Yet the two varieties are not isomorphic, since

$$\text{dim}(\Bbbk^{\overline{23}} \cap \Bbbk^{\overline{25}} \cap \Bbbk^{\overline{35}}) = 3, \quad \text{but} \quad \text{dim}(\Bbbk^{\overline{15}} \cap \Bbbk^{\overline{25}} \cap \Bbbk^{\overline{26}}) = 2.$$

PROPAGATION OF JUMP LOCI

• We say that the resonance varieties of a graded algebra $A = \bigoplus_{i=0}^{n} A^{i}$ propagate if

$$\mathcal{R}_1^1(A) \subseteq \cdots \subseteq \mathcal{R}_1^n(A)$$
.

- (Eisenbud–Popescu–Yuzvinsky 2003) If M(A) is the complement of a hyperplane arrangement, then the resonance varieties of the Orlik–Solomon algebra $A = H^*(M(A), \mathbb{C})$ propagate.
- The resonance varieties of $A = H^*(T_L, \mathbb{k})$ may not propagate. E.g., if L = 0, then $\mathcal{R}^1_1(A) = \mathbb{k}^4$, yet $\mathcal{R}^2_1(A) = \mathbb{k}^2 \cup \mathbb{k}^2$.

THEOREM (DENHAM-S.-YUZVINSKY 2016/17)

Suppose the k-dual of A has a linear free resolution over $E = \bigwedge A^1$. Then the resonance varieties of A propagate.

DUALITY SPACES

In order to study propagation of jump loci in a topological setting, we turn to a notion due to Bieri and Eckmann (1978).

- X is a *duality space* of dimension n if $H^i(X, \mathbb{Z}\pi) = 0$ for $i \neq n$ and $H^n(X, \mathbb{Z}\pi) \neq 0$ and torsion-free.
- Let $D = H^n(X, \mathbb{Z}\pi)$ be the dualizing $\mathbb{Z}\pi$ -module. Given any $\mathbb{Z}\pi$ -module A, we have $H^i(X, A) \cong H_{n-i}(X, D \otimes A)$.
- If $D = \mathbb{Z}$, with trivial $\mathbb{Z}\pi$ -action, then X is a Poincaré duality space.
- If $X = K(\pi, 1)$ is a duality space, then π is a *duality group*.

ABELIAN DUALITY SPACES

We introduce in (DSY18) an analogous notion, by replacing $\pi \rightsquigarrow \pi_{ab}$.

- X is an abelian duality space of dimension n if $H^i(X, \mathbb{Z}\pi_{ab}) = 0$ for $i \neq n$ and $H^n(X, \mathbb{Z}\pi_{ab}) \neq 0$ and torsion-free.
- Let $B = H^n(X, \mathbb{Z}\pi_{ab})$ be the dualizing $\mathbb{Z}\pi_{ab}$ -module. Given any $\mathbb{Z}\pi_{ab}$ -module A, we have $H^i(X, A) \cong H_{n-i}(X, B \otimes A)$.
- The two notions of duality are independent.

THEOREM (DSY)

Let X be an abelian duality space of dimension n. If $\rho \colon \pi_1(X) \to \mathbb{k}^*$ satisfies $H^i(X, \mathbb{k}_\rho) \neq 0$, then $H^j(X, \mathbb{k}_\rho) \neq 0$, for all $i \leqslant j \leqslant n$.

COROLLARY (DSY)

Let X be an abelian duality space of dimension n. Then:

- The characteristic varieties propagate: $\mathcal{V}_1^1(X, \mathbb{k}) \subseteq \cdots \subseteq \mathcal{V}_1^n(X, \mathbb{k})$.
- \bullet dim_k $H^1(X, \mathbb{k}) \geqslant n-1$.
- If $n \ge 2$, then $H^i(X, \mathbb{k}) \ne 0$, for all $0 \le i \le n$.

Proposition (DSY)

Let M be a closed, orientable 3-manifold. If $b_1(M)$ is even and non-zero, then the resonance varieties of M do not propagate.

EXAMPLE

- Let *M* be the 3-dimensional Heisenberg nilmanifold.
- Characteristic varieties propagate: $V_1^i(M, \mathbb{k}) = \{1\}$ for $i \leq 3$.
- Resonance does not propagate: $\mathcal{R}_1^1(M, \mathbb{k}) = \mathbb{k}^2$, $\mathcal{R}_1^3(M, \mathbb{k}) = 0$.

ARRANGEMENTS OF SMOOTH HYPERSURFACES

THEOREM (DENHAM-S. 2018)

Let U be a connected, smooth, complex quasi-projective variety of dimension n. Suppose U has a smooth compactification Y for which

- Components of Y\U form an arrangement of hypersurfaces A;
- For each submanifold X in the intersection poset L(A), the complement of the restriction of A to X is a Stein manifold.

Then:

- U is both a duality space and an abelian duality space of dimension n.
- If A is a finite-dimensional representation of $\pi = \pi_1(U)$, and if $A^{\gamma_g} = 0$ for all g in a building set \mathcal{G}_X , for some $X \in L(\mathcal{A})$, then $H^i(U,A) = 0$ for all $i \neq n$.
- The ℓ_2 -Betti numbers of U vanish for all $i \neq n$.

LINEAR, ELLIPTIC, AND TORIC ARRANGEMENTS

THEOREM (DS17)

Suppose that A is one of the following:

- An affine-linear arrangement in \mathbb{C}^n , or a hyperplane arrangement in \mathbb{CP}^n ;
- A non-empty elliptic arrangement in Eⁿ;
- A toric arrangement in $(\mathbb{C}^*)^n$.

Then the complement M(A) is both a duality space and an abelian duality space of dimension n-r, n+r, and n, respectively, where r is the corank of the arrangement.

This theorem extends several previous results:

- Davis, Januszkiewicz, Leary, and Okun (2011);
- Levin and Varchenko (2012);
- Davis and Settepanella (2013), Esterov and Takeuchi (2014).

THE COHEN-MACAULAY PROPERTY

- A simplicial complex L is Cohen–Macaulay if for each simplex $\sigma \in L$, the reduced cohomology $\widetilde{H}^{\bullet}(lk(\sigma), \mathbb{Z})$ is concentrated in degree $\dim L |\sigma|$ and is torsion-free.
- An analogous definition works over any coefficient field k.
- For a fixed k, the Cohen–Macaulayness of L is a topological property: it depends only on the homeomorphism type of L.
- For $\sigma = \emptyset$, the condition means that $\widetilde{H}^{\bullet}(L, \mathbb{Z})$ is concentrated in degree n; it also implies that L is pure, i.e., all its maximal simplices have dimension n.

THEOREM (N. BRADY-MEIER 2001, JENSEN-MEIER 2005)

A RAAG G_{Γ} is a duality group if and only if Δ_{Γ} is Cohen–Macaulay. Moreover, G_{Γ} is a Poincaré duality group if and only if Γ is a complete graph.

THEOREM (DSY17)

A toric complex T_L is an abelian duality space (of dimension dim L+1) if and only if L is Cohen-Macaulay, in which case both the resonance and characteristic varieties of T_L propagate.

COROLLARY

Let L be a Cohen–Macaulay complex over \Bbbk . Suppose there is a subset $W \subset V$ of the vertex set and a simplex σ supported on $V \setminus W$ such that

$$\widetilde{H}_{i-1-|\sigma|}(\operatorname{lk}_{L_{\mathsf{W}}}(\sigma), \mathbb{k}) \neq \mathbf{0},$$

for some $i \geqslant |\sigma|$. Then, for all $i \leqslant j \leqslant \dim(L) + 1$, there exists a subset $W \subset W' \subset V$ and a simplex σ' supported on $V \setminus W'$ such that

$$\widetilde{H}_{j-1-|\sigma'|}(\operatorname{lk}_{L_{\mathsf{W}'}}(\sigma'), \mathbb{k}) \neq 0.$$

- Is there a direct, combinatorial proof of this result?
- Is there a simplicial complex L which is not Cohen–Macaulay but for which the resonance varieties of T_L still propagate?

BESTVINA-BRADY GROUPS

- The Bestvina–Brady group associated to a graph Γ is defined as $N_{\Gamma} = \ker(\nu \colon G_{\Gamma} \to \mathbb{Z})$, where $\nu(\nu) = 1$, for each $\nu \in V(\Gamma)$.
- Meier–VanWyck 1995: N_{Γ} is finitely generated iff Γ is connected.
- Bestvina–Brady 1997: N_{Γ} is finitely presented iff the flag complex Δ_{Γ} is simply connected.
- In this case, an explicit finite presentation for N_{Γ} (with generators the edges of Γ) was given by Dicks–Leary 1999.
- E.g:
 - If $\Gamma = \overline{K}_2$, then $G_{\Gamma} = F_2$ and $N_{\Gamma} = F_{\infty}$.
 - If $\Gamma = K_{2,2}$, then $G_{\Gamma} = F_2 \times F_2$ and N_{Γ} is finitely generated but not finitely presented, since $H_2(N_{\Gamma}; \mathbb{Z}) = \mathbb{Z}^{\infty}$ (Stallings 1963).
 - If Γ is a tree on *n* vertices, then $N_{\Gamma} = F_{n-1}$.

- BB97: A counterexample to either the Eilenberg–Ganea conjecture or the Whitehead asphericity conjecture can be constructed from N_Γ, where Γ is the 1-skeleton of a triangulation of the Poincaré sphere.
- (Papadima–S. 2007): if Γ is connected, then $\mathbb Z$ acts trivially on $H_1(N_{\Gamma},\mathbb Z)$.
- The cohomology ring H*(N_Γ, k) was computed in PS07 and by Leary–Saadetoğlu (2011).
- The jump loci $\mathcal{R}^1_1(N_{\Gamma}, \mathbb{k})$ and $\mathcal{V}^1_1(N_{\Gamma}, \mathbb{k})$ were computed in PS07.

THEOREM (DAVIS-OKUN 2012)

Suppose Δ_{Γ} is acyclic. Then N_{Γ} is a duality group if and only if Δ_{Γ} is Cohen–Macaulay.

THEOREM (DSY18)

A Bestvina–Brady group N_{Γ} is an abelian duality group if and only if Δ_{Γ} is acyclic and Cohen–Macaulay.