RESONANCE VARIETIES

Alex Suciu

Northeastern University

ET'nA 2017: Encounter in Topology and Algebra

Scuola Superiore di Catania

Catania, Italy

May 31, 2017

- COHOMOLOGY JUMP LOCI
 - Support varieties
 - Homology jump loci
 - Resonance varieties
- THE TANGENT CONE THEOREM
 - Characteristic varieties
 - The tangent cone theorem
 - Formality
- APPLICATIONS
 - Smooth, quasi-projective varieties
 - Hyperplane arrangements
 - Toric complexes and right-angled Artin groups

SUPPORT VARIETIES

- Let k be an algebraically closed field.
- Let S be a commutative, finitely generated k-algebra.
- Let $\mathfrak{m}\mathsf{Spec}(S) = \mathsf{Hom}_{\Bbbk\text{-alg}}(S, \Bbbk)$ be the maximal spectrum of S.
- Let $E: \cdots \to E_i \stackrel{d_i}{\to} E_{i-1} \to \cdots \to E_0 \to 0$ be an S-chain complex.
- The support varieties of E are the subsets of mSpec(S) given by

$$\mathcal{W}_{s}^{i}(E) = \operatorname{supp}\Big(\bigwedge^{s} H_{i}(E)\Big).$$

- They depend only on the chain-homotopy equivalence class of E.
- For each $i \ge 0$, $\mathfrak{m} \mathrm{Spec}(S) = \mathcal{W}_0^i(E) \supseteq \mathcal{W}_1^i(E) \supseteq \mathcal{W}_2^i(E) \supseteq \cdots$.
- If all E_i are finitely generated S-modules, then the sets $W_s^i(E)$ are Zariski closed subsets of $\mathfrak{mSpec}(S)$.

HOMOLOGY JUMP LOCI

The homology jump loci of the S-chain complex E are defined as

$$\mathcal{V}_s^i(E) = \{\mathfrak{m} \in \mathfrak{m} \mathsf{Spec}(S) \mid \dim_{\Bbbk} H_i(E \otimes_S S/\mathfrak{m}) \geqslant s\}.$$

- They depend only on the chain-homotopy equivalence class of E.
- For each $i \ge 0$, $\mathfrak{m}\mathrm{Spec}(S) = \mathcal{V}_0^i(E) \supseteq \mathcal{V}_1^i(E) \supseteq \mathcal{V}_2^i(E) \supseteq \cdots$.
- (Papadima–S. 2014) Suppose *E* is a chain complex of *free*, finitely generated *S*-modules. Then:
 - Each $V_d^i(E)$ is a Zariski closed subset of $\mathfrak{m}\operatorname{Spec}(S)$.
 - For each q,

$$\bigcup_{i \leq a} \mathcal{V}_1^i(E) = \bigcup_{i \leq a} \mathcal{W}_1^i(E).$$

RESONANCE VARIETIES

- Let $A = \bigoplus_{i \ge 0} A^i$ be a commutative graded k-algebra, with $A^0 = k$.
- Let a ∈ A¹, and assume a² = 0 (this condition is redundant if char(k) ≠ 2, by graded-commutativity of the multiplication in A).
- The Aomoto complex of A (with respect to a ∈ A¹) is the cochain complex of k-vector spaces,

$$(A, \delta_a): A^0 \xrightarrow{a} A^1 \xrightarrow{a} A^2 \xrightarrow{a} \cdots$$

with differentials given by $b \mapsto a \cdot b$, for $b \in A^i$.

• The resonance varieties of A are the sets

$$\mathcal{R}_s^i(A) = \{a \in A^1 \mid a^2 = 0 \text{ and } \dim_{\mathbb{k}} H^i(A, a) \geqslant s\}.$$

• If A is locally finite (i.e., $\dim_{\mathbb{R}} A^i < \infty$, for all $i \ge 1$), then the sets $\mathcal{R}^i_s(A)$ are Zariski closed cones inside the affine space A^1 .

- Fix a k-basis $\{e_1, \ldots, e_n\}$ for A^1 , and let $\{x_1, \ldots, x_n\}$ be the dual basis for $A_1 = (A^1)^{\vee}$.
- Identify $\operatorname{Sym}(A_1)$ with $S = \mathbb{k}[x_1, \dots, x_n]$, the coordinate ring of the affine space A^1 .
- Define a cochain complex of free S-modules, $K(A) := (A^{\bullet} \otimes S, \delta)$,

$$\cdots \longrightarrow A^i \otimes S \xrightarrow{\delta^i} A^{i+1} \otimes S \xrightarrow{\delta^{i+1}} A^{i+2} \otimes S \longrightarrow \cdots$$

where $\delta^i(u \otimes s) = \sum_{i=1}^n e_i u \otimes sx_i$.

- The specialization of $(A \otimes S, \delta)$ at $a \in A^1$ coincides with (A, δ_a) .
- The cohomology support loci $R_s^i(A) = \text{supp}(\bigwedge^s H^i(K(A)))$ are (closed) subvarieties of A^1 .
- Both $\mathcal{R}_s^i(A)$ and $\mathcal{R}_s^i(A)$ can be arbitrarily complicated (homogeneous) affine varieties.

EXAMPLE (EXTERIOR ALGEBRA)

Let $E = \bigwedge V$, where $V = \mathbb{k}^n$, and $S = \operatorname{Sym}(V)$. Then K(E) is the Koszul complex on V. E.g., for n = 3:

$$S \xrightarrow{(x_3 - x_2 \ x_1)} S^3 \xrightarrow{\begin{pmatrix} x_2 - x_1 & 0 \\ x_3 & 0 & -x_1 \\ 0 & x_3 & -x_2 \end{pmatrix}} S^3 \xrightarrow{\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}} S.$$

This chain complex provides a free resolution $\varepsilon \colon K(E) \to \mathbb{k}$ of the trivial *S*-module \mathbb{k} . Hence,

$$\mathcal{R}_{s}^{i}(E) = \begin{cases} \{0\} & \text{if } s \leqslant \binom{n}{i}, \\ \emptyset & \text{otherwise.} \end{cases}$$

EXAMPLE (NON-ZERO RESONANCE)

Let
$$A = \bigwedge (e_1, e_2, e_3) / \langle e_1 e_2 \rangle$$
, and set $S = \mathbb{k}[x_1, x_2, x_3]$. Then

$$K(A): S^2 \xrightarrow{\begin{pmatrix} x_3 & 0 & -x_1 \\ 0 & x_3 & -x_2 \end{pmatrix}} S^3 \xrightarrow{\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}} S.$$

$$\mathcal{R}_{s}^{1}(A) = \begin{cases} \{x_{3} = 0\} & \text{if } s = 1, \\ \{0\} & \text{if } s = 2 \text{ or } 3, \\ \emptyset & \text{if } s > 3. \end{cases}$$

EXAMPLE (NON-LINEAR RESONANCE)

Let
$$A = \bigwedge (e_1, \dots, e_4) / \langle e_1 e_3, e_2 e_4, e_1 e_2 + e_3 e_4 \rangle$$
. Then

$$K(A): S^3 \xrightarrow{\begin{pmatrix} x_4 & 0 & 0 & -x_1 \\ 0 & x_3 & -x_2 & 0 \\ -x_2 & x_1 & x_4 & -x_3 \end{pmatrix}} S^4 \xrightarrow{\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}} S.$$

$$\mathcal{R}_1^1(A) = \{x_1x_2 + x_3x_4 = 0\}$$

CHARACTERISTIC VARIETIES

- Let X be a connected, finite-type CW-complex.
- Fundamental group $\pi = \pi_1(X, x_0)$: a finitely generated, discrete group, with $\pi_{ab} \cong H_1(X, \mathbb{Z})$.
- Fix a field k with $\overline{k} = k$ (usually $k = \mathbb{C}$), and let $S = k[\pi_{ab}]$.
- Identify $\mathfrak{m} \operatorname{Spec}(S)$ with the character group $\operatorname{Char}(X) = \operatorname{Hom}(\pi, \Bbbk^{\times})$, also denoted $\widehat{\pi} = \widehat{\pi_{ab}}$.
- The characteristic varieties of X are the homology jump loci of free S-chain complex E = C_{*}(X^{ab}, k):

$$\mathcal{V}_s^i(X, \Bbbk) = \{ \rho \in \mathsf{Char}(X) \mid \mathsf{dim}_{\Bbbk} H_i(X, \Bbbk_{\rho}) \geqslant s \}.$$

• Each set $\mathcal{V}_s^i(X, \mathbb{k})$ is a subvariety of $\operatorname{Char}(X)$.

EXAMPLE (CIRCLE)

Let $X = S^1$. We have $(S^1)^{ab} = \mathbb{R}$. Identify $\pi_1(S^1, *) = \mathbb{Z} = \langle t \rangle$ and $\mathbb{Z}\mathbb{Z} = \mathbb{Z}[t^{\pm 1}]$. Then:

$$C_*((S^1)^{ab}): 0 \longrightarrow \mathbb{Z}[t^{\pm 1}] \xrightarrow{t-1} \mathbb{Z}[t^{\pm 1}] \longrightarrow 0$$

For each $\rho \in \text{Hom}(\mathbb{Z}, \mathbb{k}^{\times}) = \mathbb{k}^{\times}$, get a chain complex

$$\textbf{C}_*(\widetilde{S}^1) \otimes_{\mathbb{Z}\mathbb{Z}} \Bbbk_\rho: \ 0 \longrightarrow \Bbbk \stackrel{\rho-1}{\longrightarrow} \Bbbk \longrightarrow 0$$

which is exact, except for $\rho = 1$, when $H_0(S^1, \mathbb{k}) = H_1(S^1, \mathbb{k}) = \mathbb{k}$. Hence:

$$\mathcal{V}_1^0(S^1) = \mathcal{V}_1^1(S^1) = \{1\}$$

and $\mathcal{V}_{s}^{i}(S^{1}) = \emptyset$, otherwise.

EXAMPLE (TORUS)

Identify
$$\pi_1(T^n) = \mathbb{Z}^n$$
, and $\operatorname{Hom}(\mathbb{Z}^n, \mathbb{k}^\times) = (\mathbb{k}^\times)^n$. Then:
$$\mathcal{V}^i_{s}(T^n) = \begin{cases} \{1\} & \text{if } s \leqslant \binom{n}{i}, \\ \varnothing & \text{otherwise}. \end{cases}$$

EXAMPLE (WEDGE OF CIRCLES)

Identify
$$\pi_1(\bigvee^n S^1) = F_n$$
, and $\operatorname{Hom}(F_n, \Bbbk^\times) = (\Bbbk^\times)^n$. Then:
$$\mathcal{V}^1_s(\bigvee^n S^1) = \begin{cases} (\Bbbk^\times)^n & \text{if } s < n, \\ \{1\} & \text{if } s = n, \\ \varnothing & \text{if } s > n. \end{cases}$$

Example (Orientable surface of genus g > 1)

$$\mathcal{V}_s^1(\Sigma_g) = egin{cases} (\mathbb{k}^{ imes})^{2g} & \text{if } s < 2g-1, \ \{1\} & \text{if } s = 2g-1, 2g, \ arnothing & \text{if } s > 2g. \end{cases}$$

- Homotopy invariance: If $X \simeq Y$, then $\mathcal{V}_s^i(Y, \mathbb{k}) \cong \mathcal{V}_s^i(X, \mathbb{k})$.
- Product formula:

$$\mathcal{V}_1^i(X_1 \times X_2, \mathbb{k}) = \bigcup_{p+q=i} \mathcal{V}_1^p(X_1, \mathbb{k}) \times \mathcal{V}_1^q(X_2, \mathbb{k}).$$

- Degree 1 interpretation: The sets $\mathcal{V}_s^1(X, \mathbb{k})$ depend only on $\pi = \pi_1(X)$ —in fact, only on π/π'' . Write them as $\mathcal{V}_s^1(\pi, \mathbb{k})$.
- Functoriality: If $\varphi \colon \pi \twoheadrightarrow G$ is an epimorphism, then $\hat{\varphi} \colon \hat{G} \hookrightarrow \hat{\pi}$ restricts to an embedding $\mathcal{V}_s^1(G, \Bbbk) \hookrightarrow \mathcal{V}_s^1(\pi, \Bbbk)$, for each s.
- *Universality:* Given any subvariety $W \subset (\mathbb{k}^{\times})^n$, there is a finitely presented group π such that $\pi_{ab} = \mathbb{Z}^n$ and $\mathcal{V}_1^1(\pi, \mathbb{k}) = W$.
- Alexander invariant interpretation: Let $X^{ab} \to X$ be the maximal abelian cover. View $H_*(X^{ab}, \mathbb{k})$ as a module over $S = \mathbb{k}[\pi_{ab}]$. Then:

$$\bigcup_{j\leqslant i}\mathcal{V}_1^j(X,\Bbbk)=\text{supp}\,\Big(\bigoplus_{j\leqslant i}H_j\big(X^{\text{ab}},\Bbbk\big)\Big).$$

THE TANGENT CONE THEOREM

- The resonance varieties of X (with coefficients in \mathbb{k}) are the loci $\mathcal{R}^i_{d}(X,\mathbb{k})$ associated to the cohomology algebra $A=H^*(X,\mathbb{k})$.
- Each set $\mathcal{R}^i_s(X) := \mathcal{R}^i_s(X, \mathbb{C})$ is a homogeneous subvariety of $H^1(X, \mathbb{C}) \cong \mathbb{C}^n$, where $n = b_1(X)$.
- Recall that $\mathcal{V}_{s}^{i}(X) := \mathcal{V}_{s}^{i}(X,\mathbb{C})$ is a subvariety of $H^{1}(X,\mathbb{C}^{\times}) \cong (\mathbb{C}^{\times})^{n} \times \text{Tors}(H_{1}(X,\mathbb{Z})).$
- (Libgober 2002) $TC_1(\mathcal{V}_s^i(X)) \subseteq \mathcal{R}_s^i(X)$.
- Given a subvariety $W \subset H^1(X, \mathbb{C}^{\times})$, let $\tau_1(W) = \{z \in H^1(X, \mathbb{C}) \mid \exp(\lambda z) \in W, \ \forall \lambda \in \mathbb{C}\}.$
- (Dimca–Papadima–S. 2009) $\tau_1(W)$ is a finite union of rationally defined linear subspaces, and $\tau_1(W) \subseteq TC_1(W)$.
- Thus, $\tau_1(\mathcal{V}_s^i(X)) \subseteq \mathsf{TC}_1(\mathcal{V}_s^i(X)) \subseteq \mathcal{R}_s^i(X)$.

FORMALITY

- X is formal if there is a zig-zag of cdga quasi-isomorphisms from $(A_{PL}(X, \mathbb{Q}), d)$ to $(H^*(X, \mathbb{Q}), 0)$.
- X is k-formal (for some $k \ge 1$) if each of these morphisms induces an iso in degrees up to k, and a monomorphism in degree k + 1.
- X is 1-formal if and only if $\pi = \pi_1(X)$ is 1-formal, i.e., its Malcev Lie algebra, $\mathfrak{m}(\pi) = \operatorname{Prim}(\widehat{\mathbb{Q}\pi})$, is quadratic.
- For instance, compact Kähler manifolds and complements of hyperplane arrangements are formal.
- (Dimca-Papadima-S. 2009) Let X be a 1-formal space. Then, for each s > 0,

$$\tau_1(\mathcal{V}_s^1(X)) = \mathsf{TC}_1(\mathcal{V}_s^1(X)) = \mathcal{R}_s^1(X).$$

Consequently, $\mathcal{R}_s^1(X)$ is a finite union of rationally defined linear subspaces in $H^1(X,\mathbb{C})$.

This theorem yields a very efficient formality test.

EXAMPLE

Let $\pi = \langle x_1, x_2, x_3, x_4 \mid [x_1, x_2], [x_1, x_4][x_2^{-2}, x_3], [x_1^{-1}, x_3][x_2, x_4] \rangle$. Then $\mathcal{R}_1^1(\pi) = \{x \in \mathbb{C}^4 \mid x_1^2 - 2x_2^2 = 0\}$ splits into linear subspaces over \mathbb{R} but not over \mathbb{Q} . Thus, π is *not* 1-formal.

EXAMPLE

Let $F(\Sigma_g, n)$ be the configuration space of n labeled points of a Riemann surface of genus g (a smooth, quasi-projective variety).

Then $\pi_1(F(\Sigma_g, n)) = P_{g,n}$, the pure braid group on n strings on Σ_g . Compute:

$$\mathcal{R}_{1}^{1}(P_{1,n}) = \left\{ (x,y) \in \mathbb{C}^{n} \times \mathbb{C}^{n} \middle| \begin{array}{l} \sum_{i=1}^{n} x_{i} = \sum_{i=1}^{n} y_{i} = 0, \\ x_{i}y_{j} - x_{j}y_{i} = 0, \text{ for } 1 \leqslant i < j < n \end{array} \right\}$$

For $n \ge 3$, this is an irreducible, non-linear variety (a rational normal scroll). Hence, $P_{1,n}$ is not 1-formal.

APPLICATIONS OF COHOMOLOGY JUMP LOCI

- Obstructions to formality and (quasi-) projectivity
 - Right-angled Artin groups and Bestvina

 —Brady groups
 - 3-manifold groups, Kähler groups, and quasi-projective groups
- Homology of finite, regular abelian covers
 - Homology of the Milnor fiber of an arrangement
 - Rational homology of smooth, real toric varieties
- Homological and geometric finiteness of regular abelian covers
 - Bieri-Neumann-Strebel-Renz invariants
 - Dwyer–Fried invariants
- Resonance varieties and representations of Lie algebras
 - Homological finiteness in the Johnson filtration of automorphism groups
- Lower central series and Chen Lie algebras
 - The resonance—Chen ranks formula

QUASI-PROJECTIVE VARIETIES

THEOREM (ARAPURA 1997, ..., BUDUR-WANG 2015)

Let X be a smooth, quasi-projective variety. Then each $\mathcal{V}_s^i(X)$ is a finite union of torsion-translated subtori of $\mathrm{Char}(X)$.

THEOREM (DIMCA-PAPADIMA-S. 2009)

Let X be a smooth, quasi-projective variety. If X is 1-formal, then the (non-zero) irreducible components of $\mathcal{R}^1_1(X)$ are linear subspaces of $H^1(X,\mathbb{C})$ which intersect pairwise only at 0. Each such component L_α is p-isotropic (i.e., the restriction of \cup_X to L_α has rank p), with dim $L_\alpha \geqslant 2p+2$, for some $p=p(\alpha) \in \{0,1\}$, and

$$\mathcal{R}^1_s(X) = \{0\} \cup \bigcup_{\alpha: \dim L_{\alpha} > s + p(\alpha)} L_{\alpha}$$

- If X is compact, then X is 1-formal, and each L_{α} is 1-isotropic.
- If $W_1(H^1(X,\mathbb{C})) = 0$, then X is 1-formal, and each L_α is 0-isotropic.

HYPERPLANE ARRANGEMENTS

- Let $A = \{H_1, ..., H_n\}$ be an arrangement in \mathbb{C}^3 , and identify $H^1(M(A), \mathbb{k}) = \mathbb{k}^n$, with basis dual to the meridians.
- The resonance varieties $\mathcal{R}^1_s(\mathcal{A}, \mathbb{k}) := \mathcal{R}^1_s(M(\mathcal{A}), \mathbb{k}) \subset \mathbb{k}^n$ lie in the hyperplane $\{x \in \mathbb{k}^n \mid x_1 + \dots + x_n = 0\}.$
- $\mathcal{R}^1(\mathcal{A}) = \mathcal{R}^1_1(\mathcal{A}, \mathbb{C})$ is a union of linear subspaces in \mathbb{C}^n , described in work of Falk, Cohen–Suciu, Libgober–Yuzvinsky, Falk–Yuzvinsky.
- Each subspace has dimension at least 2, and each pair of subspaces meets transversely at 0.
- $\mathcal{R}_s^1(\mathcal{A}, \mathbb{C})$ is the union of those linear subspaces that have dimension at least s+1.

- Each flat $X \in L_2(A)$ of multiplicity $k \ge 3$ gives rise to a *local* component of $\mathcal{R}^1(A)$, of dimension k-1.
- More generally, every k-multinet on a sub-arrangement $\mathcal{B} \subseteq \mathcal{A}$ gives rise to a component of dimension k-1, and all components of $\mathcal{R}^1(\mathcal{A})$ arise in this way.
- The resonance varieties $\mathcal{R}^1(\mathcal{A}, \mathbb{k})$ can be more complicated, e.g., they may have non-linear components.

Example (Braid Arrangement A_4)

 $\mathcal{R}^1(\mathcal{A}) \subset \mathbb{C}^6$ has 4 components coming from the triple points, and one component from the above 3-net:

$$L_{124} = \{x_1 + x_2 + x_4 = x_3 = x_5 = x_6 = 0\},$$

$$L_{135} = \{x_1 + x_3 + x_5 = x_2 = x_4 = x_6 = 0\},$$

$$L_{236} = \{x_2 + x_3 + x_6 = x_1 = x_4 = x_5 = 0\},$$

$$L_{456} = \{x_4 + x_5 + x_6 = x_1 = x_2 = x_3 = 0\},$$

$$L = \{x_1 + x_2 + x_3 = x_1 - x_6 = x_2 - x_5 = x_3 - x_4 = 0\}.$$

- Let $\operatorname{Hom}(\pi_1(M), \mathbb{k}^{\times}) = (\mathbb{k}^{\times})^n$ be the character torus.
- The characteristic variety $\mathcal{V}^1(\mathcal{A}, \mathbb{k}) := \mathcal{V}^1_1(M(\mathcal{A}), \mathbb{k}) \subset (\mathbb{k}^{\times})^n$ lies in the substorus $\{t \in (\mathbb{k}^{\times})^n \mid t_1 \cdots t_n = 1\}$.
- $\mathcal{V}^1(\mathcal{A}) = \mathcal{V}^1(\mathcal{A}, \mathbb{C})$ is a finite union of torsion-translates of algebraic subtori of $(\mathbb{C}^{\times})^n$.
- If a linear subspace $L \subset \mathbb{C}^n$ is a component of $\mathcal{R}^1(\mathcal{A})$, then the algebraic torus $T = \exp(L)$ is a component of $\mathcal{V}^1(\mathcal{A})$.
- All components of $\mathcal{V}^1(\mathcal{A})$ passing through the origin $1 \in (\mathbb{C}^\times)^n$ arise in this way (and thus, are combinatorially determined).
- In general, though, there are translated subtori in $\mathcal{V}^1(\mathcal{A})$.

QUESTION

Is $\mathcal{V}^1(\mathcal{A})$ combinatorially determined?

TORIC COMPLEXES AND RAAGS

- Let L be a simplicial complex on n vertices.
- The *toric complex* T_L is the subcomplex of T^n obtained by deleting the cells corresponding to the missing simplices of L. That is:
 - $S^1 = e^0 \cup e^1$.
 - $T^n = (S^1)^{\times n}$, with product cell structure:

$$(k-1)$$
-simplex $\sigma = \{i_1, \ldots, i_k\} \quad \leadsto \quad k$ -cell $e^{\sigma} = e^1_{i_1} \times \cdots \times e^1_{i_k}$

- $T_L = \bigcup_{\sigma \in L} e^{\sigma}$.
- Examples:
 - T_∅ = *
 - $T_{n \text{ points}} = \bigvee^n S^1$
 - $T_{\partial \Lambda^{n-1}} = (n-1)$ -skeleton of T^n
 - \bullet $T_{\Lambda n-1} = T^n$

• $\pi_1(T_L)$ is the *right-angled Artin group* associated to the graph $\Gamma = L^{(1)}$:

$$G_L = G_\Gamma = \langle v \in V(\Gamma) \mid vw = wv \text{ if } \{v, w\} \in E(\Gamma) \rangle.$$

- If $\Gamma = \overline{K}_n$ then $G_{\Gamma} = F_n$, while if $\Gamma = K_n$, then $G_{\Gamma} = \mathbb{Z}^n$.
- If $\Gamma = \Gamma' \coprod \Gamma''$, then $G_{\Gamma} = G_{\Gamma'} * G_{\Gamma''}$.
- If $\Gamma = \Gamma' * \Gamma''$, then $G_{\Gamma} = G_{\Gamma'} \times G_{\Gamma''}$.
- $K(G_{\Gamma}, 1) = T_{\Delta_{\Gamma}}$, where Δ_{Γ} is the *flag complex* of Γ . (Davis–Charney 1995, Meier–VanWyk 1995)
- $H^*(T_L, \mathbb{Z})$ is the *exterior Stanley-Reisner ring* of L, with generators the duals v^* , and relations the monomials corresponding to the missing simplices of L.
- If $H^*(T_K, \mathbb{Z}) \cong H^*(T_L, \mathbb{Z})$, then $K \cong L$.

(Stretch 2017)

• T_l is formal, and so G_l is 1-formal.

(Notbohm-Ray 2005)

Identify $H^1(T_L, \mathbb{C}) = \mathbb{C}^V$, the \mathbb{C} -vector space with basis $\{v \mid v \in V\}$.

THEOREM (PAPADIMA-S. 2010)

$$\mathcal{R}_{s}^{i}(\mathcal{T}_{L}, \Bbbk) = igcup_{\substack{\mathsf{W} \subset \mathsf{V} \ \sum_{\sigma \in \mathcal{L}_{\mathsf{V} \setminus \mathsf{W}}} \mathsf{dim}_{\Bbbk} \ \widetilde{\mathcal{H}}_{i-1-|\sigma|}(\mathsf{lk}_{\mathcal{L}_{\mathsf{W}}}(\sigma), \Bbbk) \geqslant s}} \mathbb{C}^{\mathsf{V}}$$

where L_W is the subcomplex induced by L on W, and $lk_K(\sigma)$ is the link of a simplex σ in a subcomplex $K \subseteq L$.

In particular (PS06):

$$\mathcal{R}^1_1(\textit{G}_{\Gamma}, \Bbbk) = \bigcup_{\substack{W \subseteq V \\ \Gamma_W \text{ disconnected}}} \Bbbk^W.$$

Similar formula holds for $\mathcal{V}_{S}^{i}(T_{L}, \mathbb{k})$, with \mathbb{k}^{W} replaced by $(\mathbb{k}^{\times})^{W}$.

EXAMPLE

$$\Gamma = 0$$
 3 4

Maximal disconnected subgraphs: $\Gamma_{\{134\}}$ and $\Gamma_{\{124\}}$. Thus:

$$\mathcal{R}_1(G_{\Gamma}) = \mathbb{C}^{\{134\}} \cup \mathbb{C}^{\{124\}}.$$

Note that: $\mathbb{C}^{\{134\}} \cap \mathbb{C}^{\{124\}} = \mathbb{C}^{\{14\}} \neq \{0\}$ Since G_{Γ} is 1-formal, G_{Γ} is not a quasi-projective group.

THEOREM (DPS09)

The following are equivalent:

- G_r is a quasi-projective group
- $G_{\Gamma} = F_{n_1} \times \cdots \times F_{n_r}$

- G_Γ is a Kähler group
- $\Gamma = K_{2r}$
- $G_{\Gamma} = \mathbb{Z}^{2r}$