The algebra and topology of partial products of circles

Alex Suciu

Northeastern University
Boston, USA

Groupe de travail en Groupes et Tresses
 Université de Caen
 June 8, 2011

(9) Toric complexes

- Partial products of spaces
- Toric complexes and right-angled Artin groups
- Graded Lie algebras associated to RAAGs
- Chen Lie algebras of RAAGs
- Artin kernels and Bestvina-Brady groups
(2) Resonance varieties
- Resonance varieties
- Kähler and quasi-Kähler groups
- Kähler and quasi-Kähler RAAGs
- Kähler and quasi-Kähler BB groups
- Hyperplane arrangements
(3) Bieri-Neumann-Strebel-Renz invariants
- BNSR-invariants
- BNSR-invariants of toric complexes

Partial product construction

Input:

- K, a simplicial complex on $[n]=\{1, \ldots, n\}$.
- (X, A), a pair of topological spaces, $A \neq \emptyset$.

Output:

$$
\mathcal{Z}_{K}(X, A)=\bigcup_{\sigma \in K}(X, A)^{\sigma} \subset X^{\times n}
$$

where $(X, A)^{\sigma}=\left\{x \in X^{\times n} \mid x_{i} \in A\right.$ if $\left.i \notin \sigma\right\}$.
Interpolates between

- $\mathcal{Z}_{\emptyset}(X, A)=\mathcal{Z}_{K}(A, A)=A^{\times n}$ and
- $\mathcal{Z}_{\Delta^{n-1}}(X, A)=\mathcal{Z}_{K}(X, X)=X^{\times n}$

Examples:

- $\mathcal{Z}_{n \text { points }}(X, *)=\bigvee^{n} X \quad$ (wedge)
- $\mathcal{Z}_{\partial \Delta^{n-1}}(X, *)=T^{n} X \quad$ (fat wedge)

Properties:

- $L \subset K$ subcomplex $\Rightarrow \mathcal{Z}_{L}(X, A) \subset \mathcal{Z}_{K}(X, A)$ subspace.
- (X, A) pair of (finite) CW-complexes $\Rightarrow \mathcal{Z}_{K}(X, A)$ is a (finite) CW-complex.
- $\mathcal{Z}_{K * L}(X, A) \cong \mathcal{Z}_{K}(X, A) \times \mathcal{Z}_{L}(X, A)$.
- $f:(X, A) \rightarrow(Y, B)$ continuous map $\Rightarrow f^{\times n}: X^{\times n} \rightarrow Y^{\times n}$ restricts to a continuous map $\mathcal{Z}^{f}: \mathcal{Z}_{K}(X, A) \rightarrow \mathcal{Z}_{K}(Y, B)$.
- Consequently, $(X, A) \simeq(Y, B) \Rightarrow \mathcal{Z}_{K}(X, A) \simeq \mathcal{Z}_{K}(Y, B)$.
- (Strickland) $f: K \rightarrow L$ simplicial $\rightsquigarrow \mathcal{Z}_{f}: \mathcal{Z}_{K}(X, A) \rightarrow \mathcal{Z}_{L}(X, A)$ continuous (if X connected topological monoid, A submonoid).
- (Denham-S. 2005) If $(M, \partial M)$ is a compact manifold of dim d, and K is a PL-triangulation of S^{m} on n vertices, then $\mathcal{Z}_{K}(M, \partial M)$ is a compact manifold of dim $(d-1) n+m+1$.
- (Bosio-Meersseman 2006) If K is a polytopal triangulation of S^{m}, then $\mathcal{Z}_{K}\left(D^{2}, S^{1}\right)$ if $n+m+1$ is even, or $\mathcal{Z}_{K}\left(D^{2}, S^{1}\right) \times S^{1}$ if $n+m+1$ is odd, is a complex manifold.

Toric complexes and right-angled Artin groups

Definition

Let L be simplicial complex on n vertices. The associated toric complex, T_{L}, is the subcomplex of the n-torus obtained by deleting the cells corresponding to the missing simplices of L, i.e.,

$$
T_{L}=\mathcal{Z}_{L}\left(S^{1}, *\right) .
$$

- k-cells in $T_{L} \longleftrightarrow(k-1)$-simplices in L.
- $C_{*}^{\mathrm{CW}}\left(T_{L}\right)$ is a subcomplex of $C_{*}^{\mathrm{CW}}\left(T^{n}\right)$; thus, all $\partial_{k}=0$, and

$$
H_{k}\left(T_{L}, \mathbb{Z}\right)=C_{k-1}^{\text {simplicial }}(L, \mathbb{Z})=\mathbb{Z}^{\#(k-1) \text {-simplices of } L .}
$$

- $H^{*}\left(T_{L}, \mathbb{k}\right)$ is the exterior Stanley-Reisner ring $\wedge V^{*} / J_{L}$, where
- V is the free \mathbb{k}-module on the vertex set of L
- $\wedge V^{*}$ is the exterior algebra on dual of V,
- J_{L} is the ideal generated by all monomials, $t_{\sigma}=v_{i_{1}}^{*} \cdots v_{i_{k}}^{*}$ corresponding to simplices $\sigma=\left\{v_{i_{1}}, \ldots, v_{i_{k}}\right\}$ not belonging to L.

Right-angled Artin groups

Definition

Let $\Gamma=(\mathrm{V}, \mathrm{E})$ be a (finite, simple) graph. The corresponding right-angled Artin group is

$$
\left.G_{\Gamma}=\langle v \in \mathrm{~V}| v w=w v \text { if }\{v, w\} \in \mathrm{E}\right\rangle .
$$

- $\Gamma=\bar{K}_{n} \Rightarrow G_{\Gamma}=F_{n} ; \quad \Gamma=K_{n} \Rightarrow G_{\Gamma}=\mathbb{Z}^{n}$
- $\Gamma=\Gamma^{\prime} \amalg \Gamma^{\prime \prime} \Rightarrow G_{\Gamma}=G_{\Gamma^{\prime}} * G_{\Gamma^{\prime \prime}} ; \quad \Gamma=\Gamma^{\prime} * \Gamma^{\prime \prime} \Rightarrow G_{\Gamma}=G_{\Gamma^{\prime}} \times G_{\Gamma^{\prime \prime}}$
- $\Gamma \cong \Gamma^{\prime} \Leftrightarrow G_{\Gamma} \cong G_{\Gamma}$
(Kim-Makar-Limanov-Neggers-Roush 1980)
- $\pi_{1}\left(T_{L}\right)=G_{\Gamma}$, where $\Gamma=L^{(1)}$.
- $K\left(G_{\Gamma}, 1\right)=T_{\Delta_{\Gamma}}$, where Δ_{Γ} is the flag complex of Γ.
(Davis-Charney 1995, Meier-VanWyk 1995)
- $A:=H^{*}\left(G_{\Gamma}, \mathbb{k}\right)=\bigwedge V^{*} / J_{\Gamma}$, where J_{Γ} is quadratic monomial ideal $\Rightarrow A$ is a Koszul algebra (Fröberg 1975).

Formality

Definition (Sullivan)

A space X is formal if its minimal model is quasi-isomorphic to $\left(H^{*}(X, \mathbb{Q}), 0\right)$.

Definition (Quillen)

A group G is 1 -formal if its Malcev Lie algebra, $\mathfrak{m}_{G}=\operatorname{Prim}(\widehat{\mathbb{Q} G})$, is a (complete, filtered) quadratic Lie algebra.

Theorem (Sullivan) If X formal, then $\pi_{1}(X)$ is 1 -formal.

Theorem (Notbohm-Ray 2005)
T_{L} is formal, and so G_{Γ} is 1 -formal.

Associated graded Lie algebra

Let G be a finitely-generated group. Define:

- LCS series: $G=G_{1} \triangleright G_{2} \triangleright \cdots \triangleright G_{k} \triangleright \cdots$, where $G_{k+1}=\left[G_{k}, G\right]$
- LCS quotients: $\mathrm{gr}_{k} G=G_{k} / G_{k+1}$ (f.g. abelian groups)
- LCS ranks: $\phi_{k}(G)=\operatorname{rank}\left(\operatorname{gr}_{k} G\right)$
- Associated graded Lie algebra: $\operatorname{gr}(G)=\bigoplus_{k \geq 1} \operatorname{gr}_{k}(G)$, with Lie bracket [,]: $L_{i} \times L_{j} \rightarrow L_{i+j}$ induced by group commutator.

Example (Witt, Magnus)

Let $G=F_{n}$ (free group of rank n).
Then $\operatorname{gr} G=\operatorname{Lie}_{n}$ (free Lie algebra of rank n), with LCS ranks given by

$$
\prod_{k=1}^{\infty}\left(1-t^{k}\right)^{\phi_{k}}=1-n t
$$

Explicitly: $\phi_{k}\left(F_{n}\right)=\frac{1}{k} \sum_{d \mid k} \mu(d) n^{k / d}$, where μ is Möbius function.

Holonomy Lie algebra

Definition (Chen)

The holonomy Lie algebra of G is the quadratic, graded Lie algebra

$$
\mathfrak{h}_{G}=\operatorname{Lie}\left(H_{1}\right) / \operatorname{ideal}(\operatorname{im}(\nabla))
$$

where $H_{i}=H_{1}(G, \mathbb{Z})$, and $\nabla: H_{2} \rightarrow H_{1} \wedge H_{1}=\operatorname{Lie}_{2}\left(H_{1}\right)$ is the comultiplication map.

Properties:

- $U(\mathfrak{h} \otimes \mathbb{Q}) \cong \operatorname{Ext}_{A}(\mathbb{Q}, \mathbb{Q})$, for $G=\pi_{1}(X)$ and $A=H^{*}(X, \mathbb{Q})$.
- There is a canonical epimorphism $\mathfrak{h}_{G} \rightarrow \operatorname{gr}(G)$.
- If G is 1 -formal, then $\mathfrak{h}_{G} \otimes \mathbb{Q} \xrightarrow{\simeq} \operatorname{gr}(G) \otimes \mathbb{Q}$.

Example

$G=F_{n}$, then clearly $\mathfrak{h}_{G}=\operatorname{Lie}_{n}$, and so $\mathfrak{h}_{G}=\operatorname{gr}(G)$.

Let $\Gamma=(\mathrm{V}, \mathrm{E})$ graph, and $P_{\Gamma}(t)=\sum_{k \geq 0} f_{k}(\Gamma) t^{k}$ its clique polynomial.

Theorem (Duchamp-Krob 1992, Papadima-S. 2006)

For $G=G_{\Gamma}$:
(1) $\operatorname{gr}(G) \cong \mathfrak{h}_{G}$.
(2) Graded pieces are torsion-free, with ranks given by

$$
\prod_{k=1}^{\infty}\left(1-t^{k}\right)^{\phi_{k}}=P_{\Gamma}(-t) .
$$

Idea of proof:
(1) $A=\wedge V^{*} / J_{\Gamma} \Rightarrow \mathfrak{h}_{G}=L_{\Gamma}:=\operatorname{Lie}(\mathrm{V}) /([v, w]=0$ if $\{v, w\} \in \mathrm{E})$.
(2) Shelton-Yuzvinsky: $U\left(L_{\Gamma}\right)=A^{!}$(Koszul dual).
(3) Koszul duality: $\operatorname{Hilb}\left(A^{!}, t\right) \cdot \operatorname{Hilb}(A,-t)=1$.
(9) Computation independent of coefficient field $\Rightarrow \mathfrak{h}_{G}$ torsion-free.
(6) But $\mathfrak{h}_{G} \rightarrow \operatorname{gr}(G)$ is iso over \mathbb{Q} (by 1 -formality) \Rightarrow iso over \mathbb{Z}.
© LCS formula follows from (3) and PBW.

Chen Lie algebras

Definition

The Chen Lie algebra of a (finitely generated) group G is $\operatorname{gr}\left(G / G^{\prime \prime}\right)$, i.e., the assoc. graded Lie algebra of its maximal metabelian quotient. Write $\theta_{k}(G)=\operatorname{rank}^{g_{k}}\left(G / G^{\prime \prime}\right)$ for the Chen ranks.

Facts:

- $\operatorname{gr}(G) \rightarrow \operatorname{gr}\left(G / G^{\prime \prime}\right)$, and so $\phi_{k}(G) \geq \theta_{k}(G)$, with equality for $k \leq 3$.
- The map $\mathfrak{h}_{G} \rightarrow \operatorname{gr}(G)$ induces epimorphism $\mathfrak{h}_{G} / \mathfrak{h}_{G}^{\prime \prime} \rightarrow \operatorname{gr}\left(G / G^{\prime \prime}\right)$.
- (P.-S. 2004) If G is 1 -formal, then $\mathfrak{h}_{G} / \mathfrak{h}_{G}^{\prime \prime} \otimes \mathbb{Q} \xrightarrow{\simeq} \operatorname{gr}\left(G / G^{\prime \prime}\right) \otimes \mathbb{Q}$.

Example (Chen)

$$
\theta_{k}\left(F_{n}\right)=\binom{n+k-2}{k}(k-1), \quad \text { for all } k \geq 2
$$

The Chen Lie algebra of a RAAG

Theorem (Papadima-S. 2006)

For $G=G_{\Gamma}$:
(1) $\operatorname{gr}\left(G / G^{\prime \prime}\right) \cong \mathfrak{h}_{G} / \mathfrak{h}_{G}^{\prime \prime}$.
(2) Graded pieces are torsion-free, with ranks given by

$$
\sum_{k=2}^{\infty} \theta_{k} t^{k}=Q_{\Gamma}\left(\frac{t}{1-t}\right),
$$

where $Q_{\Gamma}(t)=\sum_{j \geq 2} c_{j}(\Gamma) t^{j}$ is the "cut polynomial" of Γ, with

$$
c_{j}(\Gamma)=\sum_{\mathrm{W} \subset \mathrm{~V}:|\mathrm{W}|=j} \tilde{b}_{0}\left(\Gamma_{\mathrm{w}}\right) .
$$

Idea of proof:

(1) Write $A:=H^{*}(G, \mathbb{k})=E / J_{\Gamma}$, where $E=\bigwedge_{\mathbb{k}}\left(v_{1}^{*}, \ldots, v_{n}^{*}\right)$.
(2) Write $\mathfrak{h}=\mathfrak{h}_{G} \otimes \mathbb{k}$.
(3) By Fröberg and Löfwall (2002)

$$
\left(\mathfrak{h}^{\prime} / \mathfrak{h}^{\prime \prime}\right)_{k} \cong \operatorname{Tor}_{k-1}^{E}(A, \mathbb{k})_{k}, \quad \text { for } k \geq 2
$$

(4) By Aramova-Herzog-Hibi \& Aramova-Avramov-Herzog (97-99): $\sum_{k \geq 2} \operatorname{dim}_{\mathbb{k}} \operatorname{Tor}_{k-1}^{E}\left(E / J_{\Gamma}, \mathbb{k}\right)_{k}=\sum_{i \geq 1} \operatorname{dim}_{\mathbb{k}} \operatorname{Tor}_{i}^{S}\left(S / I_{\Gamma}, \mathbb{k}\right)_{i+1} \cdot\left(\frac{t}{1-t}\right)^{i+1}$, where $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ and $I_{\Gamma}=$ ideal $\left\langle x_{i} x_{j} \mid\left\{v_{i}, v_{j}\right\} \notin \mathrm{E}\right\rangle$.
(5) By Hochster (1977):

$$
\operatorname{dim}_{\mathbb{k}} \operatorname{Tor}_{i}^{S}\left(S / I_{\Gamma}, \mathbb{k}\right)_{i+1}=\sum_{\mathrm{W} \subset \mathrm{~V}:|\mathrm{W}|=i+1} \operatorname{dim}_{\mathbb{k}} \widetilde{H}_{0}\left(\Gamma_{\mathrm{W}}, \mathbb{k}\right)=c_{i+1}(\Gamma) .
$$

(6) The answer is independent of $\mathfrak{k} \Rightarrow \mathfrak{h}_{G} / \mathfrak{h}_{G}^{\prime \prime}$ is torsion-free.
(7) Using formality of G_{Γ}, together with $\mathfrak{h}_{G} / \mathfrak{h}_{G}^{\prime \prime} \otimes \mathbb{Q} \xrightarrow{\simeq} \operatorname{gr}\left(G / G^{\prime \prime}\right) \otimes \mathbb{Q}$ ends the proof.

Example

Let Γ be a pentagon, and Γ^{\prime} a square with an edge attached to a vertex. Then:

- $P_{\Gamma}=P_{\Gamma^{\prime}}=1-5 t+5 t^{2}$, and so

$$
\phi_{k}\left(G_{\Gamma}\right)=\phi_{k}\left(G_{\Gamma^{\prime}}\right), \quad \text { for all } k \geq 1 .
$$

- $Q_{\Gamma}=5 t^{2}+5 t^{3}$ but $Q_{\Gamma^{\prime}}=5 t^{2}+5 t^{3}+t^{4}$, and so

$$
\theta_{k}\left(G_{\Gamma}\right) \neq \theta_{k}\left(G_{\Gamma^{\prime}}\right), \quad \text { for } k \geq 4 .
$$

Artin kernels

Definition

Given a graph Γ, and an epimorphism $\chi: G_{\Gamma} \rightarrow \mathbb{Z}$, the corresponding Artin kernel is the group

$$
N_{\chi}=\operatorname{ker}\left(\chi: G_{L} \rightarrow \mathbb{Z}\right)
$$

Note that $N_{\chi}=\pi_{1}\left(T_{L}^{\chi}\right)$, where $T_{L}^{\chi} \rightarrow T_{L}$ is the regular \mathbb{Z}-cover defined by χ. A classifying space for N_{χ} is $T_{\Delta_{r}}^{\chi}$, where $\Gamma=L^{(1)}$.

Noteworthy is the case when χ is the "diagonal" homomorphism $\nu: G_{L} \rightarrow \mathbb{Z}$, which assigns to each vertex the weight 1 . The corresponding Artin kernel, $N_{\Gamma}=N_{\nu}$, is called the Bestvina-Brady group associated to Γ.

Stallings, Bieri, Bestvina and Brady: geometric and homological finiteness properties of $N_{\Gamma} \longleftrightarrow$ topology of Δ_{Γ}, e.g.:

- N_{Γ} is finitely generated $\Longleftrightarrow \Gamma$ is connected
- N_{Γ} is finitely presented $\Longleftrightarrow \Delta_{\Gamma}$ is simply-connected.

More generally, it follows from Meier-Meinert-VanWyk (1998) and Bux-Gonzalez (1999) that:

Theorem

Assume L is a flag complex. Let $\mathrm{W}=\{v \in \mathrm{~V} \mid \chi(v) \neq 0\}$ be the support of χ. Then:
(1) N_{χ} is finitely generated $\Longleftrightarrow L_{\mathrm{W}}$ is connected, and, $\forall v \in \mathrm{~V} \backslash \mathrm{~W}$, there is a $w \in W$ such that $\{v, w\} \in L$.
(2) N_{χ} is finitely presented $\Longleftrightarrow L_{W}$ is 1 -connected and, $\forall \sigma \in L_{V} \backslash W$, the space $\mathrm{Ik}_{L_{W}}(\sigma)=\left\{\tau \in L_{W} \mid \tau \cup \sigma \in L\right\}$ is $(1-|\sigma|)$-acyclic.

Theorem (P.-S. 2009)

Let Γ be a graph, and N_{χ} and Artin kernel.
(1) If $H_{1}\left(N_{\chi}, \mathbb{Q}\right)$ is a trivial $\mathbb{Q Z}$-module, then N_{χ} is finitely generated.
(2) If both $H_{1}\left(N_{\chi}, \mathbb{Q}\right)$ and $H_{2}\left(N_{\chi}, \mathbb{Q}\right)$ have trivial \mathbb{Z}-action, then N_{χ} is 1-formal.
Thus, if Γ is connected, and $H_{1}\left(\Delta_{\Gamma}, \mathbb{Q}\right)=0$, then N_{Γ} is 1 -formal.

Theorem (P.-S. 2009)

Suppose $H_{1}(N, \mathbb{Q})$ has trivial \mathbb{Z}-action. Then, both $\operatorname{gr}(N)$ and $\operatorname{gr}\left(N / N^{\prime \prime}\right)$ are torsion-free, with graded ranks, ϕ_{k} and θ_{k}, given by

$$
\begin{aligned}
& \prod_{k=1}^{\infty}\left(1-t^{k}\right)^{\phi_{k}}=\frac{P_{\Gamma}(-t)}{1-t} \\
& \sum_{k=2}^{\infty} \theta_{k} t^{k}=Q_{\Gamma}\left(\frac{t}{1-t}\right)
\end{aligned}
$$

Resonance varieties

Let X be a connected CW-complex with finite k-skeleton $(k \geq 1)$.
Let \mathbb{k} be a field; if char $\mathbb{k}=2$, assume $H_{1}(X, \mathbb{Z})$ has no 2-torsion.
Let $A=H^{*}(X, \mathbb{k})$. Then: $a \in A^{1} \Rightarrow a^{2}=0$. Thus, get cochain complex

$$
(A, \cdot a): A^{0} \xrightarrow{a} A^{1} \xrightarrow{a} A^{2} \longrightarrow \cdots
$$

Definition (Falk 1997, Matei-S. 2000)

The resonance varieties of X (over \mathbb{k}) are the algebraic sets

$$
\mathcal{R}_{d}^{i}(X, \mathbb{k})=\left\{a \in A^{1} \mid \operatorname{dim}_{\mathbb{k}} H^{i}(A, a) \geq d\right\}
$$

defined for all integers $0 \leq i \leq k$ and $d>0$.

- \mathcal{R}_{d}^{i} are homogeneous subvarieties of $A^{1}=H^{1}(X, \mathbb{k})$
- $\mathcal{R}_{1}^{i} \supseteq \mathcal{R}_{2}^{i} \supseteq \cdots \supseteq \mathcal{R}_{b_{i}+1}^{i}=\emptyset$, where $b_{i}=b_{i}(X, \mathbb{k})$.
- $\mathcal{R}_{d}^{1}(X, \mathbb{k})$ depends only on $G=\pi_{1}(X)$, so denote it by $\mathcal{R}_{d}(G, \mathbb{k})$.

Resonance of toric complexes

Recall $A=H^{*}\left(T_{L}, \mathbb{k}\right)$ is the exterior Stanley-Reisner ring of L. Using a formula of Aramova, Avramov, and Herzog (1999), we prove:

Theorem (Papadima-S. 2009)

$$
\mathcal{R}_{d}^{i}\left(T_{L}, \mathbb{k}\right)=\bigcup_{\sum_{\sigma \in L_{V} \backslash W}} \bigcup_{\operatorname{dim}_{k} \tilde{H}_{i-1-|\sigma|}\left(\mathbb{k}_{L \mathcal{W}}(\sigma), \mathbb{k}\right) \geq d} \mathbb{k}^{\mathrm{W}},
$$

where L_{W} is the subcomplex induced by L on W , and $\mathrm{Ik}_{K}(\sigma)$ is the link of a simplex σ in a subcomplex $K \subseteq L$.

In particular:

$$
\mathcal{R}_{1}^{1}\left(G_{\Gamma}, \mathbb{k}\right)=\bigcup_{\substack{\mathrm{W} \subseteq \subseteq \\ \Gamma_{\mathrm{W}} \text { disconnected }}} \mathbb{k}^{\mathrm{W}} .
$$

Example

Let Γ and Γ^{\prime} be the two graphs above. Both have

$$
P(t)=1+6 t+9 t^{2}+4 t^{3}, \quad \text { and } \quad Q(t)=t^{2}\left(6+8 t+3 t^{2}\right) .
$$

Thus, G_{Γ} and G_{Γ}, have the same LCS and Chen ranks. Each resonance variety has 3 components, of codimension 2 :

$$
\mathcal{R}_{1}\left(G_{\Gamma}, \mathbb{k}\right)=\mathbb{k}^{\overline{23}} \cup \mathbb{k}^{25} \cup \mathbb{k}^{\overline{35}}, \quad \mathcal{R}_{1}\left(G_{\Gamma^{\prime}}, \mathbb{k}\right)=\mathbb{k}^{\overline{15}} \cup \mathbb{k}^{\overline{25}} \cup \mathbb{k}^{\overline{26}} .
$$

Yet the two varieties are not isomorphic, since $\operatorname{dim}\left(\mathbb{k}^{\overline{23}} \cap \mathbb{k}^{\overline{25}} \cap \mathbb{k}^{\overline{35}}\right)=3, \quad$ but $\quad \operatorname{dim}\left(\mathbb{k}^{\overline{55}} \cap \mathbb{k}^{\overline{25}} \cap \mathbb{k}^{\overline{26}}\right)=2$.

Kähler manifolds

Definition

A compact, connected, complex manifold M is called a Kähler manifold if M admits a Hermitian metric h for which the imaginary part $\omega=\Im(h)$ is a closed 2 -form.

Examples: Riemann surfaces, $\mathbb{C P}^{n}$, and, more generally, smooth, complex projective varieties.

Definition

A group G is a Kähler group if $G=\pi_{1}(M)$, for some compact Kähler manifold M.
G is projective if M is actually a smooth projective variety.

- G finite $\Rightarrow G$ is a projective group (Serre 1958).
- G_{1}, G_{2} Kähler groups $\Rightarrow G_{1} \times G_{2}$ is a Kähler group
- G Kähler group, $H<G$ finite-index subgroup $\Rightarrow H$ is a Kähler gp

Problem (Serre 1958)

Which finitely presented groups are Kähler (or projective) groups?
The Kähler condition puts strong restrictions on M :
(1) $H^{*}(M, \mathbb{Z})$ admits a Hodge structure
(2) Hence, the odd Betti numbers of M are even
(3) M is formal, i.e., $(\Omega(M), d) \simeq\left(H^{*}(M, \mathbb{R}), 0\right)$
(Deligne-Griffiths-Morgan-Sullivan 1975)
The Kähler condition also puts strong restrictions on $G=\pi_{1}(M)$:
(1) $b_{1}(G)$ is even
(2) G is 1 -formal, i.e., its Malcev Lie algebra $\mathfrak{m}(G)$ is quadratic
(3) G cannot split non-trivially as a free product (Gromov 1989)

Quasi-Kähler manifolds

Definition

A manifold X is called quasi-Kähler if $X=\bar{X} \backslash D$, where \bar{X} is a compact Kähler manifold and D is a divisor with normal crossings.

Similar definition for X quasi-projective.
The notions of quasi-Kähler group and quasi-projective group are defined as above.

- X quasi-projective $\Rightarrow H^{*}(X, \mathbb{Z})$ has a mixed Hodge structure
(Deligne 1972-74)
- $X=\mathbb{C P}^{n} \backslash\{$ hyperplane arrangement $\} \Rightarrow X$ is formal
(Brieskorn 1973)
- X quasi-projective, $W_{1}\left(H^{1}(X, \mathbb{C})\right)=0 \Rightarrow \pi_{1}(X)$ is 1-formal (Morgan 1978)
- $X=\mathbb{C P}^{n} \backslash\{$ hypersurface $\} \Rightarrow \pi_{1}(X)$ is 1 -formal
(Kohno 1983)

Resonance varieties of quasi-Kähler manifolds

Theorem (D.-P.-S. 2009)

Let X be a quasi-Kähler manifold, and $G=\pi_{1}(X)$. Let $\left\{L_{\alpha}\right\}_{\alpha}$ be the non-zero irred components of $\mathcal{R}_{1}(G)$. If G is 1 -formal, then
(1) Each L_{α} is a p-isotropic linear subspace of $H^{1}(G, \mathbb{C})$, with $\operatorname{dim} L_{\alpha} \geq 2 p+2$, for some $p=p(\alpha) \in\{0,1\}$.
(2) If $\alpha \neq \beta$, then $L_{\alpha} \cap L_{\beta}=\{0\}$.
(8) $\mathcal{R}_{d}(G)=\{0\} \cup \bigcup_{\alpha} L_{\alpha}$, where the union is over all α for which $\operatorname{dim} L_{\alpha}>d+p(\alpha)$.
Furthermore,
(9) If X is compact Kähler, then G is 1 -formal, and each L_{α} is 1 -isotropic.
(0. If X is a smooth, quasi-projective variety, and $W_{1}\left(H^{1}(X, \mathbb{C})\right)=0$, then G is 1 -formal, and each L_{α} is 0 -isotropic.

Here we used the following

Definition

A non-zero subspace $U \subseteq H^{1}(G, \mathbb{C})$ is p-isotropic with respect to

$$
\cup_{G}: H^{1}(G, \mathbb{C}) \wedge H^{1}(G, \mathbb{C}) \rightarrow H^{2}(G, \mathbb{C})
$$

if the restriction of \cup_{G} to $U \wedge U$ has rank p.

Example

Let C be a smooth complex curve with $\chi(C)<0$. Then

$$
\mathcal{R}_{1}^{1}\left(\pi_{1}(C), \mathbb{C}\right)=H^{1}(C, \mathbb{C})
$$

and this space is either 1 - or 0 -isotropic, according to whether C is compact or not.

Theorem (Dimca-Papadima-S. 2009)

The following are equivalent:
(1) G_{Γ} is a quasi-Kähler group
(2) $\Gamma=K_{n_{1}, \ldots, n_{r}}:=\bar{K}_{n_{1}} * \cdots * \bar{K}_{n_{r}}$
(3) $G_{\Gamma}=F_{n_{1}} \times \cdots \times F_{n_{r}}$
(1) G_{Γ} is a Kähler group
(2) $\Gamma=K_{2 r}$
(3) $G_{\Gamma}=\mathbb{Z}^{2 r}$

Example

Let Γ be a linear path on 4 vertices. The maximal disconnected subgraphs are $\Gamma_{\{134\}}$ and $\Gamma_{\{124\}}$. Thus:

$$
\mathcal{R}_{1}\left(G_{\Gamma}, \mathbb{C}\right)=\mathbb{C}^{\{134\}} \cup \mathbb{C}^{\{234\}} .
$$

But $\mathbb{C}^{\{134\}} \cap \mathbb{C}^{\{234\}}=\mathbb{C}^{\{14\}}$, which is a non-zero subspace. Thus, G_{Γ} is not a quasi-Kähler group.

Theorem (D.-P.-S. 2008)

For a Bestvina-Brady group $N_{\Gamma}=\operatorname{ker}\left(\nu: G_{\Gamma} \rightarrow \mathbb{Z}\right)$, the following are equivalent:
(1) N_{Γ} is a quasi-Kähler group
(2) is either a tree, or
$\Gamma=K_{n_{1}, \ldots, n_{r}}$, with some $n_{i}=1$, or all $n_{i} \geq 2$ and $r \geq 3$.
(1) N_{Γ} is a Kähler group
(2) $\Gamma=K_{2 r+1}$
(3) $N_{\Gamma}=\mathbb{Z}^{2 r}$

Example

$\Gamma=K_{2,2,2} \rightsquigarrow G_{\Gamma}=F_{2} \times F_{2} \times F_{2}$
$N_{\Gamma}=$ the Stallings group $=\pi_{1}\left(\mathbb{C P}^{2} \backslash\{6\right.$ lines $\left.\}\right)$
N_{Γ} is finitely presented, but $H_{3}\left(N_{\Gamma}, \mathbb{Z}\right)$ has infinite rank, so N_{Γ} not FP_{3}.

Hyperplane arrangements

Let \mathcal{A} be an arrangement of hyperplanes in \mathbb{C}^{ℓ}, with complement $X=\mathbb{C}^{\ell} \backslash \cup_{H \in \mathcal{A}} H$, and group $G=G(\mathcal{A})=\pi_{1}(X)$.
(1) X is a smooth, quasi-projective variety, and so G is a quasi-projective group.
(2) X is formal, and so $G=\pi_{1}(X)$ is 1 -formal.
(3) $A=H^{*}(X, \mathbb{Z})$ is the Orlik-Solomon algebra, determined by the intersection lattice, $L(\mathcal{A})$.
(9) The resonance variety $\mathcal{R}_{1}^{1}(X, \mathbb{C})$ depends only on a generic section $\mathcal{A}^{\prime}=\left\{\ell_{1}, \ldots \ell_{n}\right\}$ in \mathbb{C}^{2}.

- Each component is a linear subspace.
- There are "local" components, corresponding to points where $k \geq 3$ lines in \mathcal{A}^{\prime} meet (these have $\operatorname{dim}=k-1$).
- There are also non-local components, corresponding to certain "multinets" (these have dim =2 or 3).

Let \mathcal{A} be an arrangement of lines in \mathbb{C}^{2}, with group $G=G(\mathcal{A})$.

Theorem (S. 2009)

The following are equivalent:
(1) G is a Kähler group.
(2) G is a free abelian group of even rank.
(3) \mathcal{A} consists of an even number of lines in general position.

Theorem (S. 2009)

The following are equivalent:
(1) G is a right-angled Artin group.
(2) G is a finite direct product of finitely generated free groups.
(3) The multiplicity graph $\Gamma(\mathcal{A})$ is a forest.

Σ-invariants

G finitely generated group $\rightsquigarrow \mathcal{C}(G)$ Cayley graph.
$\chi: G \rightarrow \mathbb{R}$ homomorphism $\rightsquigarrow \mathcal{C}_{\chi}(G)$ induced subgraph on vertex set $G_{\chi}=\{g \in G \mid \chi(g) \geq 0\}$.

Definition

$\Sigma^{1}(G)=\left\{\chi \in \operatorname{Hom}(G, \mathbb{R}) \backslash\{0\} \mid \mathcal{C}_{\chi}(G)\right.$ is connected $\}$
An open, conical subset of $\operatorname{Hom}(G, \mathbb{R})=H^{1}(G, \mathbb{R})$, independent of choice of generating set for G.

Definition
 $\Sigma^{k}(G, \mathbb{Z})=\left\{\chi \in \operatorname{Hom}(G, \mathbb{R}) \backslash\{0\} \mid\right.$ the monoid G_{χ} is of type $\left.\mathrm{FP}_{k}\right\}$

Here, G is of type FP_{k} if there is a projective $\mathbb{Z} G$-resolution $P_{\bullet} \rightarrow \mathbb{Z}$, with P_{i} finitely generated for all $i \leq k$.

- The BNSR invariants $\Sigma^{q}(G, \mathbb{Z})$ form a descending chain of open subsets of $\operatorname{Hom}(G, \mathbb{R}) \backslash\{0\}$.
- $\Sigma^{k}(G, \mathbb{Z}) \neq \emptyset \Longrightarrow G$ is of type FP_{k}.
- $\Sigma^{1}(G, \mathbb{Z})=\Sigma^{1}(G)$.
- The Σ-invariants control the finiteness properties of normal subgroups $N \triangleleft G$ with G / N is abelian:

$$
N \text { is of type } \mathrm{FP}_{k} \Longleftrightarrow S(G, N) \subseteq \Sigma^{k}(G, \mathbb{Z})
$$

where $S(G, N)=\{\chi \in \operatorname{Hom}(G, \mathbb{R}) \backslash\{0\} \mid \chi(N)=0\}$.

- In particular:

$$
\operatorname{ker}(\chi: G \rightarrow \mathbb{Z}) \text { is f.g. } \Longleftrightarrow\{ \pm \chi\} \subseteq \Sigma^{1}(G)
$$

Let X be a connected CW-complex with finite 1 -skeleton, $G=\pi_{1}(X)$.

Definition

The Novikov-Sikorav completion of $\mathbb{Z} G$:

$$
\widehat{\mathbb{Z}}_{\chi}=\left\{\lambda \in \mathbb{Z}^{G} \mid\{g \in \operatorname{supp} \lambda \mid \chi(g)<c\} \text { is finite, } \forall c \in \mathbb{R}\right\}
$$

$\widehat{\mathbb{Z} G_{\chi}}$ is a ring, contains $\mathbb{Z} G$ as a subring $\Longrightarrow \widehat{\mathbb{Z} G_{\chi}}$ is a $\mathbb{Z} G$-module.

Definition

$\Sigma^{q}(X, \mathbb{Z})=\left\{\chi \in \operatorname{Hom}(G, \mathbb{R}) \backslash\{0\} \mid H_{i}\left(X, \widehat{\mathbb{Z}}_{-\chi}\right)=0, \forall i \leq q\right\}$
Bieri: G of type $\mathrm{FP}_{k} \Longrightarrow \Sigma^{q}(G, \mathbb{Z})=\Sigma^{q}(K(G, 1), \mathbb{Z}), \forall q \leq k$.

Theorem (P.-S.)

If X has finite k-skeleton, then, for every $q \leq k$, then each $\Sigma^{q}(X, \mathbb{Z})$ is contained in the complement of a union of rationally defined subspaces (explicitly computable).

Corollary

Suppose G is a 1 -formal group. Then $\Sigma^{1}(G) \subseteq \mathcal{R}_{1}^{1}(G, \mathbb{R})^{\complement}$. In particular, if $\mathcal{R}_{1}^{1}(G, \mathbb{R})=H^{1}(G, \mathbb{R})$, then $\Sigma^{1}(G)=\emptyset$.

Example

The above inclusion may be strict: Let $G=\left\langle a, b \mid a b a^{-1}=b^{2}\right\rangle$. Then G is 1 -formal, $\Sigma^{1}(G)=(-\infty, 0)$, yet $\mathcal{R}_{1}^{1}(G, \mathbb{R})=\{0\}$.

Theorem (P.-S.)

$$
\Sigma^{k}\left(T_{L}, \mathbb{Z}\right) \subseteq\left(\bigcup_{i \leq k} \mathcal{R}_{1}^{i}\left(T_{L}, \mathbb{R}\right)\right)^{\complement}
$$

The BNSR invariants of right-angled Artin groups were computed by Meier, Meinert, VanWyk (1998). Comparing their answer with our computation of the resonance varieties, we get:

Corollary (P.-S.)

Suppose $\forall \sigma \in \Delta=\Delta_{\Gamma}$, and $\forall \mathrm{W} \subseteq \mathrm{V}$ such that $\sigma \cap W=\emptyset$, the groups $H_{j}\left(\mathrm{k}_{\Delta_{\mathrm{w}}}(\sigma), \mathbb{Z}\right)$ are torsion-free, $\forall j \leq k-\operatorname{dim}(\sigma)-2$. Then:

$$
\Sigma^{k}\left(G_{\Gamma}, \mathbb{Z}\right)=\left(\bigcup_{i \leq k} \mathcal{R}_{1}^{i}\left(T_{\Delta_{\Gamma}}, \mathbb{R}\right)\right)^{\mathfrak{c}}
$$

In particular, for all graphs Γ,

$$
\Sigma^{1}\left(G_{\Gamma}, \mathbb{Z}\right)=\mathcal{R}_{1}^{1}\left(G_{\Gamma}, \mathbb{R}\right)^{\complement}
$$

References

G．Denham，A．Suciu，Moment－angle complexes，monomial ideals，and Massey products，Pure Appl．Math．Quarterly 3 （2007），no．1，25－60．

A．Dimca，S．Papadima，A．Suciu，Quasi－Kähler Bestvina－Brady groups，J． Algebraic Geom． 17 （2008），no．1，185－197．
邫 \qquad ，Topology and geometry of cohomology jump loci，Duke Math．Journal 148 （2009），no．3，405－457．

S．Papadima，A．Suciu，Algebraic invariants for right－angled Artin groups，Math． Annalen 334 （2006），no．3，533－555．
\qquad ，Algebraic invariants for Bestvina－Brady groups，J．London Math．Soc． 76 （2007），no．2，273－292．
\qquad ，Toric complexes and Artin kernels，Adv．Math． 220 （2009），no．2，441－477．
\qquad Bieri－Neumann－Strebel－Renz invariants and homology jumping loci， Proc．London Math．Soc． 100 （2010），no．3，795－834．

A．Suciu，Fundamental groups，Alexander invariants，and cohomology jumping loci，in：Topology of algebraic varieties and singularities，179－223，Contemp． Math．，vol．538，Amer．Math．Soc．，Providence，RI， 2011.

