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INTRODUCTION PLANE ALGEBRAIC CURVES

PLANE ALGEBRAIC CURVES

Let C Ă CP2 be a plane algebraic curve, defined by a
homogeneous polynomial f P C[z1, z2, z3].

In the 1930s, Zariski studied the topology of the complement,
U = CP2

zC .

He commissioned Van Kampen to find a presentation for the
fundamental group, π = π1(U).

Zariski noticed that π is not determined by the combinatorics of
C , but depends on the position of its singularities.

He asked whether π is residually finite, i.e., whether the map to its
profinite completion, π Ñ pπ =: πalg, is injective.
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INTRODUCTION LINE ARRANGEMENTS

LINE ARRANGEMENTS

Let A be an arrangement of lines in CP2, defined by a polynomial

f =
ź

HPA

fH P C[z1, z2, z3],

with fH linear forms so that H = P ker(fH) for each H P A .

Let L(A ) be the intersection lattice of A , with L1(A ) = tlinesu
and L2(A ) = tintersection pointsu.

Let U(A ) = CP2
z

Ť

HPA H be the complement of A .
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INTRODUCTION RESIDUAL PROPERTIES

RESIDUAL PROPERTIES OF ARRANGEMENT GROUPS

THEOREM (THOMAS KOBERDA–A.S. 2014)

Let A be a complexified real line arrangement, and let
π = π1(U(A )). Then

1 π is residually finite.
2 π is residually nilpotent.
3 π is torsion-free.
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INTRODUCTION MILNOR FIBRATION

MILNOR FIBRATION

Let f P C[z1, z2, z3] be a homogeneous polynomial of degree n.

The map f : C3ztf = 0u Ñ C˚ is a smooth fibration (Milnor), with
fiber F = f´1(1), and monodromy h : F Ñ F , z ÞÑ e2πi/nz.

The Milnor fiber F is a regular, Zn-cover of U = CP2
ztf = 0u.

COROLLARY (T.K.–A.S.)

Let A be an arrangement defined by a polynomial f P R[z1, z2, z3], let
F = F (A ) be its Milnor fiber, and let π = π1(F ). Then

1 π is residually finite.
2 π is residually nilpotent.
3 π is torsion-free.
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INTRODUCTION MILNOR FIBRATION

Let ∆(t) = det(tI ´ h˚) be the characteristic polynomial of the
algebraic monodromy, h˚ : H1(F ,C)Ñ H1(F ,C).

PROBLEM

When f is the defining polynomial of an arrangement A , is ∆ = ∆A

determined solely by L(A )?

THEOREM (STEFAN PAPADIMA–A.S. 2014)

Suppose A has only double and triple points. Then

∆A (t) = (t ´ 1)|A |´1 ¨ (t2 + t + 1)β3(A ),

where β3(A ) is an integer between 0 and 2 that depends only on
L(A ).
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INTRODUCTION TECHNIQUES

TECHNIQUES

Common themes:

Homology with coefficients in rank 1 local systems.
Homology of finite abelian covers.

Specific techniques for residual properties:

Boundary manifold of line arrangement.
Towers of congruence covers.
The RFRp property.

Specific techniques for Milnor fibration:

Nets, multinets, and pencils.
Cohomology jump loci (in characteristic 0 and p).
Modular bounds for twisted Betti numbers.
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RESIDUAL PROPERTIES THE RFRp PROPERTY

THE RFRp PROPERTY

Let G be a finitely generated group and let p be a prime.
We say that G is residually finite rationally p if there exists a sequence
of subgroups G = G0 ą ¨ ¨ ¨ ą Gi ą Gi+1 ą ¨ ¨ ¨ such that

1 Gi+1 ŸGi .

2
Ş

iě0 Gi = t1u.

3 Gi /Gi+1 is an elementary abelian p-group.

4 ker(Gi Ñ H1(Gi ,Q)) ă Gi+1.

Remarks:
May assume each Gi ŸG.
Compare with Agol’s RFRS property, where Gi /Gi+1 only finite.
G RFRp ñ residually p ñ residually finite and residually nilpotent.
G RFRp ñ G RFRS ñ torsion-free.
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RESIDUAL PROPERTIES THE RFRp PROPERTY

The class of RFRp groups is closed under the following
operations:

1 Taking subgroups.

2 Finite direct products.

3 Finite free products.

The following groups are RFRp:

1 Finitely generated free groups.

2 Closed, orientable surface groups.

3 Right-angled Artin groups.
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RESIDUAL PROPERTIES BOUNDARY MANIFOLDS

BOUNDARY MANIFOLDS

Let N be a regular neighborhood of
Ť

HPA H inside CP2.

Let U = CP2
z int(N) be the exterior of A .

The boundary manifold of A is

M = BU = BN,

a compact, orientable, smooth manifold of dimension 3.

EXAMPLE

Let A be a pencil of n hyperplanes in C2, defined by f = zn
1 ´ zn

2 .
If n = 1, then M = S3. If n ą 1, then M = 7n´1S1 ˆS2.

EXAMPLE

Let A be a near-pencil of n planes in CP2, defined by
f = z1(zn´1

2 ´ zn´1
3 ). Then M = S1 ˆ Σn´2, where Σg = 7gS1 ˆS1.
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RESIDUAL PROPERTIES BOUNDARY MANIFOLDS

Work of Hirzebruch, Jiang–Yau, and E. Hironaka shows that
M = MΓ is a graph-manifold.

The graph Γ is the incidence graph of A , with vertex set
V (Γ) = L1(A )Y L2(A ) and edge set E(Γ) = t(H,P) | P P Hu.

For each v P V (Γ), there is a vertex manifold Mv = S1 ˆSv , with

Sv = S2z
ď

tv ,wuPE(Γ)

D2
v ,w ,

a sphere with deg v disjoint open disks removed.

For each e P E(Γ), there is an edge manifold Me = S1 ˆS1.

Vertex manifolds are glued along edge manifolds via flips.
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RESIDUAL PROPERTIES BOUNDARY MANIFOLDS

The inclusion i : M Ñ U induces a surjection i7 : π1(M) � π1(U).

By collapsing each vertex manifold of M = MΓ to a point, we
obtain a map κ : M Ñ Γ.

Using work of D. Cohen–A.S. (2006, 2008), we get a split exact
sequence

0 // H1(U,Z) // H1(M,Z)

i˚
vv

κ˚ // H1(Γ,Z) //
xx

0 .

LEMMA

Suppose A is an essential line arrangement in CP2. Then, for each
v P V (Γ) and e P E(Γ), the inclusions iv : Mv ãÑ M and ie : Me ãÑ M
induce split injections on H1, whose images are contained in ker(κ˚).
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RESIDUAL PROPERTIES BOUNDARY MANIFOLDS

Using work of E. Hironaka (2001), we obtain:

LEMMA

Suppose A is the complexification of a real arrangement. There is
then a finite, simplicial graph G and an embedding j : G ãÑ M such that:

1 The graph G is homotopy equivalent to the incidence graph Γ.

2 We have an exact sequence,

0 // H1(G ,Z)
j˚ // H1(M,Z)

i˚ // H1(U,Z) // 0 .

3 We have an exact sequence,

1 // π1(G )
j7 // π1(M)

i7 // π1(U) // 1 .
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RESIDUAL PROPERTIES TOWERS OF CONGRUENCE COVERS

TOWERS OF CONGRUENCE COVERS

For each prime p, we construct a tower of regular covers of M,

¨ ¨ ¨ // Mi+1
qi+1 // Mi

qi // ¨ ¨ ¨
q1 // M0 = M.

Each Mi is a graph-manifold, modelled on a graph Γi .

The group of deck-transformations for qi+1 is the elementary
abelian p-group

(
(H1(Mi ,Z)/tors)/H1(Γi ,Z)

)
bZp.

The covering maps preserve the graph-manifold structures, e.g.,

Mv ,i //

qv

��

Mi

q
��

Mv // M

where Mv ,i is a connected component of q´1(Mv ) and qv = q|Mv ,i .
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RESIDUAL PROPERTIES TOWERS OF CONGRUENCE COVERS

The inclusions Mv ,i ãÑ Mi and Me,i ãÑ Mi induce injections on H1,
whose images are contained in ker((κi)˚).

If A is complexified real, the graph G ãÑ M lifts to a graph
Gi ãÑ Mi so that

The group H1(Mi ,Z) splits off H1(Gi ,Z) as a direct summand.

H1(Gi ,Z)XH1(Mv ,i ,Z) = 0, for all v P V (Γ).

Finally,

For each v P V (Γ), the group π1(Mv ) = Zˆ π1(Sv ) is RFRp.

From the construction of the tower, it follows that π1(M) is RFRp.

If A is complexified real, the above properties of the lifts of G
imply that π1(U) = π1(M)/xxj7(π1(G ))yy is also RFRp.
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MILNOR FIBRATION RESONANCE VARIETIES AND MULTINETS

RESONANCE VARIETIES AND MULTINETS

Let X (A ) = C3z
Ť

HPA ker(fH), so that U(A ) = PX (A ) and
X (A ) – C˚ ˆU(A ).

Let A = H˚(X (A ),k): an algebra that depends only on L(A ) and
the field k (Orlik and Solomon).

For each a P A1, we have a2 = 0. Thus, we get a cochain
complex, (A, ¨a) : A0 a // A1 a // A2 // ¨ ¨ ¨

The (degree 1) resonance varieties of A are the cohomology
jump loci of this “Aomoto complex":

Rs(A ,k) = ta P A1 | dimk H1(A, ¨a) ě su,
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MILNOR FIBRATION RESONANCE VARIETIES AND MULTINETS

Work of Arapura, Falk, Cohen–A.S., Libgober–Yuzvinsky, and
Falk–Yuzvinsky completely describes the varieties Rs(A ,C):

R1(A ,C) is a union of linear subspaces in H1(X (A ),C) – C|A |.

Each subspace has dimension at least 2, and each pair of
subspaces meets transversely at 0.

Rs(A ,C) is the union of those linear subspaces that have
dimension at least s + 1.

Each k-multinet on a sub-arrangement B Ď A gives rise to a
component of R1(A ,C) of dimension k ´ 1. Moreover, all
components of R1(A ,C) arise in this way.
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MILNOR FIBRATION RESONANCE VARIETIES AND MULTINETS

DEFINITION (FALK AND YUZVINSKY)

A multinet on A is a partition of the set A into k ě 3 subsets
A1, . . . ,Ak , together with an assignment of multiplicities, m : A Ñ N,
and a subset X Ď L2(A ), called the base locus, such that:

1 There is an integer d such that
ř

HPAα
mH = d , for all α P [k ].

2 If H and H 1 are in different classes, then H XH 1 P X .
3 For each X P X , the sum nX =

ř

HPAα :HĄX mH is independent of α.
4 Each set

(
Ť

HPAα
H
)
zX is connected.

A multinet as above is also called a (k ,d)-multinet, or a k -multinet.

The multinet is reduced if mH = 1, for all H P A .

A net is a reduced multinet with nX = 1, for all X P X .
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MILNOR FIBRATION RESONANCE VARIETIES AND MULTINETS

‚ ‚

‚

‚

2

2

2

A (3,2)-net on the A3 arrangement A (3,4)-multinet on the B3 arrangement
X consists of 4 triple points (nX = 1) X consists of 4 triple points (nX = 1)

and 3 triple points (nX = 2)

(Yuzvinsky and Pereira–Yuz): If A supports a k -multinet with
|X | ą 1, then k = 3 or 4; if the multinet is not reduced, then k = 3.

Conjecture (Yuz): The only 4-multinet is the Hessian (4,3)-net.

(Cordovil–Forge and Torielli–Yoshinaga): There are no 4-nets on
real arrangements.
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MILNOR FIBRATION MODULAR INEQUALITIES

MODULAR INEQUALITIES

Recall ∆(t) is the characteristic polynomial of the algebraic
monodromy of the Milnor fibration, h˚ : H1(F ,C)Ñ H1(F ,C).

Set n = |A |. Since hn = id, we have

∆(t) =
ź

d |n

Φd (t)ed (A ),

where Φd (t) is the d-th cyclotomic polynomial, and ed (A ) P Zě0.

If there is a non-transverse multiple point on A of multiplicity not
divisible by d , then ed (A ) = 0 (Libgober 2002).

In particular, if A has only points of multiplicity 2 and 3, then
∆(t) = (t ´ 1)n´1(t2 + t + 1)e3 .

If multiplicity 4 appears, then also get factor of (t + 1)e2 ¨ (t2 + 1)e4 .
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MILNOR FIBRATION MODULAR INEQUALITIES

Let σ =
ř

HPA eH P A1 be the “diagonal" vector.

Assume k has characteristic p ą 0, and define

βp(A ) = dimk H1(A, ¨σ).

That is, βp(A ) = maxts | σ P R1
s (A,k)u.

THEOREM (COHEN–ORLIK 2000, PAPADIMA–A.S. 2010)

eps(A ) ď βp(A ), for all s ě 1.

THEOREM (S.P.–A.S.)
1 Suppose A admits a k-net. Then βp(A ) = 0 if p - k and

βp(A ) ě k ´ 2, otherwise.
2 If A admits a reduced k-multinet, then ek (A ) ě k ´ 2.
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MILNOR FIBRATION COMBINATORICS AND MONODROMY

COMBINATORICS AND MONODROMY

THEOREM (S.P.–A.S.)

Suppose A has no points of multiplicity 3r with r ą 1. Then, the
following conditions are equivalent:

1 A admits a reduced 3-multinet.
2 A admits a 3-net.
3 β3(A ) ‰ 0.

Moreover, the following hold:
4 β3(A ) ď 2.
5 e3(A ) = β3(A ), and thus e3(A ) is combinatorially determined.

THEOREM (S.P.–A.S.)

Suppose A supports a 4-net and β2(A ) ď 2. Then
e2(A ) = e4(A ) = β2(A ) = 2.
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MILNOR FIBRATION COMBINATORICS AND MONODROMY

CONJECTURE (S.P.–A.S.)
Let A be an arrangement which is not a pencil. Then

eps(A ) = 0

for all primes p and integers s ě 1, with two possible exceptions:

e2(A ) = e4(A ) = β2(A ) and e3(A ) = β3(A ).

If ed (A ) = 0 for all divisors d of |A | which are not prime powers, this
conjecture would give:

∆A (t) = (t ´ 1)|A |´1((t + 1)(t2 + 1))β2(A )(t2 + t + 1)β3(A ).

The conjecture has been verified for several classes of arrangements,
including complex reflection arrangements and certain types of real
arrangements.
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