GERMS OF REPRESENTATION VARIETIES AND COHOMOLOGY JUMP LOCI

Alex Suciu

Northeastern University

Conference on Non-Isolated Singularities and Derived Geometry

A celebration of the 60th birthday of David Massey
UNAM-Cuernavaca, Mexico
August 1, 2019

REFERENCES

- [PS1] S. Papadima and A. Suciu, The topology of compact Lie group actions through the lens of finite models, electronically published in Int. Math. Res. Not. IMRN (2018).
- [PS2] S. Papadima and A. Suciu, Rank two topological and infinitesimal embedded jump loci of quasi-projective manifolds, electronically published in J. Inst. Math. Jussieu (2018).
- [PS3] S. Papadima and A. Suciu, Naturality properties and comparison results for topological and infinitesimal embedded jump loci, Adv. in Math. 350 (2019), 256–303.
- [PS4] S. Papadima and A. Suciu, *Infinitesimal finiteness obstructions*, J. London Math. Soc. **99** (2019), no. 1, 173–193.
- [MPPS] A. Măcinic, S. Papadima, R. Popescu, and A. Suciu, *Flat connections and resonance varieties: from rank one to higher ranks*, Trans. Amer. Math. Soc. **369** (2017), no. 2, 1309–1343.

OVERVIEW

- The study of analytic germs of representation varieties and cohomology jump loci is a basic problem in deformation theory with homological constraints.
- Building on work of Goldman–Millson [1988], it was shown by Dimca–Papadima [2014] that the germs at the origin of those loci are isomorphic to the germs at the origin of infinitesimal jump loci of a CDGA that is a finite model for the space in question.
- Budur and Wang [2015] have extended this result away from the origin, by developing a theory of differential graded Lie algebra modules which control the corresponding deformation problem.

- Work of Papadima—S [2017] reveals a surprising connection between SL₂(C) representation varieties of arrangement groups and the monodromy action on the homology of Milnor fibers of hyperplane arrangements.
- ▶ On the other hand, the universality theorem of Kapovich and Millson [1998] shows that $SL_2(\mathbb{C})$ -representation varieties of Artin groups may have arbitrarily bad singularities away from 1.
- ► This lead us to focus on germs at the origin of the representation varieties $\mathsf{Hom}(\pi, G)$, and look for explicit descriptions via infinitesimal CDGA methods.
- ▶ This approach works very well when $G = SL(2, \mathbb{C})$ and π is a Kähler group, an arrangement group, or a right-angled Artin group.

REPRESENTATION VARIETIES

- Let π be a finitely generated group.
- ▶ G be a k-linear algebraic group.
- ▶ The set $Hom(\pi, G)$ has a natural structure of an affine variety, called the *G-representation variety of* π .
- ▶ Every homomorphism $\varphi \colon \pi \to \pi'$ induces an algebraic morphism, $\varphi^* \colon \operatorname{Hom}(\pi', G) \to \operatorname{Hom}(\pi, G)$, which is an isomorphism onto a closed subvariety.
- Example: $Hom(F_n, G) = G^n$.
- ▶ $\operatorname{\mathsf{Hom}}(\mathbb{Z}^2,\operatorname{\mathsf{GL}}_k(\mathbb{C}))$ is irreducible, but not much else is known about the varieties of commuting matrices, $\operatorname{\mathsf{Hom}}(\mathbb{Z}^n,\operatorname{\mathsf{GL}}_k(\mathbb{C}))$.
- ▶ The varieties $\operatorname{Hom}(\pi_1(\Sigma_g), G)$ are connected if $G = \operatorname{SL}_k(\mathbb{C})$, and irreducible if $G = \operatorname{GL}_k(\mathbb{C})$.

COHOMOLOGY JUMP LOCI

- Let (X, x) be a pointed, path-connected space, and assume $\pi = \pi_1(X, x)$ is finitely generated.
- ▶ The variety $Hom(\pi, G)$ is the parameter space for locally constant sheaves on X whose monodromies factor through G.
- ▶ Given a rep $\tau \colon \pi \to \mathsf{GL}(V)$, we let V_{τ} be the local system on X associated to τ , i.e., the left π -module V defined by $g \cdot v = \tau(g)v$.
- ▶ We also let $H^{\bullet}(X, V_{\tau})$ be the twisted cohomology of X with coefficients in this local system.

$$\mathcal{V}^i_r(X,\iota) = \{ \rho \in \mathsf{Hom}(\pi,\textbf{\textit{G}}) \mid \mathsf{dim}_{\mathbb{C}} \, H^i(X,V_{\iota \circ \rho}) \geqslant r \}.$$

- ▶ The pairs $(\text{Hom}(\pi, G), \mathcal{V}_r^i(X, \iota))$ depend only on the homotopy type of X and on the representation ι .
- ▶ If X is a finite-type CW-complex, and ι is a rational representation, the sets $\mathcal{V}_r^i(X, \iota)$ are closed subvarieties of $\mathsf{Hom}(\pi, G)$.
- ▶ For $G = \mathbb{C}^*$, the variety $\operatorname{Hom}(\pi, \mathbb{C}^*) = H^1(X, \mathbb{C}^*)$ is the character group of π —a disjoint union of algebraic tori $(\mathbb{C}^*)^{b_1(X)}$, indexed by $\operatorname{Tors}(H_1(X,\mathbb{Z}))$.
- ▶ For $\iota : \mathbb{C}^* \xrightarrow{\simeq} \mathsf{GL}_1(\mathbb{C})$ and $V = \mathbb{C}$, we get the usual characteristic varieties, $\mathcal{V}_r^i(X)$.

FLAT CONNECTIONS

► The infinitesimal analogue of the G-representation variety is

$$F(A,\mathfrak{g}),$$

the set of \mathfrak{g} -valued flat connections on a commutative, differential graded \mathbb{C} -algebra (A^{\bullet}, d) , where \mathfrak{g} is a Lie algebra.

► This set consists of all elements $\omega \in A^1 \otimes \mathfrak{g}$ which satisfy the Maurer–Cartan equation,

$$d\omega + \frac{1}{2}[\omega,\omega] = 0.$$

▶ If A^1 and \mathfrak{g} are finite dimensional, then $F(A, \mathfrak{g})$ is a Zariski-closed subset of the affine space $A^1 \otimes \mathfrak{g}$.

Infinitesimal cohomology jump loci

▶ For each $\omega \in \mathcal{F}(A, \mathfrak{g})$, we turn $A \otimes V$ into a cochain complex,

$$(A \otimes V, d_{\omega}): A^0 \otimes V \xrightarrow{d_{\omega}} A^1 \otimes V \xrightarrow{d_{\omega}} A^2 \otimes V \xrightarrow{d_{\omega}} \cdots,$$

using as differential the covariant derivative $d_{\omega} = d \otimes id_{V} + ad_{\omega}$. (The flatness condition on ω insures that $d_{\omega}^{2} = 0$.)

► The resonance varieties of the CDGA (A^{\bullet}, d) with respect to a representation $\theta \colon \mathfrak{g} \to \mathfrak{gl}(V)$ are the sets

$$\mathcal{R}_r^i(A,\theta) = \{\omega \in \mathcal{F}(A,\mathfrak{g}) \mid \dim_{\mathbb{C}} H^i(A \otimes V, d_{\omega}) \geqslant r\}.$$

- ▶ If A, \mathfrak{g} , and V are all finite-dimensional, the sets $\mathcal{R}_r^i(A,\theta)$ are closed subvarieties of $\mathcal{F}(A,\mathfrak{g})$.
- ▶ For $\mathfrak{g} = \mathbb{C}$, we have $\mathcal{F}(A, \mathfrak{g}) \cong H^1(A)$. Also, for $\theta = \mathrm{id}_{\mathbb{C}}$, we get the usual resonance varieties $\mathcal{R}_r^i(A)$.

- ▶ Let $\mathcal{F}^1(A, \mathfrak{g}) = \{ \eta \otimes g \in \mathcal{F}(A, \mathfrak{g}) \mid d\eta = 0 \}.$
- ▶ Let $\Pi(A, \theta) = \{ \eta \otimes g \in \mathcal{F}^1(A, \mathfrak{g}) \mid \det(\theta(g)) = 0 \}.$
- ▶ In the rank 1 case, $\mathcal{F}^1(A,\mathbb{C}) = \mathcal{F}(A,\mathbb{C})$ and $\Pi(A,\theta) = \{0\}$.

THEOREM (MPPS)

Let $\omega = \eta \otimes g \in \mathcal{F}^1(A, \mathfrak{g})$. Then ω belongs to $\mathcal{R}^i_1(A, \theta)$ if and only if there is an eigenvalue λ of $\theta(g)$ such that $\lambda \eta$ belongs to $\mathcal{R}^i_1(A)$. Moreover,

$$\Pi(A,\theta) \subseteq \bigcap_{i:H^i(A)\neq 0} \mathcal{R}_1^i(A,\theta).$$

LINEAR RESONANCE

- ▶ Suppose $\mathcal{R}_1^1(A) = \bigcup_{C \in \mathcal{C}} C$, a finite union of linear subspaces.
- ▶ Let A_C denote the sub-CDGA of the truncation $A^{\leq 2}$ defined by $A_C^1 = C$ and $A_C^2 = A^2$.

THEOREM (MPPS)

For any Lie algebra g,

$$\mathcal{F}(A,\mathfrak{g}) \supseteq \mathcal{F}^{1}(A,\mathfrak{g}) \cup \bigcup_{0 \neq C \in \mathcal{C}} \mathcal{F}(A_{C},\mathfrak{g}), \tag{\diamond}$$

where each $\mathcal{F}(A_C, \mathfrak{g})$ is Zariski-closed in $\mathcal{F}(A, \mathfrak{g})$. Moreover, if A has zero differential, and $\mathfrak{g} = \mathfrak{sl}_2$, then (\diamond) holds as an equality, and

$$\mathcal{R}_1^1(A,\theta) = \Pi(A,\theta) \cup \bigcup_{0 \neq C \in C} \mathcal{F}(A_C,\mathfrak{g}).$$

(For $g = \mathfrak{sl}_2$: if $g, g' \in \mathfrak{g}$, then [g, g'] = 0 if and only if $\operatorname{rank}\{g, g'\} \leq 1$.)

ALGEBRAIC MODELS FOR SPACES

- ► From now on, X will be a connected space having the homotopy type of a finite CW-complex.
- Let $A_{\rm PL}(X)$ be the Sullivan CDGA of piecewise polynomial $\mathbb C$ -forms on X. Then $H^{\bullet}(A_{\rm PL}(X)) \cong H^{\bullet}(X,\mathbb C)$.
- ▶ A CDGA (A, d) is a *model* for X if it may be connected by a zig-zag of quasi-isomorphisms to $A_{PL}(X)$.
- ▶ A is a *finite* model if $\dim_{\mathbb{C}} A < \infty$ and A is connected.
- ▶ X is formal if $(H^{\bullet}(X, \mathbb{C}), d = 0)$ is a (finite) model.
- E.g.: Compact Kähler manifolds, complements of hyperplane arrangements, etc, are all formal.
- ➤ The converse is not true: all nilmanifolds, solvmanifolds, Sasakian manifolds, smooth quasi-projective varieties, etc, admit finite models, but many are non-formal.

GERMS OF JUMP LOCI

THEOREM (DIMCA-PAPADIMA 2014)

Suppose X admits a finite CDGA model A. Let $\iota\colon G\to \operatorname{GL}(V)$ be a rational representation, and $\theta\colon \mathfrak{g}\to \mathfrak{gl}(V)$ its tangential representation. There is then an analytic isomorphism of germs,

$$\mathcal{F}(A,\mathfrak{g})_{(0)} \stackrel{\simeq}{\longrightarrow} \operatorname{Hom}(\pi_1(X),G)_{(1)},$$

restricting to isomorphisms $\mathcal{R}_r^i(A,\theta)_{(0)} \stackrel{\simeq}{\longrightarrow} \mathcal{V}_r^i(X,\iota)_{(1)}$ for all i,r.

▶ In the rank 1 case, the iso $H^1(A)_{(0)} \xrightarrow{\simeq} \operatorname{Hom}(\pi_1(X), \mathbb{C}^*)_{(1)}$ is induced by the exponential map $H^1(X, \mathbb{C}) \to H^1(X, \mathbb{C}^*)$.

THEOREM (BUDUR-WANG 2017)

If X admits a finite CDGA model A, then all the components of the characteristic varieties $\mathcal{V}_r^i(X)$ passing through 1 are algebraic subtori.

QUASI-KÄHLER MANIFOLDS AND ADMISSIBLE MAPS

- Let M be a quasi-Kähler manifold, that is, the complement of a normal crossing divisor D in a compact, connected Kähler manifold M.
- Arapura [1997]: there is a finite set $\mathcal{E}(M)$ of equivalence classes of 'admissible' maps, up to reparametrization in the target.
- ▶ Each such map, $f: M \to M_f$, is regular and surjective, its generic fiber is connected, and M_f is a smooth complex curve with $\chi(M_f) < 0$. Let $f_\sharp : \pi \to \pi_f$ be the induced homomorphism on π_1 .
- ▶ Let $f_0: M \to K(\pi_{ab}, 1)$ be a classifying map for the projection $ab: \pi \to \pi_{ab}$ onto the maximal, torsion-free abelian quotient.
- ▶ Set $E(M) := \mathcal{E}(M) \cup \{f_0\}.$

RANK 1 JUMP LOCI OF QUASI-PROJ MANIFOLDS

THEOREM (ARAPURA 1997)

The correspondence $f \leadsto f^*(H^1(M_f, \mathbb{C}^*))$ gives a bijection between the set $\mathcal{E}(M)$ and the set of positive-dimensional irreducible components of $\mathcal{V}^1_1(M)$ passing through the identity of the character group $H^1(M, \mathbb{C}^*)$.

THEOREM (BUDUR-WANG 2015)

If M is a smooth quasi-projective variety, then all components of the characteristic varieties $\mathcal{V}_r^i(M)$ are torsion-translated algebraic subtori.

THEOREM (DIMCA-PAPADIMA 2014)

Let A be a finite CDGA model with positive weights for M. Then the set $\mathcal{E}(M)$ is in bijection with the set of positive-dimensional, irreducible components of $\mathcal{R}^1_1(A) \subseteq H^1(A) = H^1(M,\mathbb{C})$ via the correspondence $f \leadsto f^*(H^1(M_f,\mathbb{C}))$.

ORLIK-SOLOMON MODELS

- Now let M be a smooth, quasi-projective variety. Then M admits a 'convenient' compactification, $\overline{M} = M \cup D$, where \overline{M} is a smooth projective variety, and D is a union of smooth hypersurfaces, intersecting locally like hyperplanes.
- ▶ For such a compactification, every element of $\mathcal{E}(M)$ is represented by an admissible map, $f: M \to M_f$, which is induced by a regular morphism of pairs, $\bar{f}: (\overline{M}, D) \to (\overline{M}_f, D_f)$.
- ▶ Work of Morgan, as recently sharpened by Dupont, associates to these data a bigraded, rationally defined CDGA, $A = OS(\overline{M}, D)$, called the *Orlik–Solomon model* of M.
- ▶ This CDGA is a finite model of M, which is functorial with respect to regular morphisms of pairs (\overline{M}, D) as above.

Pullbacks and transversality

▶ If $f: M \to M_f$ is an admissible map, we let $\Phi_f: A_f \to A$ be the induced map between OS models, and $\Phi_f^*: \mathcal{F}(A_f, \mathfrak{g}) \to \mathcal{F}(A, \mathfrak{g})$ the induced morphism between varieties of flat connections.

THEOREM

Let M be a quasi-Kähler manifold, and let $f, g \in \mathcal{E}(M)$ be two distinct admissible maps.

▶ If M is a smooth, quasi-projective variety, then

$$\Phi_f^*\mathcal{F}(\textit{A}_f,\mathfrak{g}) \cap \Phi_g^*\mathcal{F}(\textit{A}_g,\mathfrak{g}) = \{0\}.$$

▶ If M is either a compact, connected Kähler manifold or the complement of a complex hyperplane arrangement, then

$$f_{\sharp}^*\operatorname{\mathsf{Hom}}(\pi_f, G)_{(1)} \cap g_{\sharp}^*\operatorname{\mathsf{Hom}}(\pi_g, G)_{(1)} = \{1\}.$$

Let G be a complex linear algebraic group, let $\iota \colon G \to \operatorname{GL}(V)$ be a rational representation, and let $\theta \colon \mathfrak{g} \to \mathfrak{gl}(V)$ be its tangential representation. For all $r \geqslant 0$, we have inclusions

$$\mathcal{V}_r^1(\pi,\iota) \supseteq \bigcup_{f \in E(M)} f_{\sharp}^* \mathcal{V}_r^1(\pi_f,\iota),$$

For r = 0 and 1, these inclusions are equivalent to the inclusions

$$\mathsf{Hom}(\pi, G) \supseteq \mathsf{ab}^* \, \mathsf{Hom}(\pi_{\mathsf{ab}}, G) \cup \bigcup_{f \in \mathcal{E}(M)} f_\sharp^* \, \mathsf{Hom}(\pi_f, G), \qquad (\star)$$

$$\mathcal{V}_1^1(\pi,\iota) \supseteq \mathsf{ab}^* \, \mathcal{V}_1^1(\pi_{\mathsf{ab}},\iota) \cup \bigcup_{f \in \mathcal{E}(M)} f_\sharp^* \, \mathsf{Hom}(\pi_f, \textbf{\textit{G}}). \tag{**}$$

We also have infinitesimal counterparts of (★) and (★★):

$$\mathcal{F}(A,\mathfrak{g}) \supseteq \mathcal{F}^{1}(A,\mathfrak{g}) \cup \bigcup_{f \in \mathcal{E}(M)} \Phi_{f}^{*} \mathcal{F}(A_{f},\mathfrak{g}), \tag{\dagger}$$

$$\mathcal{R}_{1}^{1}(A,\theta) \supseteq \Pi(A,\theta) \cup \bigcup_{f \in \mathcal{E}(M)} \Phi_{f}^{*} \mathcal{F}(A_{f},\mathfrak{g}), \tag{\ddagger}$$

PULLBACKS AND EQUALITIES

THEOREM A

Let M be quasi-projective manifold with $b_1(M) > 0$. For an arbitrary rational representation of $G = SL_2(\mathbb{C})$, the following are equivalent.

- Inclusion (★) becomes an equality near 1.
- ▶ Both (*) and (**) become equalities near 1.
- Inclusion (†) is an equality, for some convenient compactification of M.
- ▶ Both (†) and (‡) are equalities, for any convenient compactification of M.

IRREDUCIBLE DECOMPOSITIONS

THEOREM B

Suppose the equivalent properties from Theorem A are satisfied.

▶ If $b_1(M_f) \neq b_1(M)$ for all $f \in \mathcal{E}(M)$, then we have the following decompositions into irreducible components of analytic germs:

$$\begin{split} \operatorname{\mathsf{Hom}}(\pi,G)_{(1)} &= \operatorname{\mathsf{ab}}^* \operatorname{\mathsf{Hom}}(\pi_{\operatorname{\mathsf{ab}}},G)_{(1)} \cup \bigcup_{f \in \mathcal{E}(M)} f_\sharp^* \operatorname{\mathsf{Hom}}(\pi_f,G)_{(1)}, \\ \mathcal{V}_1^1(\pi,\iota)_{(1)} &= \operatorname{\mathsf{ab}}^* \mathcal{V}_1^1(\pi_{\operatorname{\mathsf{ab}}},\iota)_{(1)} \cup \bigcup_{f \in \mathcal{E}(M)} f_\sharp^* \operatorname{\mathsf{Hom}}(\pi_f,G)_{(1)}, \\ \mathcal{F}(A,\mathfrak{g})_{(0)} &= \mathcal{F}^1(A,\mathfrak{g})_{(0)} \cup \bigcup_{f \in \mathcal{E}(M)} \Phi_f^* \mathcal{F}(A_f,\mathfrak{g})_{(0)}, \\ \mathcal{R}_1^1(A,\theta)_{(0)} &= \Pi(A,\theta)_{(0)} \cup \bigcup_{f \in \mathcal{E}(M)} \Phi_f^* \mathcal{F}(A_f,\mathfrak{g})_{(0)}. \end{split}$$

▶ If $b_1(M_f) = b_1(M)$ for some $f \in \mathcal{E}(M)$, then we have the following equalities of irreducible germs:

$$\operatorname{Hom}(\pi, \mathbf{G})_{(1)} = \mathbf{f}_{\sharp}^* \operatorname{Hom}(\pi_f, \mathbf{G})_{(1)}, \quad \mathcal{V}_1^{1}(\pi, \iota)_{(1)} = \mathbf{f}_{\sharp}^* \operatorname{Hom}(\pi_f, \mathbf{G})_{(1)},$$

$$\mathcal{F}(A,\mathfrak{g})_{(0)}=\Phi_f^*\mathcal{F}(A_f,\mathfrak{g})_{(0)},\quad \mathcal{R}_1^1(A,\theta)_{(0)}=\Phi_f^*\mathcal{F}(A_f,\mathfrak{g})_{(0)}.$$

▶ For any two distinct admissible maps $f, g \in \mathcal{E}(M)$,

$$f_{\sharp}^*\operatorname{\mathsf{Hom}}(\pi_f,G)_{(1)}\cap g_{\sharp}^*\operatorname{\mathsf{Hom}}(\pi_g,G)_{(1)}=\{1\}.$$

Under our assumptions, this theorem gives a local, more precise and simple, classification for representations of π into $SL(2,\mathbb{C})$, when compared to the global, more sophisticated classifications of Corlette–Simpson [2008] and Loray–Pereira–Touzet [2016].

APPLICATIONS

THEOREM

Suppose M is a smooth, quasi-projective variety satisfying one of the following hypotheses.

- M is projective.
- $V W_1H^1(M) = 0.$
- $M = F_{\Gamma}(\Sigma_q)$ is a graphic configuration space of a smooth curve.
- $ightharpoonup \mathcal{R}_1^1(H^{\bullet}(M)) = \{0\}.$
- ▶ $M = S \setminus \{0\}$, where S is a quasi-homogeneous affine surface having a normal, isolated singularity at 0.

Then, for $G = SL_2(\mathbb{C})$, the equivalent properties from Theorem A are satisfied, and thus, the conclusions of Theorem B hold.

RANK GREATER THAN 2

- Let $M = S \setminus \{0\}$, where S is a quasi-homogeneous affine surface having a normal, isolated singularity at 0.
- ▶ There is a \mathbb{C}^{\times} -action on M with finite isotropy groups.
- ▶ $M/\mathbb{C}^{\times} = \Sigma_g$, where $g = \frac{1}{2}b_1(M)$. We will assume that g > 0.
- ▶ The canonical projection, $f: M \to M/\mathbb{C}^{\times} = M_f$, is an admissible map. Furthermore, $\mathcal{E}(M) = \emptyset$ if g = 1, and $\mathcal{E}(M) = \{f\}$ if g > 1.

THEOREM

If
$$G = SL_n(\mathbb{C})$$
 with $n \geqslant 3$, then

$$\mathsf{Hom}(\pi,G)_{(1)} \supseteq \mathsf{ab}^* \, \mathsf{Hom}(\pi_{\mathsf{ab}},G)_{(1)} \cup \bigcup_{f \in \mathcal{E}(M)} f_\sharp^* \, \mathsf{Hom}(\pi_f,G)_{(1)}.$$

DEPTH GREATER THAN 1

THEOREM

Let M be a connected, compact Kähler manifold, or the complement of a complex hyperplane arrangement, and let $\iota \colon G \to \operatorname{GL}(V)$ be a rational representation of $G = \operatorname{SL}_2(\mathbb{C})$. Suppose there is an admissible map $f \colon M \to M_f$ such that $b_1(M) > b_1(M_f)$. Then

$$\mathcal{V}_1^1(\pi,\iota)_{(1)} = \bigcup_{f \in E(M)} f_{\sharp}^* \mathcal{V}_1^1(\pi_f,\iota)_{(1)},$$

Nevertheless, if there is $0 \neq v \in V^G$, there is then an r > 1 such that

$$\mathcal{V}_r^1(\pi,\iota)_{(1)} \supseteq \bigcup_{f \in E(M)} f_{\sharp}^* \mathcal{V}_r^1(\pi_f,\iota)_{(1)}.$$

Here are some concrete instances where this theorem applies.

EXAMPLE

Let $M = \Sigma_g \times N$, where Σ_g is a smooth projective curve of genus g > 1 and N is a projective manifold with $b_1(N) > 0$. Then the projection $f \colon M \to \Sigma_g$ defines an element $f \in \mathcal{E}(M)$ with $b_1(M) > b_1(\Sigma_g)$.

EXAMPLE

Let \mathcal{A} be an arrangement of lines in \mathbb{CP}^2 , with an intersection point of multiplicity $k \geq 3$. There is then a pencil $f \colon M(A) \to M(\mathcal{B})$, where \mathcal{B} consists of k points in \mathbb{CP}^1 . If \mathcal{A} is not itself a pencil of lines, then $b_1(M(\mathcal{A})) > b_1(M(\mathcal{B}))$.