### TOPOLOGY OF LINE ARRANGEMENTS

# Alex Suciu

Northeastern University

Workshop on Configuration Spaces II Palazzone di Cortona September 1, 2014



#### OUTLINE

### INTRODUCTION

- Plane algebraic curves
- Line arrangements
- Residual properties
- Milnor fibration
- Techniques
- 2 RESIDUAL PROPERTIES
  - The RFRp property
  - Boundary manifolds
  - Towers of congruence covers

### MILNOR FIBRATION

- Resonance varieties and multinets
- Modular inequalities
- Combinatorics and monodromy

# PLANE ALGEBRAIC CURVES

- Let 𝒞 ⊂ ℂℙ<sup>2</sup> be a plane algebraic curve, defined by a homogeneous polynomial *f* ∈ ℂ[*z*<sub>1</sub>, *z*<sub>2</sub>, *z*<sub>3</sub>].
- In the 1930s, Zariski studied the topology of the complement,  $U = \mathbb{CP}^2 \setminus \mathscr{C}$ .
- He commissioned Van Kampen to find a presentation for the fundamental group,  $\pi = \pi_1(U)$ .
- Zariski noticed that π is *not* determined by the combinatorics of %, but depends on the position of its singularities.
- He asked whether  $\pi$  is *residually finite*, i.e., whether the map to its profinite completion,  $\pi \to \hat{\pi} =: \pi^{\text{alg}}$ , is injective.

# LINE ARRANGEMENTS

• Let  $\mathscr{A}$  be an *arrangement of lines* in  $\mathbb{CP}^2$ , defined by a polynomial

$$f = \prod_{H \in \mathscr{A}} f_H \in \mathbb{C}[z_1, z_2, z_3],$$

with  $f_H$  linear forms so that  $H = \mathbb{P} \ker(f_H)$  for each  $H \in \mathscr{A}$ .

Let L(A) be the intersection lattice of A, with L<sub>1</sub>(A) = {lines} and L<sub>2</sub>(A) = {intersection points}.

• Let  $U(\mathscr{A}) = \mathbb{CP}^2 \setminus \bigcup_{H \in \mathscr{A}} H$  be the *complement* of  $\mathscr{A}$ .

### **RESIDUAL PROPERTIES OF ARRANGEMENT GROUPS**

### THEOREM (THOMAS KOBERDA–A.S. 2014)

Let  $\mathscr{A}$  be a complexified real line arrangement, and let  $\pi = \pi_1(U(\mathscr{A}))$ . Then

- **1**  $\pi$  is residually finite.
- 2  $\pi$  is residually nilpotent.
- $\bigcirc$   $\pi$  is torsion-free.

5/24

#### MILNOR FIBRATION

# MILNOR FIBRATION

- Let  $f \in \mathbb{C}[z_1, z_2, z_3]$  be a homogeneous polynomial of degree *n*.
- The map  $f: \mathbb{C}^3 \setminus \{f = 0\} \to \mathbb{C}^*$  is a smooth fibration (Milnor), with fiber  $F = f^{-1}(1)$ , and monodromy  $h: F \to F, z \mapsto e^{2\pi i/n} z$ .
- The Milnor fiber *F* is a regular,  $\mathbb{Z}_n$ -cover of  $U = \mathbb{CP}^2 \setminus \{f = 0\}$ .

### COROLLARY (T.K.-A.S.)

Let  $\mathscr{A}$  be an arrangement defined by a polynomial  $f \in \mathbb{R}[z_1, z_2, z_3]$ , let  $F = F(\mathscr{A})$  be its Milnor fiber, and let  $\pi = \pi_1(F)$ . Then

- **1**  $\pi$  is residually finite.
- 2)  $\pi$  is residually nilpotent.
- $\bigcirc \pi$  is torsion-free.

Let ∆(t) = det(tl − h<sub>\*</sub>) be the characteristic polynomial of the algebraic monodromy, h<sub>\*</sub>: H<sub>1</sub>(F, C) → H<sub>1</sub>(F, C).

### PROBLEM

When f is the defining polynomial of an arrangement  $\mathscr{A}$ , is  $\Delta = \Delta_{\mathscr{A}}$  determined solely by  $L(\mathscr{A})$ ?

#### THEOREM (STEFAN PAPADIMA-A.S. 2014)

Suppose *A* has only double and triple points. Then

$$\Delta_{\mathscr{A}}(t) = (t-1)^{|\mathscr{A}|-1} \cdot (t^2 + t + 1)^{\beta_3(\mathscr{A})},$$

where  $\beta_3(\mathscr{A})$  is an integer between 0 and 2 that depends only on  $L(\mathscr{A})$ .

# **TECHNIQUES**

- Common themes:
  - Homology with coefficients in rank 1 local systems.
  - Homology of finite abelian covers.
- Specific techniques for residual properties:
  - Boundary manifold of line arrangement.
  - Towers of congruence covers.
  - The RFRp property.
- Specific techniques for Milnor fibration:
  - Nets, multinets, and pencils.
  - Cohomology jump loci (in characteristic 0 and *p*).
  - Modular bounds for twisted Betti numbers.

# The RFRp property

Let *G* be a finitely generated group and let *p* be a prime. We say that *G* is *residually finite rationally p* if there exists a sequence of subgroups  $G = G_0 > \cdots > G_i > G_{i+1} > \cdots$  such that

- $\bigcirc \bigcap_{i \ge 0} G_i = \{1\}.$
- $G_i / G_{i+1}$  is an elementary abelian *p*-group.

Remarks:

- May assume each  $G_i \lhd G$ .
- Compare with Agol's RFRS property, where  $G_i/G_{i+1}$  only finite.
- G RFR $p \Rightarrow$  residually  $p \Rightarrow$  residually finite and residually nilpotent.
- $G \operatorname{RFR} p \Rightarrow G \operatorname{RFRS} \Rightarrow \text{torsion-free.}$

- The class of RFRp groups is closed under the following operations:
  - Taking subgroups.
  - Pinite direct products.
  - Finite free products.
- The following groups are RFRp:
  - Finitely generated free groups.
  - Olosed, orientable surface groups.
  - 8 Right-angled Artin groups.

10 / 24

## BOUNDARY MANIFOLDS

- Let *N* be a regular neighborhood of  $\bigcup_{H \in \mathscr{A}} H$  inside  $\mathbb{CP}^2$ .
- Let  $\overline{U} = \mathbb{CP}^2 \setminus \operatorname{int}(N)$  be the *exterior* of  $\mathscr{A}$ .
- The boundary manifold of *s* is

$$M=\partial \overline{U}=\partial N,$$

a compact, orientable, smooth manifold of dimension 3.

#### EXAMPLE

Let  $\mathscr{A}$  be a pencil of *n* hyperplanes in  $\mathbb{C}^2$ , defined by  $f = z_1^n - z_2^n$ . If n = 1, then  $M = S^3$ . If n > 1, then  $M = \sharp^{n-1}S^1 \times S^2$ .

#### EXAMPLE

Let  $\mathscr{A}$  be a near-pencil of *n* planes in  $\mathbb{CP}^2$ , defined by  $f = z_1(z_2^{n-1} - z_3^{n-1})$ . Then  $M = S^1 \times \Sigma_{n-2}$ , where  $\Sigma_g = \sharp^g S^1 \times S^1$ .

- Work of Hirzebruch, Jiang–Yau, and E. Hironaka shows that  $M = M_{\Gamma}$  is a graph-manifold.
- The graph Γ is the incidence graph of A, with vertex set
   V(Γ) = L<sub>1</sub>(A) ∪ L<sub>2</sub>(A) and edge set E(Γ) = {(H, P) | P ∈ H}.
- For each  $v \in V(\Gamma)$ , there is a vertex manifold  $M_v = S^1 \times S_v$ , with

$$\mathcal{S}_{\mathbf{v}} = \mathcal{S}^2 \setminus \bigcup_{\{\mathbf{v}, \mathbf{w}\} \in \mathcal{E}(\Gamma)} \mathcal{D}^2_{\mathbf{v}, \mathbf{w}},$$

a sphere with deg v disjoint open disks removed.

- For each  $e \in E(\Gamma)$ , there is an edge manifold  $M_e = S^1 \times S^1$ .
- Vertex manifolds are glued along edge manifolds via flips.

- The inclusion  $i: M \to U$  induces a surjection  $i_{\sharp}: \pi_1(M) \twoheadrightarrow \pi_1(U)$ .
- By collapsing each vertex manifold of  $M = M_{\Gamma}$  to a point, we obtain a map  $\kappa \colon M \to \Gamma$ .
- Using work of D. Cohen–A.S. (2006, 2008), we get a split exact sequence

$$0 \longrightarrow H_1(U,\mathbb{Z}) \longrightarrow H_1(M,\mathbb{Z}) \xrightarrow{\kappa_*} H_1(\Gamma,\mathbb{Z}) \longrightarrow 0.$$

### LEMMA

Suppose  $\mathscr{A}$  is an essential line arrangement in  $\mathbb{CP}^2$ . Then, for each  $v \in V(\Gamma)$  and  $e \in E(\Gamma)$ , the inclusions  $i_v \colon M_v \hookrightarrow M$  and  $i_e \colon M_e \hookrightarrow M$  induce split injections on  $H_1$ , whose images are contained in ker( $\kappa_*$ ).

Using work of E. Hironaka (2001), we obtain:

#### LEMMA

Suppose  $\mathscr{A}$  is the complexification of a real arrangement. There is then a finite, simplicial graph  $\mathscr{G}$  and an embedding  $j: \mathscr{G} \hookrightarrow M$  such that:

• The graph  $\mathscr{G}$  is homotopy equivalent to the incidence graph  $\Gamma$ .

We have an exact sequence,

$$0 \longrightarrow H_1(\mathscr{G}, \mathbb{Z}) \xrightarrow{j_*} H_1(M, \mathbb{Z}) \xrightarrow{i_*} H_1(U, \mathbb{Z}) \longrightarrow 0$$

We have an exact sequence,

$$1 \longrightarrow \pi_1(\mathscr{G}) \xrightarrow{j_{\sharp}} \pi_1(M) \xrightarrow{i_{\sharp}} \pi_1(U) \longrightarrow 1$$

### TOWERS OF CONGRUENCE COVERS

• For each prime p, we construct a tower of regular covers of M,

$$\cdots \longrightarrow M_{i+1} \xrightarrow{q_{i+1}} M_i \xrightarrow{q_i} \cdots \xrightarrow{q_1} M_0 = M.$$

- Each  $M_i$  is a graph-manifold, modelled on a graph  $\Gamma_i$ .
- The group of deck-transformations for *q<sub>i+1</sub>* is the elementary abelian *p*-group ((*H*<sub>1</sub>(*M<sub>i</sub>*, ℤ)/tors)/*H*<sub>1</sub>(Γ<sub>*i*</sub>, ℤ)) ⊗ ℤ<sub>*p*</sub>.
- The covering maps preserve the graph-manifold structures, e.g.,

$$\begin{array}{cccc}
M_{\nu,i} \longrightarrow M_i \\
\downarrow q_{\nu} & \downarrow q \\
M_{\nu} \longrightarrow M
\end{array}$$

where  $M_{v,i}$  is a connected component of  $q^{-1}(M_v)$  and  $q_v = q|_{M_{v,i}}$ .

15 / 24

- The inclusions M<sub>ν,i</sub> → M<sub>i</sub> and M<sub>e,i</sub> → M<sub>i</sub> induce injections on H<sub>1</sub>, whose images are contained in ker((κ<sub>i</sub>)<sub>\*</sub>).
- If  $\mathscr{A}$  is complexified real, the graph  $\mathscr{G} \hookrightarrow M$  lifts to a graph  $\mathscr{G}_i \hookrightarrow M_i$  so that
  - The group  $H_1(M_i, \mathbb{Z})$  splits off  $H_1(\mathscr{G}_i, \mathbb{Z})$  as a direct summand.
  - $H_1(\mathscr{G}_i, \mathbb{Z}) \cap H_1(M_{\nu,i}, \mathbb{Z}) = 0$ , for all  $\nu \in V(\Gamma)$ .

Finally,

- For each  $v \in V(\Gamma)$ , the group  $\pi_1(M_v) = \mathbb{Z} \times \pi_1(S_v)$  is RFR*p*.
- From the construction of the tower, it follows that  $\pi_1(M)$  is RFR*p*.
- If 𝔄 is complexified real, the above properties of the lifts of 𝔄 imply that π<sub>1</sub>(U) = π<sub>1</sub>(M)/⟨j<sub>♯</sub>(π<sub>1</sub>(𝔄))⟩⟩ is also RFRp.

### **RESONANCE VARIETIES AND MULTINETS**

- Let  $X(\mathscr{A}) = \mathbb{C}^3 \setminus \bigcup_{H \in \mathscr{A}} \ker(f_H)$ , so that  $U(\mathscr{A}) = \mathbb{P}X(\mathscr{A})$  and  $X(\mathscr{A}) \cong \mathbb{C}^* \times U(\mathscr{A})$ .
- Let A = H<sup>\*</sup>(X(𝔄), k): an algebra that depends only on L(𝔄) and the field k (Orlik and Solomon).
- For each a ∈ A<sup>1</sup>, we have a<sup>2</sup> = 0. Thus, we get a cochain complex, (A, ·a): A<sup>0</sup> → A<sup>1</sup> → A<sup>2</sup> → ···
- The (degree 1) resonance varieties of *A* are the cohomology jump loci of this "Aomoto complex":

 $\mathscr{R}_{s}(\mathscr{A}, \Bbbk) = \{ a \in A^{1} \mid \dim_{\Bbbk} H^{1}(A, \cdot a) \geq s \},\$ 

Work of Arapura, Falk, Cohen–A.S., Libgober–Yuzvinsky, and Falk–Yuzvinsky completely describes the varieties  $\Re_s(\mathscr{A}, \mathbb{C})$ :

- $\mathscr{R}_1(\mathscr{A}, \mathbb{C})$  is a union of linear subspaces in  $H^1(X(\mathscr{A}), \mathbb{C}) \cong \mathbb{C}^{|\mathscr{A}|}$ .
- Each subspace has dimension at least 2, and each pair of subspaces meets transversely at 0.
- *ℜ<sub>s</sub>(𝔄,* ℂ) is the union of those linear subspaces that have dimension at least *s* + 1.
- Each *k*-multinet on a sub-arrangement ℬ ⊆ 𝒴 gives rise to a component of ℬ<sub>1</sub>(𝔄, ℂ) of dimension *k* − 1. Moreover, all components of ℬ<sub>1</sub>(𝔄, ℂ) arise in this way.

### DEFINITION (FALK AND YUZVINSKY)

A *multinet* on  $\mathscr{A}$  is a partition of the set  $\mathscr{A}$  into  $k \ge 3$  subsets  $\mathscr{A}_1, \ldots, \mathscr{A}_k$ , together with an assignment of multiplicities,  $m: \mathscr{A} \to \mathbb{N}$ , and a subset  $\mathcal{X} \subseteq L_2(\mathscr{A})$ , called the base locus, such that:

- There is an integer *d* such that  $\sum_{H \in \mathscr{A}_{\alpha}} m_H = d$ , for all  $\alpha \in [k]$ .
- ② If *H* and *H'* are in different classes, then H ∩ H' ∈ X.
- For each *X* ∈ *X*, the sum  $n_X = \sum_{H \in \mathscr{A}_{\alpha}: H \supset X} m_H$  is independent of *α*.
- Each set  $(\bigcup_{H \in \mathscr{A}_n} H) \setminus \mathcal{X}$  is connected.
  - A multinet as above is also called a (k, d)-multinet, or a k-multinet.
  - The multinet is *reduced* if  $m_H = 1$ , for all  $H \in \mathscr{A}$ .
  - A *net* is a reduced multinet with  $n_X = 1$ , for all  $X \in \mathcal{X}$ .



A (3, 2)-net on the A<sub>3</sub> arrangement A (3, 4)-multinet on the B<sub>3</sub> arrangement  $\mathcal{X}$  consists of 4 triple points ( $n_X = 1$ )  $\mathcal{X}$  consists of 4 triple points ( $n_X = 1$ ) and 3 triple points ( $n_X = 2$ )

- (Yuzvinsky and Pereira–Yuz): If  $\mathscr{A}$  supports a *k*-multinet with  $|\mathcal{X}| > 1$ , then k = 3 or 4; if the multinet is not reduced, then k = 3.
- Conjecture (Yuz): The only 4-multinet is the Hessian (4, 3)-net.
- (Cordovil–Forge and Torielli–Yoshinaga): There are no 4-nets on real arrangements.

ALEX SUCIU (NORTHEASTERN)

# MODULAR INEQUALITIES

- Recall ∆(t) is the characteristic polynomial of the algebraic monodromy of the Milnor fibration, h<sub>\*</sub>: H<sub>1</sub>(F, C) → H<sub>1</sub>(F, C).
- Set  $n = |\mathscr{A}|$ . Since  $h^n = id$ , we have

$$\Delta(t) = \prod_{d|n} \Phi_d(t)^{e_d(\mathscr{A})},$$

where  $\Phi_d(t)$  is the *d*-th cyclotomic polynomial, and  $e_d(\mathscr{A}) \in \mathbb{Z}_{\geq 0}$ .

- If there is a non-transverse multiple point on 𝔄 of multiplicity not divisible by *d*, then *e<sub>d</sub>*(𝔄) = 0 (Libgober 2002).
- In particular, if  $\mathscr{A}$  has only points of multiplicity 2 and 3, then  $\Delta(t) = (t-1)^{n-1}(t^2+t+1)^{e_3}$ .
- If multiplicity 4 appears, then also get factor of  $(t+1)^{e_2} \cdot (t^2+1)^{e_4}$ .

- Let  $\sigma = \sum_{H \in \mathscr{A}} e_H \in A^1$  be the "diagonal" vector.
- Assume k has characteristic p > 0, and define

 $\beta_{\mathcal{P}}(\mathscr{A}) = \dim_{\Bbbk} H^{1}(\mathcal{A}, \cdot \sigma).$ 

That is,  $\beta_{p}(\mathscr{A}) = \max\{s \mid \sigma \in \mathscr{R}^{1}_{s}(A, \Bbbk)\}.$ 

THEOREM (COHEN–ORLIK 2000, PAPADIMA–A.S. 2010)  $e_{\rho^s}(\mathscr{A}) \leq \beta_{\rho}(\mathscr{A}), \text{ for all } s \geq 1.$ 

### THEOREM (S.P.-A.S.)

Suppose  $\mathscr{A}$  admits a *k*-net. Then  $\beta_p(\mathscr{A}) = 0$  if  $p \nmid k$  and  $\beta_p(\mathscr{A}) \ge k - 2$ , otherwise.

If  $\mathscr{A}$  admits a reduced *k*-multinet, then  $e_k(\mathscr{A}) \ge k - 2$ .

# COMBINATORICS AND MONODROMY

### THEOREM (S.P.-A.S.)

Suppose  $\mathscr{A}$  has no points of multiplicity 3r with r > 1. Then, the following conditions are equivalent:

- admits a reduced 3-multinet.
- admits a 3-net.
- $\ \, {\boldsymbol{\mathfrak{S}}}_{3}(\mathscr{A})\neq {\boldsymbol{\mathsf{0}}}.$

Moreover, the following hold:

- (  $\beta_3(\mathscr{A}) \leq 2.$
- **6**  $e_3(\mathscr{A}) = \beta_3(\mathscr{A})$ , and thus  $e_3(\mathscr{A})$  is combinatorially determined.

#### THEOREM (S.P.-A.S.)

### Suppose $\mathscr{A}$ supports a 4-net and $\beta_2(\mathscr{A}) \leq 2$ . Then $e_2(\mathscr{A}) = e_4(\mathscr{A}) = \beta_2(\mathscr{A}) = 2$ .

ALEX SUCIU (NORTHEASTERN)

#### CONJECTURE (S.P.–A.S.)

Let *A* be an arrangement which is not a pencil. Then

 $e_{p^s}(\mathscr{A}) = 0$ 

for all primes p and integers  $s \ge 1$ , with two possible exceptions:

 $e_2(\mathscr{A}) = e_4(\mathscr{A}) = \beta_2(\mathscr{A})$  and  $e_3(\mathscr{A}) = \beta_3(\mathscr{A})$ .

If  $e_d(\mathscr{A}) = 0$  for all divisors *d* of  $|\mathscr{A}|$  which are not prime powers, this conjecture would give:

 $\Delta_{\mathscr{A}}(t) = (t-1)^{|\mathscr{A}|-1}((t+1)(t^2+1))^{\beta_2(\mathscr{A})}(t^2+t+1)^{\beta_3(\mathscr{A})}.$ 

The conjecture has been verified for several classes of arrangements, including complex reflection arrangements and certain types of real arrangements.