TOPOLOGY AND GEOMETRY OF COHOMOLOGY JUMP LOCI

Alex Suciu

Northeastern University

Conference on Experimental and Theoretical Methods in Algebra, Geometry and Topology

Eforie Nord, Romania

June 24, 2013

ALEX SUCIU (NORTHEASTERN)

SUPPORT LOCI

- Let k be an algebraically closed field.
- Let S be a commutative, finitely generated k-algebra.
- Let $\text{Spec}(S) = \text{Hom}_{\Bbbk-\text{alg}}(S, \Bbbk)$ be the maximal spectrum of *S*.
- Let $E: \dots \to E_i \xrightarrow{d_i} E_{i-1} \to \dots \to E_0 \to 0$ be an *S*-chain complex.
- The support varieties of *E* are the subsets of Spec(*S*) given by $\mathcal{W}_{d}^{i}(E) = \operatorname{supp} \Big(\bigwedge^{d} H_{i}(E) \Big).$
- They depend only on the chain-homotopy equivalence class of *E*.
- For each $i \ge 0$, Spec $(S) = W_0^i(E) \supseteq W_1^i(E) \supseteq W_2^i(E) \supseteq \cdots$.
- If all *E_i* are finitely generated *S*-modules, then the sets *Wⁱ_d(E)* are Zariski closed subsets of Spec(*S*).

ALEX SUCIU (NORTHEASTERN)

- The homology jump loci of the *S*-chain complex *E* are defined as $\mathcal{V}_{d}^{i}(E) = \{\mathfrak{m} \in \operatorname{Spec}(S) \mid \dim_{\Bbbk} H_{i}(E \otimes_{S} S/\mathfrak{m}) \ge d\}.$
- They depend only on the chain-homotopy equivalence class of E.
- For each $i \ge 0$, Spec $(S) = \mathcal{V}_0^i(E) \supseteq \mathcal{V}_1^i(E) \supseteq \mathcal{V}_2^i(E) \supseteq \cdots$.
- (Papadima–S. 2013) Suppose *E* is a chain complex of *free*, finitely generated *S*-modules. Then,
 - Each $\mathcal{V}_d^i(E)$ is a Zariski closed subset of Spec(S).
 - For each q,

$$\bigcup_{i \leq q} \mathcal{V}_1^i(E) = \bigcup_{i \leq q} \mathcal{W}_1^i(E).$$

RESONANCE VARIETIES

- Let *A* be a commutative graded \Bbbk -algebra, with $A^0 = \Bbbk$.
- Let *a* ∈ *A*¹, and assume *a*² = 0 (this condition is redundant if char(k) ≠ 2, by graded-commutativity of the multiplication in *A*).
- The Aomoto complex of A (with respect to a ∈ A¹) is the cochain complex of k-vector spaces,

$$(A, a): A^0 \xrightarrow{a} A^1 \xrightarrow{a} A^2 \xrightarrow{a} \cdots$$

with differentials given by $b \mapsto a \cdot b$, for $b \in A^i$.

• The resonance varieties of A are the sets

 $\mathcal{R}^{i}_{d}(A) = \{ a \in A^{1} \mid a^{2} = 0 \text{ and } \dim_{\mathbb{K}} H^{i}(A, a) \ge d \}.$

• If *A* is locally finite (i.e., $\dim_{\mathbb{k}} A^i < \infty$, for all $i \ge 1$), then the sets $\mathcal{R}^i_d(A)$ are Zariski closed cones inside the affine space A^1 .

CHARACTERISTIC VARIETIES

- Let X be a connected, finite-type CW-complex.
- Fundamental group π = π₁(X, x₀): a finitely generated, discrete group, with π_{ab} ≃ H₁(X, Z).
- Fix a field \Bbbk with $\overline{\Bbbk} = \Bbbk$, and let $S = \Bbbk[\pi_{ab}]$.
- Identify $\operatorname{Spec}(S)$ with the character group $\widehat{\pi_{ab}} = \widehat{\pi} = \operatorname{Hom}(\pi, \Bbbk^*)$.
- The characteristic varieties of X are the homology jump loci of free S-chain complex E = C_{*}(X^{ab}, k):

 $\mathcal{V}_{d}^{i}(X, \mathbb{k}) = \{ \rho \in \widehat{\pi} \mid \dim_{\mathbb{C}} H_{i}(X, \mathbb{k}_{\rho}) \ge d \}.$

• Each set $\mathcal{V}_d^i(X, \mathbb{k})$ is a subvariety of $\hat{\mathbb{k}}$.

- Homotopy invariance: If $X \simeq Y$, then $\mathcal{V}_d^i(Y, \Bbbk) \cong \mathcal{V}_d^i(X, \Bbbk)$.
- Product formula: $\mathcal{V}_1^i(X_1 \times X_2, \Bbbk) = \bigcup_{p+q=i} \mathcal{V}_1^p(X_1, \Bbbk) \times \mathcal{V}_1^q(X_2, \Bbbk).$
- Degree 1 interpretation: The sets $\mathcal{V}_d^1(X, \Bbbk)$ depend only on $\pi = \pi_1(X)$ —in fact, only on π/π'' . Write them as $\mathcal{V}_d^1(\pi, \Bbbk)$.
- *Functoriality:* If $\varphi \colon \pi \to G$ is an epimorphism, then $\hat{\varphi} \colon \hat{G} \hookrightarrow \hat{\pi}$ restricts to an embedding $\mathcal{V}_d^1(G, \Bbbk) \hookrightarrow \mathcal{V}_d^1(\pi, \Bbbk)$, for each *d*.
- Universality: Given any subvariety $W \subset (\Bbbk^*)^n$, there is a finitely presented group π such that $\pi_{ab} = \mathbb{Z}^n$ and $\mathcal{V}_1^1(\pi, \Bbbk) = W$.
- Alexander invariant interpretation: Let $X^{ab} \to X$ be the maximal abelian cover. View $H_*(X^{ab}, \Bbbk)$ as a module over $S = \Bbbk[\pi_{ab}]$. Then:

$$\bigcup_{j\leqslant i}\mathcal{V}_1^j(\boldsymbol{X})=\operatorname{supp}\Big(\bigoplus_{j\leqslant i}H_j\big(\boldsymbol{X}^{\operatorname{ab}},\Bbbk\big)\Big).$$

THE TANGENT CONE THEOREM

- The resonance varieties of X (with coefficients in \Bbbk) are the loci $\mathcal{R}^i_d(X, \Bbbk)$ associated to the cohomology algebra $A = H^*(X, \Bbbk)$.
- Each set $\mathcal{R}^i_d(X) := \mathcal{R}^i_d(X, \mathbb{C})$ is a homogeneous subvariety of $H^1(X, \mathbb{C}) \cong \mathbb{C}^n$, where $n = b_1(X)$.
- Recall that $\mathcal{V}_d^i(X) := \mathcal{V}_d^i(X, \mathbb{C})$ is a subvariety of $H^1(X, \mathbb{C}^*) \cong (\mathbb{C}^*)^n \times \operatorname{Tors}(H_1(X, \mathbb{Z})).$
- (Libgober 2002) $\mathsf{TC}_1(\mathcal{V}^i_d(X)) \subseteq \mathcal{R}^i_d(X)$.
- Given a subvariety $W \subset H^1(X, \mathbb{C}^*)$, let $\tau_1(W) = \{z \in H^1(X, \mathbb{C}) \mid \exp(\lambda z) \in W, \forall \lambda \in \mathbb{C}\}.$
- (Dimca–Papadima–S. 2009) τ₁(W) is a finite union of rationally defined linear subspaces, and τ₁(W) ⊆ TC₁(W).
- Thus, $\tau_1(\mathcal{V}_d^i(X)) \subseteq \mathsf{TC}_1(\mathcal{V}_d^i(X)) \subseteq \mathcal{R}_d^i(X).$

- X is formal if there is a zig-zag of cdga quasi-isomorphisms from (A_{PL}(X, Q), d) to (H*(X, Q), 0).
- X is k-formal (for some k ≥ 1) if each of these morphisms induces an iso in degrees up to k, and a monomorphism in degree k + 1.
- X is 1-formal if and only if $\pi = \pi_1(X)$ is 1-formal, i.e., its Malcev Lie algebra, $\mathfrak{m}(\pi) = \operatorname{Prim}(\widehat{\mathbb{Q}\pi})$, is quadratic.
- For instance, compact K\u00e4hler manifolds and complements of hyperplane arrangements are formal.
- (Dimca–Papadima–S. 2009) Let X be a 1-formal space. Then, for each d > 0,

$$\tau_1(\mathcal{V}_d^1(X)) = \mathsf{TC}_1(\mathcal{V}_d^1(X)) = \mathcal{R}_d^1(X).$$

Consequently, $\mathcal{R}^1_d(X)$ is a finite union of rationally defined linear subspaces in $H^1(X, \mathbb{C})$.

This theorem yields a very efficient formality test.

EXAMPLE

Let $\pi = \langle x_1, x_2, x_3, x_4 | [x_1, x_2], [x_1, x_4] [x_2^{-2}, x_3], [x_1^{-1}, x_3] [x_2, x_4] \rangle$. Then $\mathcal{R}_1^1(\pi) = \{x \in \mathbb{C}^4 | x_1^2 - 2x_2^2 = 0\}$ splits into linear subspaces over \mathbb{R} but not over \mathbb{Q} . Thus, π is *not* 1-formal.

EXAMPLE

Let $F(\Sigma_g, n)$ be the configuration space of *n* labeled points of a Riemann surface of genus *g* (a smooth, quasi-projective variety).

Then $\pi_1(F(\Sigma_g, n)) = P_{g,n}$, the pure braid group on *n* strings on Σ_g . Compute:

$$\mathcal{R}_{1}^{1}(P_{1,n}) = \left\{ (x, y) \in \mathbb{C}^{n} \times \mathbb{C}^{n} \middle| \begin{array}{l} \sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} y_{i} = 0, \\ x_{i}y_{j} - x_{j}y_{i} = 0, \text{ for } 1 \leq i < j < n \end{array} \right\}$$

For $n \ge 3$, this is an irreducible, non-linear variety (a rational normal scroll). Hence, $P_{1,n}$ is not 1-formal.

ALEX SUCIU (NORTHEASTERN)

PROPAGATION OF COHOMOLOGY JUMP LOCI

(Denham-S.-Yuzvinsky 2013)

- Assume X is an *abelian duality space* of dimension *n*, i.e., $H^p(X, \mathbb{Z}\pi_{ab}) = 0$ for $p \neq n$ and $H^n(X, \mathbb{Z}\pi_{ab}) \neq 0$ and torsion-free.
- Given a character character $\rho \colon \pi \to \mathbb{C}^*$, if $H^p(X, \mathbb{C}_\rho) \neq 0$, then $H^q(X, \mathbb{C}_\rho) \neq 0$ for all $p \leq q \leq n$.
- Thus, the characteristic varieties of X "propagate": $\mathcal{V}_1^1(X) \subseteq \mathcal{V}_1^2(X) \subseteq \cdots \subseteq \mathcal{V}_1^n(X).$
- Moreover, if *X* admits a minimal cell structure, then $\mathcal{R}_1^1(X) \subseteq \mathcal{R}_1^2(X) \subseteq \cdots \subseteq \mathcal{R}_1^n(X).$
- If \mathcal{A} is an arrangement of rank d, then its complement, $M(\mathcal{A})$, is an abelian duality space of dim d. Thus, both the characteristic and the resonance varieties of $M(\mathcal{A})$ propagate.

APPLICATIONS OF COHOMOLOGY JUMP LOCI

- Homological and geometric finiteness of regular abelian covers
 - Bieri-Neumann-Strebel-Renz invariants
 - Dwyer–Fried invariants
- Obstructions to (quasi-) projectivity
 - Right-angled Artin groups and Bestvina–Brady groups
 - 3-manifold groups, K\u00e4hler groups, and quasi-projective groups
- Resonance varieties and representations of Lie algebras
 - Homological finiteness in the Johnson filtration of automorphism groups
- Homology of finite, regular abelian covers
 - Homology of the Milnor fiber of an arrangement
 - Rational homology of smooth, real toric varieties
- Lower central series and Chen Lie algebras
 - The Chen ranks conjecture for arrangements

FINITENESS PROPERTIES IN ABELIAN COVERS

- Recall *X* is a connected, finite-type CW-complex, $\pi = \pi_1(X)$.
- Let *A* be an abelian group (quotient of π_{ab}).
- Equivalence classes of Galois *A*-covers of *X* can be identified with $\operatorname{Epi}(\pi, A) / \operatorname{Aut}(A) \cong \operatorname{Epi}(\pi_{ab}, A) / \operatorname{Aut}(A)$.

• In particular, Galois \mathbb{Z}^r -covers are parametrized by the Grassmannian $\operatorname{Gr}_r(H^1(X, \mathbb{Q}))$, via the correspondence

 $X^{\nu} \to X \iff P_{\nu} := \operatorname{im}(\nu^* \colon \mathbb{Q}^r \to H^1(X, \mathbb{Q}))$

• Goal: Use the cohomology jump loci of *X* to analyze the geometric and homological finiteness properties of regular *A*-covers of *X*.

ALEX SUCIU (NORTHEASTERN)

THE BIERI–NEUMANN–STREBEL–RENZ INVARIANTS

- Let π be a finitely generated group, $n = b_1(\pi)$.
- Let $S(\pi)$ be the unit sphere in Hom $(\pi, \mathbb{R}) = \mathbb{R}^n$.
- The BNSR-invariants of π form a descending chain of open subsets, S(π) ⊇ Σ¹(π, Z) ⊇ Σ¹(π, Z) ⊇ ···.
- $\Sigma^k(\pi, \mathbb{Z})$ consists of all $\chi \in S(G)$ for which the monoid $\pi_{\chi} = \{g \in \pi \mid \chi(g) \ge 0\}$ is of type FP_k, i.e., there is a projective $\mathbb{Z}\pi$ -resolution $P_{\bullet} \to \mathbb{Z}$, with P_i finitely generated for all $i \le k$.
- The Σ -invariants control the finiteness properties of normal subgroups $N \lhd \pi$ for which π/N is free abelian:

N is of type
$$\mathsf{FP}_k \iff \mathcal{S}(\pi, N) \subseteq \Sigma^k(\pi, \mathbb{Z})$$

where $S(\pi, N) = \{\chi \in S(\pi) \mid \chi(N) = 0\}.$

• In particular: $\ker(\chi \colon \pi \twoheadrightarrow \mathbb{Z})$ is f.g. $\iff \{\pm\chi\} \subseteq \Sigma^1(\pi, \mathbb{Z})$.

- More generally, let X be a connected CW-complex with finite k-skeleton, for some k ≥ 1.
- Let $\pi = \pi_1(X, x_0)$. For each $\chi \in S(X) := S(\pi)$, set

 $\widehat{\mathbb{Z}\pi}_{\chi} = \{\lambda \in \mathbb{Z}^{\pi} \mid \{g \in \text{supp } \lambda \mid \chi(g) < c\} \text{ is finite, } \forall c \in \mathbb{R}\}$

be the Novikov-Sikorav completion of $\mathbb{Z}\pi$.

- Define $\Sigma^q(X, \mathbb{Z}) = \{\chi \in S(X) \mid H_i(X, \widehat{\mathbb{Z}\pi}_{-\chi}) = 0, \forall i \leq q\}.$
- (Bieri) If π is FP_k, then $\Sigma^q(\pi, \mathbb{Z}) = \Sigma^q(K(\pi, 1), \mathbb{Z}), \forall q \leq k$.
- The sphere S(π) parametrizes all regular, free abelian covers of X. The Σ-invariants of X keep track of the geometric finiteness properties of these covers.

ALEX SUCIU (NORTHEASTERN)

AN UPPER BOUND FOR THE Σ -INVARIANTS

- Let $\chi \in S(X)$, and set $\Gamma = im(\chi)$; then $\Gamma \cong \mathbb{Z}^r$, for some $r \ge 1$.
- A Laurent polynomial $p = \sum_{\gamma} n_{\gamma} \gamma \in \mathbb{Z}\Gamma$ is χ -monic if the greatest element in $\chi(\operatorname{supp}(p))$ is 0, and $n_0 = 1$.
- Let *R*Γ_χ be the Novikov ring: the localization of ZΓ at the multiplicative subset of all χ-monic polynomials (it's a PID).
- Let $b_i(X, \chi) = \operatorname{rank}_{\mathcal{R}\Gamma_{\chi}} H_i(X, \mathcal{R}\Gamma_{\chi})$ be the Novikov-Betti numbers.
- (Papadima–S. 2010) Let $\mathcal{V}^k(X) = \bigcup_{i \leq k} \mathcal{V}^i_1(X)$. Then,
 - $-\chi \in \Sigma^k(X, \mathbb{Z}) \implies b_i(X, \chi) = 0, \forall i \leq k.$
 - $\chi \notin \tau_1^{\mathbb{R}}(\mathcal{V}^k(X)) \Longleftrightarrow b_i(X,\chi) = 0, \forall i \leq k.$

Thus, $\Sigma^{i}(X, \mathbb{Z}) \subseteq S(X) \setminus S(\tau_{1}^{\mathbb{R}}(\mathcal{V}^{i}(X))).$

 In particular, Σⁱ(X, ℤ) is contained in the complement of a finite union of rationally defined great subspheres.

ALEX SUCIU (NORTHEASTERN)

THE DWYER–FRIED INVARIANTS

- The Dwyer–Fried invariants of X are the subsets
 Ωⁱ_r(X) = {P_ν ∈ Gr_r(H¹(X, Q)) | b_j(X^ν) < ∞ for j ≤ i}.
- (Dwyer–Fried 1987, Papadima–S. 2010) $\Omega_r^i(X) = \{ P \in \operatorname{Gr}_r(H^1(X, \mathbb{Q})) \mid \dim \left(\exp(P \otimes \mathbb{C}) \cap \mathcal{V}^i(X) \right) = \mathbf{0} \}.$
- More generally, for any abelian group A, define $\Omega_A^i(X) = \{ [\nu] \in \mathsf{Epi}(\pi, A) / \mathsf{Aut}(A) \mid b_j(X^{\nu}) < \infty, \text{ for } j \leq i \}.$
- (S.-Yang-Zhao 2012)

 $\Omega^{i}_{\mathcal{A}}(\mathcal{X}) = \big\{ [\nu] \in \mathsf{Epi}(\pi_{1}(\mathcal{X}), \mathcal{A}) / \operatorname{Aut}(\mathcal{A}) \mid \operatorname{im}(\hat{\nu}) \cap \mathcal{V}^{i}(\mathcal{X}) \text{ is finite } \big\}.$

- Let *V* be a homogeneous variety in \mathbb{k}^n . The set $\sigma_r(V) = \{P \in \operatorname{Gr}_r(\mathbb{k}^n) \mid P \cap V \neq \{0\}\}$ is Zariski closed.
- If L ⊂ kⁿ is a linear subspace, σ_r(L) is the special Schubert variety defined by L. If codim L = d, then codim σ_r(L) = d − r + 1.
- (S. 2013) $\Omega_r^i(X) \subseteq \operatorname{Gr}_r(H^1(X, \mathbb{Q})) \setminus \sigma_r(\tau_1^{\mathbb{Q}}(\mathcal{V}^i(X))).$
- Thus, each set Ωⁱ_r(X) is contained in the complement of a finite union of special Schubert varieties.
- If r = 1, the inclusion always holds as an equality. In general, though, the inclusion is strict.
- (SYZ) Similar inclusions hold for the sets Ωⁱ_A(X), but things get more complicated.

Comparing the Σ - and Ω -bounds

- Theorem (S. 2012) If $\Sigma^{i}(X, \mathbb{Z}) = S(X) \setminus S(\tau_{1}^{\mathbb{R}}(\mathcal{V}^{i}(X)))$, then $\Omega_{r}^{i}(X) = \operatorname{Gr}_{r}(H^{1}(X, \mathbb{Q})) \setminus \sigma_{r}(\tau_{1}^{\mathbb{Q}}(\mathcal{V}^{i}(X)))$, for all $r \ge 1$.
- Corollary. Suppose there is an integer $r \ge 2$ such that $\Omega_r^i(X)$ is *not* Zariski open. Then $\Sigma^i(X, \mathbb{Z}) \subsetneq S(\tau_1^{\mathbb{R}}(\mathcal{V}^i(X)))^{c}$.
- Application. There exist arrangements \mathcal{A} for which the inclusion $\Sigma^1(\mathcal{M}(\mathcal{A}),\mathbb{Z}) \subseteq \mathcal{S}(\mathcal{R}^1(\mathcal{M}(\mathcal{A}),\mathbb{R}))^{c}$ is strict.
- On the other hand, if \mathcal{A} is the braid arrangement in \mathbb{C}^n , with $\pi_1(\mathcal{M}(\mathcal{A})) = \mathcal{P}_n$, then equality holds (Koban–McCammond–Meier 2013).
- For more on Novikov homology/BNSR invariants of arrangements, see (Kohno–Pajitnov 2011/13) and (Denham–S.–Yuzvinsky).

 (Delzant 2010/ PS 2010) Let *M* be a compact Kähler manifold with b₁(*M*) > 0. Then

 $\Sigma^{1}(M,\mathbb{Z}) = S(\mathcal{R}^{1}(M))^{c}$

if and only if there is no pencil $f: M \to E$ onto an elliptic curve *E* such that *f* has multiple fibers.

- (S. 2013) Let *M* be a compact Kähler manifold.
 - If *M* admits an orbifold fibration with base genus $g \ge 2$, then $\Omega_r^1(M) = \emptyset$, for all $r > b_1(M) 2g$.
 - Otherwise, $\Omega_r^1(M) = \operatorname{Gr}_r(H^1(M, \mathbb{Q}))$, for all $r \ge 1$.
 - Suppose *M* admits an orbifold fibration with multiple fibers and base genus *g* = 1. Then Ω¹₂(*M*) is *not* an open subset of Gr₂(*H*¹(*M*, Q)).

3-MANIFOLD GROUPS & KÄHLER GROUPS

- Question (Donaldson–Goldman 1989, Reznikov 1993): Which 3-manifold groups are Kähler groups?
- Reznikov (2002) gave a partial solution.
- Theorem (Dimca–S. 2009) Let π be the fundamental group of a closed 3-manifold. Then π is a Kähler group ⇐⇒ π is a finite subgroup of O(4), acting freely on S³.
- Idea: compare the resonance varieties of (orientable) 3-manifolds to those of Kähler manifolds:
 - Let *M* be a closed, orientable 3-manifold. Then $H^1(M, \mathbb{C})$ is not 1-isotropic. Moreover, if $b_1(M)$ is even, then $\mathcal{R}^1_1(M) = H^1(M, \mathbb{C})$.
 - Let *M* be a compact Kähler manifold with $b_1(M) \neq 0$. If $\mathcal{R}^1_1(M) = H^1(M, \mathbb{C})$, then $H^1(M, \mathbb{C})$ is 1-isotropic.

- This result can be extended, by allowing the 3-manifold to have toroidal boundary.
- Theorem (FriedI–S. 2013) Let *N* be a 3-manifold with non-empty, toroidal boundary. If $\pi_1(N)$ is a Kähler group, then $N \cong S^1 \times S^1 \times [0, 1]$.
- A key ingredient in the proof is a refinement of a result from (Dimca–Papadima–S. 2008): If π is a Kähler group, then the Alexander polynomial of π is constant.
- Further improvements have been obtained since then by Kotschick and by Biswas, Mj, and Seshadri.

3-MANIFOLD GROUPS & QUASI-PROJECTIVE GROUPS

- Theorem (Dimca–Papadima–S. 2011). Let $\pi = \pi_1(N)$, where N is a closed, orientable 3-manifold, and π is 1-formal. TFAE:
 - $\mathfrak{m}(\pi) \cong \mathfrak{m}(\pi_1(X))$, for some smooth, quasi-projective variety *X*.
 - $\mathfrak{m}(\pi) \cong \mathfrak{m}(\pi_1(M))$, where $M = S^3$, $\#^n S^1 \times S^2$, or $S^1 \times \Sigma_g$.
- Theorem (Friedl–S. 2013) Let *N* be a compact 3-manifold with empty or toroidal boundary. If $\pi_1(N)$ is a quasi-projective group, then all the prime components of *N* are graph manifolds.
- Again, we use a refinement of a result from (DPS 2008): If π is a quasi-projective group, and $b_1(\pi) > 2$, then the Newton polytope of the Alexander polynomial of π is a line segment.
- This refinement relies on work of (Artal–Cogolludo-Matei 2013).
- We also use recent, deep results of Agol, Kahn–Markovic, Przytycki–Wise, and Wise on the topology of 3-manifolds that complete the Thurston program.

ALEX SUCIU (NORTHEASTERN)

REFERENCES

G. Denham, A. Suciu, *Multinets, parallel connections, and Milnor fibrations of arrangements*, Proc. London Math. Soc., doi:10.1112/plms/pdt058.

G. Denham, A. Suciu, S. Yuzvinsky, *Abelian duality and propagation of resonance*, in preparation.

- A. Dimca, S. Papadima, A. Suciu, *Alexander polynomials: Essential variables and multiplicities*, Int. Math. Res. Notices **2008**, no. 3, Art. ID rnm119, 36 pp.
- A. Dimca, S. Papadima, A. Suciu, *Topology and geometry of cohomology jump loci*, Duke Math. Journal **148** (2009), no. 3, 405–457.

A. Dimca, S. Papadima, A. Suciu, *Quasi-Kähler groups*, 3-manifold groups, and formality, Math. Zeit. **268** (2011), no. 1-2, 169–186.

A. Dimca, A. Suciu, *Which* <u>3</u>*-manifold groups are Kähler groups?*, J. European Math. Soc. **11** (2009), no. 3, 521–528.

S. Friedl, A. Suciu, *Which* <u>3</u>-manifold groups are quasi-Kähler groups?, J. London Math. Soc., doi:10.1112/jlms/jdt051.

S. Papadima, A. Suciu, *Toric complexes and Artin kernels*, Advances in Math. **220** (2009), no. 2, 441–477.

ALEX SUCIU (NORTHEASTERN)

- S. Papadima, A. Suciu, *Bieri-Neumann-Strebel-Renz invariants and homology jumping loci*, Proc. London Math. Soc. **100** (2010), no. 3, 795–834.
- A. Suciu, *Fundamental groups, Alexander invariants, and cohomology jumping loci*, in: Topology of algebraic varieties and singularities, 179–223, Contemp. Math., vol. 538, Amer. Math. Soc., Providence, RI, 2011.
- A. Suciu, *Resonance varieties and Dwyer–Fried invariants*, in: Arrangements of Hyperplanes (Sapporo 2009), 359–398, Advanced Studies Pure Math., vol. 62, Kinokuniya, Tokyo, 2012.
- A. Suciu, *Geometric and homological finiteness in free abelian covers*, Configuration Spaces: Geometry, Combinatorics and Topology (Centro De Giorgi, 2010), 461–501, Edizioni della Normale, Pisa, 2012.
- A. Suciu, *Characteristic varieties and Betti numbers of free abelian covers*, Int. Math. Res. Notices, doi:10.1093/imrn/rns246.
- A. Suciu, Y. Yang, G. Zhao, *Intersections of translated algebraic subtori*, J. Pure Appl. Alg. **217** (2013), no. 3, 481–494.
- A. Suciu, Y. Yang, G. Zhao, *Homological finiteness of abelian covers*, Ann. Sc. Norm. Super. Pisa (to appear), arxiv:1204.4873.