Topology of line arrangements

Alex Suciu

Northeastern University

Workshop on Configuration Spaces
Il Palazzone di Cortona
September 1, 2014

(1) InTRODUCTION

- Plane algebraic curves
- Line arrangements
- Residual properties
- Milnor fibration
- Techniques
(2) RESIDUAL PROPERTIES
- The RFRp property
- Boundary manifolds
- Towers of congruence covers
(3) Milnor fibration
- Resonance varieties and multinets
- Modular inequalities
- Combinatorics and monodromy

PLANE ALGEBRAIC CURVES

- Let $\mathscr{C} \subset \mathbb{C P}^{2}$ be a plane algebraic curve, defined by a homogeneous polynomial $f \in \mathbb{C}\left[z_{1}, z_{2}, z_{3}\right]$.
- In the 1930s, Zariski studied the topology of the complement, $U=\mathbb{C P}^{2} \backslash \mathscr{C}$.
- He commissioned Van Kampen to find a presentation for the fundamental group, $\pi=\pi_{1}(U)$.
- Zariski noticed that π is not determined by the combinatorics of \mathscr{C}, but depends on the position of its singularities.
- He asked whether π is residually finite, i.e., whether the map to its profinite completion, $\pi \rightarrow \hat{\pi}=: \pi^{\text {alg }}$, is injective.

LINE ARRANGEMENTS

- Let \mathscr{A} be an arrangement of lines in $\mathbb{C P}^{2}$, defined by a polynomial

$$
f=\prod_{H \in \mathscr{A}} f_{H} \in \mathbb{C}\left[z_{1}, z_{2}, z_{3}\right]
$$

with f_{H} linear forms so that $H=\mathbb{P} \operatorname{ker}\left(f_{H}\right)$ for each $H \in \mathscr{A}$.

- Let $L(\mathscr{A})$ be the intersection lattice of \mathscr{A}, with $L_{1}(\mathscr{A})=\{$ lines $\}$ and $L_{2}(\mathscr{A})=\{$ intersection points $\}$.
- Let $U(\mathscr{A})=\mathbb{C P}^{2} \backslash \bigcup_{H \in \mathscr{A}} H$ be the complement of \mathscr{A}.

RESIDUAL PROPERTIES OF ARRANGEMENT GROUPS

Theorem (Thomas Koberda-A.S. 2014)
Let \mathscr{A} be a complexified real line arrangement, and let $\pi=\pi_{1}(U(\mathscr{A}))$. Then
(1) π is residually finite.
(2) π is residually nilpotent.
(3) π is torsion-free.

Milnor Fibration

- Let $f \in \mathbb{C}\left[z_{1}, z_{2}, z_{3}\right]$ be a homogeneous polynomial of degree n.
- The map $f: \mathbb{C}^{3} \backslash\{f=0\} \rightarrow \mathbb{C}^{*}$ is a smooth fibration (Milnor), with fiber $F=f^{-1}(1)$, and monodromy $h: F \rightarrow F, z \mapsto e^{2 \pi i / n} z$.
- The Milnor fiber F is a regular, \mathbb{Z}_{n}-cover of $U=\mathbb{C P}^{2} \backslash\{f=0\}$.

COROLLARY (T.K.-A.S.)

Let \mathscr{A} be an arrangement defined by a polynomial $f \in \mathbb{R}\left[z_{1}, z_{2}, z_{3}\right]$, let $F=F(\mathscr{A})$ be its Milnor fiber, and let $\pi=\pi_{1}(F)$. Then
(1) π is residually finite.
(2) π is residually nilpotent.
(3) π is torsion-free.

- Let $\Delta(t)=\operatorname{det}\left(t /-h_{*}\right)$ be the characteristic polynomial of the algebraic monodromy, $h_{*}: H_{1}(F, \mathbb{C}) \rightarrow H_{1}(F, \mathbb{C})$.

Problem

When f is the defining polynomial of an arrangement \mathscr{A}, is $\Delta=\Delta_{\mathscr{A}}$ determined solely by $L(\mathscr{A})$?

Theorem (Stefan Papadima-A.S. 2014)
Suppose \mathscr{A} has only double and triple points. Then

$$
\Delta_{\mathscr{A}}(t)=(t-1)^{|\mathscr{A}|-1} \cdot\left(t^{2}+t+1\right)^{\beta_{3}(\mathscr{A})},
$$

where $\beta_{3}(\mathscr{A})$ is an integer between 0 and 2 that depends only on $L(\mathscr{A})$.

TECHNIQUES

- Common themes:
- Homology with coefficients in rank 1 local systems.
- Homology of finite abelian covers.
- Specific techniques for residual properties:
- Boundary manifold of line arrangement.
- Towers of congruence covers.
- The RFRp property.
- Specific techniques for Milnor fibration:
- Nets, multinets, and pencils.
- Cohomology jump loci (in characteristic 0 and p).
- Modular bounds for twisted Betti numbers.

THE RFRp PROPERTY

Let G be a finitely generated group and let p be a prime.
We say that G is residually finite rationally p if there exists a sequence of subgroups $G=G_{0}>\cdots>G_{i}>G_{i+1}>\cdots$ such that
(1) $G_{i+1} \triangleleft G_{i}$.
(2) $\cap_{i \geqslant 0} G_{i}=\{1\}$.
(3) G_{i} / G_{i+1} is an elementary abelian p-group.
(0) $\operatorname{ker}\left(G_{i} \rightarrow H_{1}\left(G_{i}, Q\right)\right)<G_{i+1}$.

Remarks:

- May assume each $G_{i} \triangleleft G$.
- Compare with Agol's RFRS property, where G_{i} / G_{i+1} only finite.
- $G R F R p \Rightarrow$ residually $p \Rightarrow$ residually finite and residually nilpotent.
- G RFR $p \Rightarrow$ GRRS \Rightarrow torsion-free.
- The class of RFRp groups is closed under the following operations:
(1) Taking subgroups.
(2) Finite direct products.
(3) Finite free products.
- The following groups are RFRp:
(1) Finitely generated free groups.
(2) Closed, orientable surface groups.
(3) Right-angled Artin groups.

BOUNDARY MANIFOLDS

- Let N be a regular neighborhood of $\bigcup_{H \in \mathscr{A}} H$ inside $\mathbb{C P}^{2}$.
- Let $\bar{U}=\mathbb{C P}^{2} \backslash \operatorname{int}(N)$ be the exterior of \mathscr{A}.
- The boundary manifold of \mathscr{A} is

$$
M=\partial \bar{U}=\partial N
$$

a compact, orientable, smooth manifold of dimension 3.

ExAMPLE

Let \mathscr{A} be a pencil of n hyperplanes in \mathbb{C}^{2}, defined by $f=z_{1}^{n}-z_{2}^{n}$. If $n=1$, then $M=S^{3}$. If $n>1$, then $M=\sharp^{n-1} S^{1} \times S^{2}$.

EXAMPLE

Let \mathscr{A} be a near-pencil of n planes in $\mathbb{C P}^{2}$, defined by $f=z_{1}\left(z_{2}^{n-1}-z_{3}^{n-1}\right)$. Then $M=S^{1} \times \Sigma_{n-2}$, where $\Sigma_{g}=\sharp^{9} S^{1} \times S^{1}$.

- Work of Hirzebruch, Jiang-Yau, and E. Hironaka shows that $M=M_{\Gamma}$ is a graph-manifold.
- The graph Γ is the incidence graph of \mathscr{A}, with vertex set $V(\Gamma)=L_{1}(\mathscr{A}) \cup L_{2}(\mathscr{A})$ and edge set $E(\Gamma)=\{(H, P) \mid P \in H\}$.
- For each $v \in V(\Gamma)$, there is a vertex manifold $M_{v}=S^{1} \times S_{v}$, with

$$
S_{V}=S^{2} \backslash \bigcup_{\{v, w\} \in E(\Gamma)} D_{V, w}^{2}
$$

a sphere with $\operatorname{deg} v$ disjoint open disks removed.

- For each $e \in E(\Gamma)$, there is an edge manifold $M_{e}=S^{1} \times S^{1}$.
- Vertex manifolds are glued along edge manifolds via flips.
- The inclusion $i: M \rightarrow U$ induces a surjection $i_{\sharp}: \pi_{1}(M) \rightarrow \pi_{1}(U)$.
- By collapsing each vertex manifold of $M=M_{\Gamma}$ to a point, we obtain a map $\kappa: M \rightarrow \Gamma$.
- Using work of D. Cohen-A.S. $(2006,2008)$, we get a split exact sequence

$$
0 \longrightarrow H_{1}(U, \mathbb{Z}) \stackrel{i_{*}}{\longrightarrow} H_{1}(M, \overleftarrow{Z}) \xrightarrow{\kappa_{*}} H_{1}(\Gamma, \mathbb{Z}) \longrightarrow 0
$$

LEMMA

Suppose \mathscr{A} is an essential line arrangement in $\mathbb{C P}^{2}$. Then, for each $v \in V(\Gamma)$ and $e \in E(\Gamma)$, the inclusions $i_{v}: M_{v} \hookrightarrow M$ and $i_{e}: M_{e} \hookrightarrow M$ induce split injections on H_{1}, whose images are contained in $\operatorname{ker}\left(\kappa_{*}\right)$.

Using work of E. Hironaka (2001), we obtain:

LEMMA

Suppose \mathscr{A} is the complexification of a real arrangement. There is then a finite, simplicial graph \mathscr{G} and an embedding $j: \mathscr{G} \hookrightarrow M$ such that:
(1) The graph \mathscr{G} is homotopy equivalent to the incidence graph $Г$.
(2) We have an exact sequence,

$$
0 \longrightarrow H_{1}(\mathscr{G}, \mathbb{Z}) \xrightarrow{j_{*}} H_{1}(M, \mathbb{Z}) \xrightarrow{i_{*}} H_{1}(U, \mathbb{Z}) \longrightarrow 0
$$

(3) We have an exact sequence,

$$
1 \longrightarrow \pi_{1}(\mathscr{G}) \xrightarrow{j_{\sharp}} \pi_{1}(M) \xrightarrow{i_{\sharp}} \pi_{1}(U) \longrightarrow 1 .
$$

TOWERS OF CONGRUENCE COVERS

- For each prime p, we construct a tower of regular covers of M,

$$
\cdots \longrightarrow M_{i+1} \xrightarrow{q_{i+1}} M_{i} \xrightarrow{q_{i}} \cdots \xrightarrow{q_{1}} M_{0}=M .
$$

- Each M_{i} is a graph-manifold, modelled on a graph Γ_{i}.
- The group of deck-transformations for q_{i+1} is the elementary abelian p-group $\left(\left(H_{1}\left(M_{i}, \mathbb{Z}\right) /\right.\right.$ tors $\left.) / H_{1}\left(\Gamma_{i}, \mathbb{Z}\right)\right) \otimes \mathbb{Z}_{p}$.
- The covering maps preserve the graph-manifold structures, e.g.,

where $M_{v, i}$ is a connected component of $q^{-1}\left(M_{v}\right)$ and $q_{v}=\left.q\right|_{M_{v, i}}$.
- The inclusions $M_{v, i} \hookrightarrow M_{i}$ and $M_{e, i} \hookrightarrow M_{i}$ induce injections on H_{1}, whose images are contained in $\operatorname{ker}\left(\left(\kappa_{i}\right)_{*}\right)$.
- If \mathscr{A} is complexified real, the graph $\mathscr{G} \hookrightarrow M$ lifts to a graph $\mathscr{G}_{i} \hookrightarrow M_{i}$ so that
- The group $H_{1}\left(M_{i}, \mathbb{Z}\right)$ splits off $H_{1}\left(\mathscr{G}_{i}, \mathbb{Z}\right)$ as a direct summand.
- $H_{1}\left(\mathscr{G}_{i}, \mathbb{Z}\right) \cap H_{1}\left(M_{v, i}, \mathbb{Z}\right)=0$, for all $v \in V(\Gamma)$.

Finally,

- For each $v \in V(\Gamma)$, the group $\pi_{1}\left(M_{v}\right)=\mathbb{Z} \times \pi_{1}\left(S_{v}\right)$ is RFRp.
- From the construction of the tower, it follows that $\pi_{1}(M)$ is RFRp.
- If \mathscr{A} is complexified real, the above properties of the lifts of \mathscr{G} imply that $\pi_{1}(U)=\pi_{1}(M) /\left\langle\left\langle j_{\sharp}\left(\pi_{1}(\mathscr{G})\right)\right\rangle\right\rangle$ is also RFRp.

Resonance varieties and multinets

- Let $X(\mathscr{A})=\mathbb{C}^{3} \backslash \bigcup_{H \in \mathscr{A}} \operatorname{ker}\left(f_{H}\right)$, so that $U(\mathscr{A})=\mathbb{P} X(\mathscr{A})$ and $X(\mathscr{A}) \cong \mathbb{C}^{*} \times U(\mathscr{A})$.
- Let $A=H^{*}(X(\mathscr{A}), \mathbb{k})$: an algebra that depends only on $L(\mathscr{A})$ and the field \mathbb{k} (Orlik and Solomon).
- For each $a \in A^{1}$, we have $a^{2}=0$. Thus, we get a cochain complex, $(A, \cdot a): A^{0} \xrightarrow{a} A^{1} \xrightarrow{a} A^{2} \longrightarrow \cdots$
- The (degree 1) resonance varieties of \mathscr{A} are the cohomology jump loci of this "Aomoto complex":

$$
\mathscr{R}_{S}(\mathscr{A}, \mathbb{k})=\left\{a \in A^{1} \mid \operatorname{dim}_{\mathbb{k}} H^{1}(A, \cdot a) \geqslant s\right\}
$$

Work of Arapura, Falk, Cohen-A.S., Libgober-Yuzvinsky, and Falk-Yuzvinsky completely describes the varieties $\mathscr{R}_{S}(\mathscr{A}, \mathbb{C})$:

- $\mathscr{R}_{1}(\mathscr{A}, \mathbb{C})$ is a union of linear subspaces in $H^{1}(X(\mathscr{A}), \mathbb{C}) \cong \mathbb{C}^{|\mathscr{A}|}$.
- Each subspace has dimension at least 2, and each pair of subspaces meets transversely at 0 .
- $\mathscr{R}_{S}(\mathscr{A}, \mathbb{C})$ is the union of those linear subspaces that have dimension at least $s+1$.
- Each k-multinet on a sub-arrangement $\mathscr{B} \subseteq \mathscr{A}$ gives rise to a component of $\mathscr{R}_{1}(\mathscr{A}, \mathbb{C})$ of dimension $k-1$. Moreover, all components of $\mathscr{R}_{1}(\mathscr{A}, \mathbb{C})$ arise in this way.

DEFINITION (FALK AND YUZVINSKY)

A multinet on \mathscr{A} is a partition of the set \mathscr{A} into $k \geqslant 3$ subsets $\mathscr{A}_{1}, \ldots, \mathscr{A}_{k}$, together with an assignment of multiplicities, $m: \mathscr{A} \rightarrow \mathbb{N}$, and a subset $\mathcal{X} \subseteq L_{2}(\mathscr{A})$, called the base locus, such that:
(1) There is an integer d such that $\sum_{H \in \mathscr{A}_{\alpha}} m_{H}=d$, for all $\alpha \in[k]$.
(2) If H and H^{\prime} are in different classes, then $H \cap H^{\prime} \in \mathcal{X}$.
(3) For each $X \in \mathcal{X}$, the sum $n_{X}=\sum_{H \in \mathscr{A}_{\alpha}: H \supset X} m_{H}$ is independent of α.
(9) Each set $\left(\cup_{H \in \mathscr{A}_{\alpha}} H\right) \backslash \mathcal{X}$ is connected.

- A multinet as above is also called a (k, d)-multinet, or a k-multinet.
- The multinet is reduced if $m_{H}=1$, for all $H \in \mathscr{A}$.
- A net is a reduced multinet with $n_{X}=1$, for all $X \in \mathcal{X}$.

$\mathrm{A}(3,2)$-net on the A_{3} arrangement $\mathrm{A}(3,4)$-multinet on the B_{3} arrangement \mathcal{X} consists of 4 triple points $\left(n_{X}=1\right) \quad \mathcal{X}$ consists of 4 triple points $\left(n_{X}=1\right)$ and 3 triple points ($n_{X}=2$)
- (Yuzvinsky and Pereira-Yuz): If \mathscr{A} supports a k-multinet with $|\mathcal{X}|>1$, then $k=3$ or 4 ; if the multinet is not reduced, then $k=3$.
- Conjecture (Yuz): The only 4-multinet is the Hessian (4,3)-net.
- (Cordovil-Forge and Torielli-Yoshinaga): There are no 4-nets on real arrangements.

Modular inequalities

- Recall $\Delta(t)$ is the characteristic polynomial of the algebraic monodromy of the Milnor fibration, $h_{*}: H_{1}(F, C) \rightarrow H_{1}(F, \mathbb{C})$.
- Set $n=|\mathscr{A}|$. Since $h^{n}=\mathrm{id}$, we have

$$
\Delta(t)=\prod_{d \mid n} \Phi_{d}(t)^{e_{d}(\mathscr{A})},
$$

where $\Phi_{d}(t)$ is the d-th cyclotomic polynomial, and $e_{d}(\mathscr{A}) \in \mathbb{Z}_{\geqslant 0}$.

- If there is a non-transverse multiple point on \mathscr{A} of multiplicity not divisible by d, then $e_{d}(\mathscr{A})=0$ (Libgober 2002).
- In particular, if \mathscr{A} has only points of multiplicity 2 and 3 , then $\Delta(t)=(t-1)^{n-1}\left(t^{2}+t+1\right)^{e_{3}}$.
- If multiplicity 4 appears, then also get factor of $(t+1)^{e_{2}} \cdot\left(t^{2}+1\right)^{e_{4}}$.
- Let $\sigma=\sum_{H \in \mathscr{A}} e_{H} \in A^{1}$ be the "diagonal" vector.
- Assume \mathbb{k} has characteristic $p>0$, and define

$$
\beta_{p}(\mathscr{A})=\operatorname{dim}_{\mathbb{k}} H^{1}(A, \cdot \sigma) .
$$

That is, $\beta_{p}(\mathscr{A})=\max \left\{s \mid \sigma \in \mathscr{R}_{s}^{1}(A, \mathbb{k})\right\}$.

Theorem (Cohen-Orlik 2000, Papadima-A.S. 2010) $e_{p^{s}}(\mathscr{A}) \leqslant \beta_{p}(\mathscr{A})$, for all $s \geqslant 1$.

THEOREM (S.P.-A.S.)

(1) Suppose \mathscr{A} admits a k-net. Then $\beta_{p}(\mathscr{A})=0$ if $p \nmid k$ and $\beta_{p}(\mathscr{A}) \geqslant k-2$, otherwise.
(2) If \mathscr{A} admits a reduced k-multinet, then $e_{k}(\mathscr{A}) \geqslant k-2$.

COMBINATORICS AND MONODROMY

THEOREM (S.P.-A.S.)

Suppose \mathscr{A} has no points of multiplicity $3 r$ with $r>1$. Then, the following conditions are equivalent:
(1) \mathscr{A} admits a reduced 3-multinet.
(2) \mathscr{A} admits a 3-net.
(3) $\beta_{3}(\mathscr{A}) \neq 0$.

Moreover, the following hold:
(4) $\beta_{3}(\mathscr{A}) \leqslant 2$.
(6) $e_{3}(\mathscr{A})=\beta_{3}(\mathscr{A})$, and thus $e_{3}(\mathscr{A})$ is combinatorially determined.

THEOREM (S.P.-A.S.)
Suppose \mathscr{A} supports a 4 -net and $\beta_{2}(\mathscr{A}) \leqslant 2$. Then

$$
e_{2}(\mathscr{A})=e_{4}(\mathscr{A})=\beta_{2}(\mathscr{A})=2
$$

CONJECTURE (S.P.-A.S.)

Let \mathscr{A} be an arrangement which is not a pencil. Then

$$
e_{p^{s}}(\mathscr{A})=0
$$

for all primes p and integers $s \geqslant 1$, with two possible exceptions:

$$
e_{2}(\mathscr{A})=e_{4}(\mathscr{A})=\beta_{2}(\mathscr{A}) \text { and } e_{3}(\mathscr{A})=\beta_{3}(\mathscr{A})
$$

If $e_{d}(\mathscr{A})=0$ for all divisors d of $|\mathscr{A}|$ which are not prime powers, this conjecture would give:

$$
\Delta_{\mathscr{A}}(t)=(t-1)^{|\mathscr{A}|-1}\left((t+1)\left(t^{2}+1\right)\right)^{\beta_{2}(\mathscr{A})}\left(t^{2}+t+1\right)^{\beta_{3}(\mathscr{A})} .
$$

The conjecture has been verified for several classes of arrangements, including complex reflection arrangements and certain types of real arrangements.

