Resonance varieties

Alex Suciu

Northeastern University

ET'nA 2017: Encounter in Topology and Algebra

Scuola Superiore di Catania
Catania, Italy

May 31, 2017

(1) COHOMOLOGY JUMP LOCI

- Support varieties
- Homology jump loci
- Resonance varieties
(2) THE TANGENT CONE THEOREM
- Characteristic varieties
- The tangent cone theorem
- Formality
(3) Applications
- Smooth, quasi-projective varieties
- Hyperplane arrangements
- Toric complexes and right-angled Artin groups

SUPPORT VARIETIES

- Let \mathbb{k} be an algebraically closed field.
- Let S be a commutative, finitely generated \mathbb{k}-algebra.
- Let $\mathfrak{m S p e c}(S)=\operatorname{Hom}_{k-a l g}(S, \mathbb{k})$ be the maximal spectrum of S.
- Let $E: \cdots \rightarrow E_{i} \xrightarrow{d_{i}} E_{i-1} \rightarrow \cdots \rightarrow E_{0} \rightarrow 0$ be an S-chain complex.
- The support varieties of E are the subsets of $\mathfrak{m S p e c}(S)$ given by

$$
\mathcal{W}_{s}^{i}(E)=\operatorname{supp}\left(\bigwedge^{s} H_{i}(E)\right)
$$

- They depend only on the chain-homotopy equivalence class of E.
- For each $i \geqslant 0, \mathfrak{m} \operatorname{Spec}(S)=\mathcal{W}_{0}^{i}(E) \supseteq \mathcal{W}_{1}^{i}(E) \supseteq \mathcal{W}_{2}^{i}(E) \supseteq \cdots$.
- If all E_{i} are finitely generated S-modules, then the sets $\mathcal{W}_{s}^{i}(E)$ are Zariski closed subsets of $\mathfrak{m S p e c}(S)$.

Homology jump loci

- The homology jump loci of the S-chain complex E are defined as

$$
\mathcal{V}_{s}^{i}(E)=\left\{\mathfrak{m} \in \mathfrak{m} \operatorname{Spec}(S) \mid \operatorname{dim}_{\mathfrak{k}} H_{i}\left(E \otimes_{S} S / \mathfrak{m}\right) \geqslant s\right\} .
$$

- They depend only on the chain-homotopy equivalence class of E.
- For each $i \geqslant 0, \mathfrak{m S p e c}(S)=\mathcal{V}_{0}^{i}(E) \supseteq \mathcal{V}_{1}^{i}(E) \supseteq \mathcal{V}_{2}^{i}(E) \supseteq \cdots$.
- (Papadima-S. 2014) Suppose E is a chain complex of free, finitely generated S-modules. Then:
- Each $\mathcal{V}_{d}^{i}(E)$ is a Zariski closed subset of $\mathfrak{m S p e c}(S)$.
- For each q,

$$
\bigcup_{i \leqslant q} \mathcal{V}_{1}^{i}(E)=\bigcup_{i \leqslant q} \mathcal{W}_{i}^{i}(E) .
$$

RESONANCE VARIETIES

- Let $A=\oplus_{i \geqslant 0} A^{i}$ be a commutative graded \mathbb{k}-algebra, with $A^{0}=\mathbb{k}$.
- Let $a \in A^{1}$, and assume $a^{2}=0$ (this condition is redundant if $\operatorname{char}(\mathbb{k}) \neq 2$, by graded-commutativity of the multiplication in A).
- The Aomoto complex of A (with respect to $a \in A^{1}$) is the cochain complex of \mathbb{k}-vector spaces,

$$
\left(A, \delta_{a}\right): A^{0} \xrightarrow{a} A^{1} \xrightarrow{a} A^{2} \xrightarrow{a} \cdots,
$$

with differentials given by $b \mapsto a \cdot b$, for $b \in A^{i}$.

- The resonance varieties of A are the sets

$$
\mathcal{R}_{s}^{i}(A)=\left\{a \in A^{1} \mid a^{2}=0 \text { and } \operatorname{dim}_{\mathbb{k}} H^{i}(A, a) \geqslant s\right\} .
$$

- If A is locally finite (i.e., $\operatorname{dim}_{\mathbb{k}} A^{i}<\infty$, for all $i \geqslant 1$), then the sets $\mathcal{R}_{s}^{i}(A)$ are Zariski closed cones inside the affine space A^{1}.
- Fix a \mathbb{k}-basis $\left\{e_{1}, \ldots, e_{n}\right\}$ for A^{1}, and let $\left\{x_{1}, \ldots, x_{n}\right\}$ be the dual basis for $A_{1}=\left(A^{1}\right)^{\vee}$.
- Identify $\operatorname{Sym}\left(A_{1}\right)$ with $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$, the coordinate ring of the affine space A^{1}.
- Define a cochain complex of free S-modules, $K(A):=\left(A^{\bullet} \otimes S, \delta\right)$,

$$
\cdots \longrightarrow A^{i} \otimes S \xrightarrow{\delta^{i}} A^{i+1} \otimes S \xrightarrow{\delta^{i+1}} A^{i+2} \otimes S
$$

where $\quad \delta^{i}(u \otimes s)=\sum_{j=1}^{n} e_{j} u \otimes s x_{j}$.

- The specialization of $(A \otimes S, \delta)$ at $a \in A^{1}$ coincides with $\left(A, \delta_{a}\right)$.
- The cohomology support loci $R_{s}^{i}(A)=\operatorname{supp}\left(\bigwedge^{s} H^{i}(K(A))\right)$ are (closed) subvarieties of A^{1}.
- Both $\mathcal{R}_{s}^{i}(A)$ and $R_{s}^{i}(A)$ can be arbitrarily complicated (homogeneous) affine varieties.

Example (Exterior algebra)

Let $E=\bigwedge V$, where $V=\mathbb{k}^{n}$, and $S=\operatorname{Sym}(V)$. Then $K(E)$ is the Koszul complex on V. E.g., for $n=3$:

$$
S \xrightarrow{\left(x_{3}-x_{2} x_{1}\right)} S^{3} \xrightarrow{\left(\begin{array}{ccc}
x_{2} & -x_{1} & 0 \\
x_{3} & 0 & -x_{1} \\
0 & x_{3} & -x_{2}
\end{array}\right)} S^{3} \xrightarrow{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)} S
$$

This chain complex provides a free resolution $\varepsilon: K(E) \rightarrow \mathbb{k}$ of the trivial S-module \mathbb{k}. Hence,

$$
\mathcal{R}_{s}^{i}(E)= \begin{cases}\{0\} & \text { if } s \leqslant\binom{ n}{i}, \\ \varnothing & \text { otherwise. }\end{cases}
$$

EXAMPLE (NON-ZERO RESONANCE)
Let $A=\bigwedge\left(e_{1}, e_{2}, e_{3}\right) /\left\langle e_{1} e_{2}\right\rangle$, and set $S=\mathbb{k}\left[x_{1}, x_{2}, x_{3}\right]$. Then

$$
\begin{aligned}
& K(A): S^{2} \xrightarrow{\left(\begin{array}{lll}
x_{3} & 0 & -x_{1} \\
0 & x_{3} & -x_{2}
\end{array}\right)} S^{3} \xrightarrow{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)} S . \\
& \mathcal{R}_{s}^{1}(A)= \begin{cases}\left\{x_{3}=0\right\} & \text { if } s=1, \\
\{0\} & \text { if } s=2 \text { or } 3, \\
\varnothing & \text { if } s>3 .\end{cases}
\end{aligned}
$$

EXAMPLE (NON-LINEAR RESONANCE)
Let $A=\bigwedge\left(e_{1}, \ldots, e_{4}\right) /\left\langle e_{1} e_{3}, e_{2} e_{4}, e_{1} e_{2}+e_{3} e_{4}\right\rangle$. Then

$$
\begin{gathered}
K(A): S^{3} \xrightarrow{\left(\begin{array}{cccc}
x_{4} & 0 & 0 & -x_{1} \\
0 & x_{3} & -x_{2} & 0 \\
-x_{2} & x_{1} & x_{4} & -x_{3}
\end{array}\right)} S^{4} \xrightarrow{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)} \text { R. } S . \\
\mathcal{R}_{1}^{1}(A)=\left\{x_{1} x_{2}+x_{3} x_{4}=0\right\}
\end{gathered}
$$

CHARACTERISTIC VARIETIES

- Let X be a connected, finite-type CW-complex.
- Fundamental group $\pi=\pi_{1}\left(X, x_{0}\right)$: a finitely generated, discrete group, with $\pi_{\mathrm{ab}} \cong H_{1}(X, \mathbb{Z})$.
- Fix a field \mathbb{k} with $\overline{\mathbb{k}}=\mathbb{k}$ (usually $\mathbb{k}=\mathbb{C}$), and let $S=\mathbb{k}\left[\pi_{\mathrm{ab}}\right]$.
- Identify $\mathfrak{m S p e c}(S)$ with the character group $\operatorname{Char}(X)=\operatorname{Hom}\left(\pi, \mathbb{k}^{\times}\right)$, also denoted $\widehat{\pi}=\widehat{\pi_{\mathrm{ab}}}$.
- The characteristic varieties of X are the homology jump loci of free S-chain complex $E=C_{*}\left(X^{\mathrm{ab}}, \mathbb{k}\right)$:

$$
\mathcal{V}_{s}^{i}(X, \mathbb{k})=\left\{\rho \in \operatorname{Char}(X) \mid \operatorname{dim}_{\mathbb{k}} H_{i}\left(X, \mathbb{k}_{\rho}\right) \geqslant s\right\} .
$$

- Each set $\mathcal{V}_{s}^{i}(X, \mathbb{k})$ is a subvariety of $\operatorname{Char}(X)$.

Example (Circle)

Let $X=S^{1}$. We have $\left(S^{1}\right)^{\mathrm{ab}}=\mathbb{R}$. Identify $\pi_{1}\left(S^{1}, *\right)=\mathbb{Z}=\langle t\rangle$ and $\mathbb{Z} \mathbb{Z}=\mathbb{Z}\left[t^{ \pm 1}\right]$. Then:

$$
C_{*}\left(\left(S^{1}\right)^{\mathrm{ab}}\right): 0 \longrightarrow \mathbb{Z}\left[t^{ \pm 1}\right] \xrightarrow{t-1} \mathbb{Z}\left[t^{ \pm 1}\right] \longrightarrow 0
$$

For each $\rho \in \operatorname{Hom}\left(\mathbb{Z}, \mathbb{k}^{\times}\right)=\mathbb{k}^{\times}$, get a chain complex

$$
C_{*}\left(\widetilde{S^{1}}\right) \otimes_{\mathbb{Z} \mathbb{Z}} \mathbb{k}_{\rho}: 0 \longrightarrow \mathbb{k} \xrightarrow{\rho-1} \mathbb{k} \longrightarrow 0
$$

which is exact, except for $\rho=1$, when $H_{0}\left(S^{1}, \mathbb{k}\right)=H_{1}\left(S^{1}, \mathbb{k}\right)=\mathbb{k}$. Hence:

$$
\mathcal{V}_{1}^{0}\left(S^{1}\right)=\mathcal{V}_{1}^{1}\left(S^{1}\right)=\{1\}
$$

and $\mathcal{V}_{s}^{i}\left(S^{1}\right)=\varnothing$, otherwise.

EXAMPLE (TORUS)

Identify $\pi_{1}\left(T^{n}\right)=\mathbb{Z}^{n}$, and $\operatorname{Hom}\left(\mathbb{Z}^{n}, \mathbb{k}^{\times}\right)=\left(\mathbb{k}^{\times}\right)^{n}$. Then:

$$
\mathcal{V}_{s}^{i}\left(T^{n}\right)= \begin{cases}\{1\} & \text { if } s \leqslant\binom{ n}{i}, \\ \varnothing & \text { otherwise } .\end{cases}
$$

Example (Wedge of circles)
Identify $\pi_{1}\left(\bigvee^{n} S^{1}\right)=F_{n}$, and $\operatorname{Hom}\left(F_{n}, \mathbb{k}^{\times}\right)=\left(\mathbb{k}^{\times}\right)^{n}$. Then:

$$
\mathcal{V}_{s}^{1}\left(\bigvee^{n} S^{1}\right)= \begin{cases}\left(\mathbb{k}^{\times}\right)^{n} & \text { if } s<n \\ \{1\} & \text { if } s=n \\ \varnothing & \text { if } s>n\end{cases}
$$

EXAMPLE (ORIENTABLE SURFACE OF GENUS $g>1$)

$$
\mathcal{V}_{s}^{1}\left(\Sigma_{g}\right)= \begin{cases}\left(\mathbb{k}^{\times}\right)^{2 g} & \text { if } s<2 g-1 \\ \{1\} & \text { if } s=2 g-1,2 g \\ \varnothing & \text { if } s>2 g\end{cases}
$$

- Homotopy invariance: If $X \simeq Y$, then $\mathcal{V}_{s}^{i}(Y, \mathbb{k}) \cong \mathcal{V}_{s}^{i}(X, \mathbb{k})$.
- Product formula:
$\mathcal{V}_{1}^{i}\left(X_{1} \times X_{2}, \mathbb{k}\right)=\bigcup_{p+q=i} \mathcal{V}_{1}^{p}\left(X_{1}, \mathbb{k}\right) \times \mathcal{V}_{1}^{q}\left(X_{2}, \mathbb{k}\right)$.
- Degree 1 interpretation: The sets $\mathcal{V}_{s}^{1}(X, \mathbb{k})$ depend only on $\pi=\pi_{1}(X)$-in fact, only on $\pi / \pi^{\prime \prime}$. Write them as $\mathcal{V}_{s}^{1}(\pi, \mathbb{k})$.
- Functoriality: If $\varphi: \pi \rightarrow G$ is an epimorphism, then $\hat{\varphi}: \widehat{G} \hookrightarrow \hat{\pi}$ restricts to an embedding $\mathcal{V}_{s}^{1}(G, \mathbb{k}) \hookrightarrow \mathcal{V}_{s}^{1}(\pi, \mathbb{k})$, for each s.
- Universality: Given any subvariety $W \subset\left(\mathbb{k}^{\times}\right)^{n}$, there is a finitely presented group π such that $\pi_{\mathrm{ab}}=\mathbb{Z}^{n}$ and $\mathcal{V}_{1}^{1}(\pi, \mathbb{k})=W$.
- Alexander invariant interpretation: Let $X^{\mathrm{ab}} \rightarrow X$ be the maximal abelian cover. View $H_{*}\left(X^{\mathrm{ab}}, \mathbb{k}\right)$ as a module over $S=\mathbb{k}\left[\pi_{\mathrm{ab}}\right]$. Then:

$$
\bigcup_{j \leqslant i} \mathcal{V}_{1}^{j}(X, \mathbb{k})=\operatorname{supp}\left(\bigoplus_{j \leqslant i} H_{j}\left(X^{\mathrm{ab}}, \mathbb{k}\right)\right) .
$$

The TANGENT CONE THEOREM

- The resonance varieties of X (with coefficients in \mathbb{k}) are the loci $\mathcal{R}_{d}^{i}(X, \mathbb{k})$ associated to the cohomology algebra $A=H^{*}(X, \mathbb{k})$.
- Each set $\mathcal{R}_{s}^{i}(X):=\mathcal{R}_{s}^{i}(X, \mathrm{C})$ is a homogeneous subvariety of $H^{1}(X, \mathbb{C}) \cong \mathbb{C}^{n}$, where $n=b_{1}(X)$.
- Recall that $\mathcal{V}_{s}^{i}(X):=\mathcal{V}_{s}^{i}(X, \mathrm{C})$ is a subvariety of $H^{1}\left(X, \mathbb{C}^{\times}\right) \cong\left(\mathbb{C}^{\times}\right)^{n} \times \operatorname{Tors}\left(H_{1}(X, \mathbb{Z})\right)$.
- (Libgober 2002) $\mathrm{TC}_{1}\left(\mathcal{V}_{s}^{i}(X)\right) \subseteq \mathcal{R}_{s}^{i}(X)$.
- Given a subvariety $W \subset H^{1}\left(X, C^{\times}\right)$, let $\tau_{1}(W)=\left\{z \in H^{1}(X, \mathbb{C}) \mid \exp (\lambda z) \in W, \forall \lambda \in \mathbb{C}\right\}$.
- (Dimca-Papadima-S. 2009) $\tau_{1}(W)$ is a finite union of rationally defined linear subspaces, and $\tau_{1}(W) \subseteq \mathrm{TC}_{1}(W)$.
- Thus, $\tau_{1}\left(\mathcal{V}_{s}^{i}(X)\right) \subseteq \mathrm{TC}_{1}\left(\mathcal{V}_{s}^{i}(X)\right) \subseteq \mathcal{R}_{s}^{i}(X)$.

FORMALITY

- X is formal if there is a zig-zag of cdga quasi-isomorphisms from $\left(A_{\mathrm{PL}}(X, \mathbb{Q}), d\right)$ to $\left(H^{*}(X, \mathbb{Q}), 0\right)$.
- X is k-formal (for some $k \geqslant 1$) if each of these morphisms induces an iso in degrees up to k, and a monomorphism in degree $k+1$.
- X is 1 -formal if and only if $\pi=\pi_{1}(X)$ is 1-formal, i.e., its Malcev Lie algebra, $\mathfrak{m}(\pi)=\operatorname{Prim}(\widehat{\mathbb{Q} \pi})$, is quadratic.
- For instance, compact Kähler manifolds and complements of hyperplane arrangements are formal.
- (Dimca-Papadima-S. 2009) Let X be a 1-formal space. Then, for each $s>0$,

$$
\tau_{1}\left(\mathcal{V}_{s}^{1}(X)\right)=\mathrm{TC}_{1}\left(\mathcal{V}_{s}^{1}(X)\right)=\mathcal{R}_{s}^{1}(X)
$$

Consequently, $\mathcal{R}_{s}^{1}(X)$ is a finite union of rationally defined linear subspaces in $H^{1}(X, \mathbb{C})$.

This theorem yields a very efficient formality test.

ExAMPLE

Let $\pi=\left\langle x_{1}, x_{2}, x_{3}, x_{4} \mid\left[x_{1}, x_{2}\right],\left[x_{1}, x_{4}\right]\left[x_{2}^{-2}, x_{3}\right],\left[x_{1}^{-1}, x_{3}\right]\left[x_{2}, x_{4}\right]\right\rangle$. Then $\mathcal{R}_{1}^{1}(\pi)=\left\{x \in \mathbb{C}^{4} \mid x_{1}^{2}-2 x_{2}^{2}=0\right\}$ splits into linear subspaces over \mathbb{R} but not over \mathbb{Q}. Thus, π is not 1 -formal.

ExAMPLE

Let $F\left(\Sigma_{g}, n\right)$ be the configuration space of n labeled points of a Riemann surface of genus g (a smooth, quasi-projective variety).

Then $\pi_{1}\left(F\left(\Sigma_{g}, n\right)\right)=P_{g, n}$, the pure braid group on n strings on Σ_{g}. Compute:

$$
\mathcal{R}_{1}^{1}\left(P_{1, n}\right)=\left\{\begin{array}{l|l}
(x, y) \in \mathbb{C}^{n} \times \mathbb{C}^{n} \left\lvert\, \begin{array}{l}
\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} y_{i}=0, \\
x_{i} y_{j}-x_{j} y_{i}=0, \text { for } 1 \leqslant i<j<n
\end{array}\right.
\end{array}\right\}
$$

For $n \geqslant 3$, this is an irreducible, non-linear variety (a rational normal scroll). Hence, $P_{1, n}$ is not 1 -formal.

Applications of COHOMOLOGY JUMP LOCI

- Obstructions to formality and (quasi-) projectivity
- Right-angled Artin groups and Bestvina-Brady groups
- 3-manifold groups, Kähler groups, and quasi-projective groups
- Homology of finite, regular abelian covers
- Homology of the Milnor fiber of an arrangement
- Rational homology of smooth, real toric varieties
- Homological and geometric finiteness of regular abelian covers
- Bieri-Neumann-Strebel-Renz invariants
- Dwyer-Fried invariants
- Resonance varieties and representations of Lie algebras
- Homological finiteness in the Johnson filtration of automorphism groups
- Lower central series and Chen Lie algebras
- The resonance-Chen ranks formula

QuAsi-PROJECTIVE VARIETIES

Theorem (Arapura 1997, ... , Budur-Wang 2015)

Let X be a smooth, quasi-projective variety. Then each $\mathcal{V}_{s}^{i}(X)$ is a finite union of torsion-translated subtori of Char(X).

THEOREM (DIMCA-PAPADIMA-S. 2009)

Let X be a smooth, quasi-projective variety. If X is 1 -formal, then the (non-zero) irreducible components of $\mathcal{R}_{1}^{1}(X)$ are linear subspaces of $H^{1}(X, \mathbb{C})$ which intersect pairwise only at 0 . Each such component L_{α} is p-isotropic (i.e., the restriction of \cup_{x} to L_{α} has rank p), with $\operatorname{dim} L_{\alpha} \geqslant 2 p+2$, for some $p=p(\alpha) \in\{0,1\}$, and

$$
\mathcal{R}_{s}^{1}(X)=\{0\} \cup \bigcup_{\alpha: \operatorname{dim}}^{L_{\alpha}>s+p(\alpha)} L_{\alpha}
$$

- If X is compact, then X is 1 -formal, and each L_{α} is 1-isotropic.
- If $W_{1}\left(H^{1}(X, \mathbb{C})\right)=0$, then X is 1 -formal, and each L_{α} is 0 -isotropic.

HYpERPLANE ARRANGEMENTS

- Let $\mathcal{A}=\left\{H_{1}, \ldots, H_{n}\right\}$ be an arrangement in \mathbb{C}^{3}, and identify $H^{1}(M(\mathcal{A}), \mathbb{k})=\mathbb{k}^{n}$, with basis dual to the meridians.
- The resonance varieties $\mathcal{R}_{s}^{1}(\mathcal{A}, \mathbb{k}):=\mathcal{R}_{s}^{1}(M(\mathcal{A}), \mathbb{k}) \subset \mathbb{k}^{n}$ lie in the hyperplane $\left\{x \in \mathbb{k}^{n} \mid x_{1}+\cdots+x_{n}=0\right\}$.
- $\mathcal{R}^{1}(\mathcal{A})=\mathcal{R}_{1}^{1}(\mathcal{A}, \mathbb{C})$ is a union of linear subspaces in \mathbb{C}^{n}, described in work of Falk, Cohen-Suciu, Libgober-Yuzvinsky, Falk-Yuzvinsky.
- Each subspace has dimension at least 2, and each pair of subspaces meets transversely at 0 .
- $\mathcal{R}_{s}^{1}(\mathcal{A}, \mathbb{C})$ is the union of those linear subspaces that have dimension at least $s+1$.

- Each flat $X \in L_{2}(\mathcal{A})$ of multiplicity $k \geqslant 3$ gives rise to a local component of $\mathcal{R}^{1}(\mathcal{A})$, of dimension $k-1$.
- More generally, every k-multinet on a sub-arrangement $\mathcal{B} \subseteq \mathcal{A}$ gives rise to a component of dimension $k-1$, and all components of $\mathcal{R}^{1}(\mathcal{A})$ arise in this way.
- The resonance varieties $\mathcal{R}^{1}(\mathcal{A}, \mathbb{k})$ can be more complicated, e.g., they may have non-linear components.

Example (Braid arrangement \mathcal{A}_{4})

$\mathcal{R}^{1}(\mathcal{A}) \subset \mathbb{C}^{6}$ has 4 components coming from the triple points, and one component from the above 3-net:

$$
\begin{aligned}
& L_{124}=\left\{x_{1}+x_{2}+x_{4}=x_{3}=x_{5}=x_{6}=0\right\} \\
& L_{135}=\left\{x_{1}+x_{3}+x_{5}=x_{2}=x_{4}=x_{6}=0\right\} \\
& L_{236}=\left\{x_{2}+x_{3}+x_{6}=x_{1}=x_{4}=x_{5}=0\right\} \\
& L_{456}=\left\{x_{4}+x_{5}+x_{6}=x_{1}=x_{2}=x_{3}=0\right\} \\
& L=\left\{x_{1}+x_{2}+x_{3}=x_{1}-x_{6}=x_{2}-x_{5}=x_{3}-x_{4}=0\right\} .
\end{aligned}
$$

- Let $\operatorname{Hom}\left(\pi_{1}(M), \mathbb{k}^{\times}\right)=\left(\mathbb{k}^{\times}\right)^{n}$ be the character torus.
- The characteristic variety $\mathcal{V}^{1}(\mathcal{A}, \mathbb{k}):=\mathcal{V}_{1}^{1}(M(\mathcal{A}), \mathbb{k}) \subset\left(\mathbb{k}^{\times}\right)^{n}$ lies in the substorus $\left\{t \in\left(\mathbb{k}^{\times}\right)^{n} \mid t_{1} \cdots t_{n}=1\right\}$.
- $\mathcal{V}^{1}(\mathcal{A})=\mathcal{V}^{1}(\mathcal{A}, \mathbb{C})$ is a finite union of torsion-translates of algebraic subtori of $\left(\mathbb{C}^{\times}\right)^{n}$.
- If a linear subspace $L \subset \mathbb{C}^{n}$ is a component of $\mathcal{R}^{1}(\mathcal{A})$, then the algebraic torus $T=\exp (L)$ is a component of $\mathcal{V}^{1}(\mathcal{A})$.
- All components of $\mathcal{V}^{1}(\mathcal{A})$ passing through the origin $1 \in\left(\mathbb{C}^{\times}\right)^{n}$ arise in this way (and thus, are combinatorially determined).
- In general, though, there are translated subtori in $\mathcal{V}^{1}(\mathcal{A})$.

Question

Is $\mathcal{V}^{1}(\mathcal{A})$ combinatorially determined?

Toric complexes and RAAGs

- Let L be a simplicial complex on n vertices.
- The toric complex T_{L} is the subcomplex of T^{n} obtained by deleting the cells corresponding to the missing simplices of L. That is:
- $S^{1}=e^{0} \cup e^{1}$.
- $T^{n}=\left(S^{1}\right)^{\times n}$, with product cell structure:

$$
(k-1) \text {-simplex } \sigma=\left\{i_{1}, \ldots, i_{k}\right\} \quad \rightsquigarrow \quad k \text {-cell } e^{\sigma}=e_{i_{1}}^{1} \times \cdots \times e_{i_{k}}^{1}
$$

- $T_{L}=\bigcup_{\sigma \in L} e^{\sigma}$.
- Examples:
- $T_{\varnothing}=*$
- $T_{n \text { points }}=V^{n} S^{1}$
- $T_{\partial \Delta^{n-1}}=(n-1)$-skeleton of T^{n}
- $T_{\Delta^{n-1}}=T^{n}$
- $\pi_{1}\left(T_{L}\right)$ is the right-angled Artin group associated to the graph $\Gamma=L^{(1)}$:

$$
\left.G_{L}=G_{\Gamma}=\langle v \in V(\Gamma)| v w=w v \text { if }\{v, w\} \in E(\Gamma)\right\rangle .
$$

- If $\Gamma=\bar{K}_{n}$ then $G_{\Gamma}=F_{n}$, while if $\Gamma=K_{n}$, then $G_{\Gamma}=\mathbb{Z}^{n}$.
- If $\Gamma=\Gamma^{\prime} \coprod \Gamma^{\prime \prime}$, then $G_{\Gamma}=G_{\Gamma^{\prime}} * G_{\Gamma^{\prime \prime}}$.
- If $\Gamma=\Gamma^{\prime} * \Gamma^{\prime \prime}$, then $G_{\Gamma}=G_{\Gamma^{\prime}} \times G_{\Gamma^{\prime \prime}}$.
- $K\left(G_{\Gamma}, 1\right)=T_{\Delta_{\Gamma}}$, where Δ_{Γ} is the flag complex of Γ.
(Davis-Charney 1995, Meier-VanWyk 1995)
- $H^{*}\left(T_{L}, \mathbb{Z}\right)$ is the exterior Stanley-Reisner ring of L, with generators the duals v^{*}, and relations the monomials corresponding to the missing simplices of L.
- If $H^{*}\left(T_{K}, \mathbb{Z}\right) \cong H^{*}\left(T_{L}, \mathbb{Z}\right)$, then $K \cong L$.
(Stretch 2017)
- T_{L} is formal, and so G_{L} is 1 -formal.
(Notbohm-Ray 2005)

Identify $H^{1}\left(T_{L}, \mathbb{C}\right)=\mathbb{C}^{\vee}$, the \mathbb{C}-vector space with basis $\{v \mid v \in \mathrm{~V}\}$.

THEOREM (PAPADIMA-S. 2010)

$$
\mathcal{R}_{s}^{i}\left(T_{L}, \mathbb{k}\right)=\bigcup_{\sum_{\sigma \in L_{V} \mathrm{~W}}}^{\operatorname{dim}_{\mathbb{k}} \tilde{H}_{i-1-|\sigma|}\left(\mathbb{k}_{L_{W}}(\sigma), \mathbb{k}\right) \geqslant s} \mid \mathbb{C}^{\mathrm{W}},
$$

where L_{W} is the subcomplex induced by L on W , and $\mathrm{Ik}_{K}(\sigma)$ is the link of a simplex σ in a subcomplex $K \subseteq L$.

In particular (PS06):

$$
\mathcal{R}_{1}^{1}\left(G_{\Gamma}, \mathbb{k}\right)=\bigcup_{W \subseteq V} \mathbb{k}^{W}
$$

Γ_{W} disconnected
Similar formula holds for $\mathcal{V}_{s}^{i}\left(T_{L}, \mathbb{k}\right)$, with \mathbb{k}^{W} replaced by $\left(\mathbb{k}^{\times}\right)^{\mathrm{W}}$.

EXAMPLE

$$
\Gamma=\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 0 & 0 & 0
\end{array}
$$

Maximal disconnected subgraphs: $\Gamma_{\{134\}}$ and $\Gamma_{\{124\}}$. Thus:

$$
\mathcal{R}_{1}\left(G_{\Gamma}\right)=\mathbb{C}^{\{134\}} \cup \mathbb{C}^{\{124\}}
$$

Note that: $\mathbb{C}^{\{134\}} \cap \mathbb{C}^{\{124\}}=\mathbb{C}^{\{14\}} \neq\{0\}$ Since G_{Γ} is 1-formal, G_{Γ} is not a quasi-projective group.

THEOREM (DPS09)

The following are equivalent:
(1) G_{Γ} is a quasi-projective group
(1) G_{Γ} is a Kähler group
(2) $\Gamma=K_{n_{1}, \ldots, n_{r}}:=\bar{K}_{n_{1}} * \cdots * \bar{K}_{n_{r}}$
(3) $G_{\Gamma}=F_{n_{1}} \times \cdots \times F_{n_{r}}$
(2) $\Gamma=K_{2 r}$
(3) $G_{\Gamma}=\mathbb{Z}^{2 r}$

