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Partial product construction

Input:
@ K, a simplicial complex on [n] = {1,...,n}.
@ (X, A), a pair of topological spaces, A # 0.
Output:

= [ J(X, A7 c x>
ceK
where (X,A)? ={x € X*"| x; € Aifi ¢ o}.
Interpolates between
@ Zy(X,A) = Zx(AA) = A" and
o ZAn—1(X,A) — ZK(X,X) — X><I7
Examples:

° anomts( ) V X (Wedge)
@ Zyan1(X,x)=T"X (fat wedge)
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Partial products of spaces
Properties:

@ L C K subcomplex = Z(X,A) C Zx(X, A) subspace.

@ (X, A) pair of (finite) CW-complexes = Z(X, A) is a (finite)
CW-complex.

@ Zu. (X, A) X Zy (X, A) x Z(X, A).

@ f: (X,A) — (Y, B) continuous map = f*": X*" — Y*" restricts
to a continuous map Z': Zx (X, A) — Zk(Y, B).

@ Consequently, (X, A) ~ (Y,B) = Zx(X,A) ~ Zx(Y, B).

@ (Strickland) f: K — L simplicial ~ Z¢: Zx(X, A) — Z.(X, A)
continuous (if X connected topological monoid, A submonoid).

@ (Denham-S. 2005) If (M, OM) is a compact manifold of dim d, and
K is a PL-triangulation of S™ on n vertices, then Zx(M,0M) is a
compact manifold of dim (d —1)n+ m+ 1.

@ (Bosio—Meersseman 2006) If K is a polytopal triangulation of S™,
then Zx(D?,S") if n4+ m+ 1 is even, or Zx(D?,S") x S if
n+ m+ 1 is odd, is a complex manifold.
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Toric complexes
Toric complexes and right-angled Artin groups

Definition

Let L be simplicial complex on n vertices. The associated toric
complex, T;, is the subcomplex of the n-torus obtained by deleting the
cells corresponding to the missing simplices of L, i.e.,

TL — ZL(S1 ) *)

@ k-cellsin T, <— (k — 1)-simplices in L.
e COW(T,)is a subcomplex of CEW(T"); thus, all 9 = 0, and

Hi(Ty,Z) = CS™Pie@l( 7)) = z# (k= T)-simplices of L

e H*(T.,k) is the exterior Stanley-Reisner ring A\ V*/J., where
» Vis the free k-module on the vertex set of L
» A V*is the exterior algebra on dual of V,
» J is the ideal generated by all monomials, t, = v;/--- v;
corresponding to simplices o = {V;, ..., v, } not belongmg to L.
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Ve o za g i
Right-angled Artin groups
Definition

Let ' = (V, E) be a (finite, simple) graph. The corresponding
right-angled Artin group is

Gr=(veV|w=wvif{v,w} € E).

oF:W,,:Gr:Fn; r=K,= Gr=12"
o r=r[Ir"=Gr=Gr*Gr; [=0=xI"= G =GpxGr
o rr« Gr=Gr
(Kim—Makar-Limanov—Neggers—Roush 1980)
@ 11(T) = Gr,where I = L(1).
@ K(Gr,1) = Ta,, where Ar is the flag complex of T.
(Davis—Charney 1995, Meier—VanWyk 1995)
@ A:= H*(Gr,k) = A\ V*/Jr, where Jr is quadratic monomial ideal
= A is a Koszul algebra (Fréberg 1975).
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Ve o za g i
Formality

Definition (Sullivan)
A space X is formal if its minimal model is quasi-isomorphic to

(H*(X,Q),0).

Definition (Quillen)

A group G is 1-formal if its Malcev Lie algebra, mg = Prim(@a‘), is a
(complete, filtered) quadratic Lie algebra.

Theorem (Sullivan)
If X formal, then m1(X) is 1-formal.

Theorem (Notbohm—Ray 2005)
T, is formal, and so Gr is 1-formal.

v,
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Associated graded Lie algebra
Let G be a finitely-generated group. Define:
@ LCSseries: G=Gy>Gop--->Gg>---, where G 1 =[Gk, G]
@ LCS quotients: gr, G = Gk/Gk+1 (f.g. abelian groups)
@ LCS ranks: ¢x(G) = rank(gr, G)
@ Associated graded Lie algebra: gr(G) = @~ 9r«(G), with Lie
bracket [, ]: L; x L; — L;;; induced by group commutator.

Example (Witt, Magnus)

Let G = F;, (free group of rank n).
Then gr G = Lie, (free Lie algebra of rank n), with LCS ranks given by

o0

[T -9 =1-nt

k=1

Explicitly: ¢x(Fn) = % >qx #(d)n*/9, where 1 is Mdbius function.

v
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Craizi e clizi e
Holonomy Lie algebra

Definition (Chen)
The holonomy Lie algebra of G is the quadratic, graded Lie algebra

hg = Lie(H;)/ideal(im(V))

where H; = H{(G,Z),and V: H, — H; A Hy = Liex(H,) is the
comultiplication map.

Properties:
® U(h®Q) = Exta(Q,Q), for G=m(X) and A= H*(X,Q).
@ There is a canonical epimorphism hg — gr(G).
e If Gis 1-formal, then hg ® Q — gr(G) ® Q.

Example
G = Fp, then clearly hg = Liep, and so hg = gr(G). J
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Let = (V,E) graph, and Pr(t) = > 4~ fx (M)t its clique polynomial.

Theorem (Duchamp—Krob 1992, Papadima—S. 2006)
For G = Gr:
@ 9r(G) = be.

© Graded pieces are torsion-free, with ranks given by

o0
[T = 9% = Pr(-1).
k=1

Idea of proof:

Q@ A=A\V*/J = b= Lr:=Lie(V)/(Jv,w] =0if {v,w} € E).
© Shelton—-Yuzvinsky: U(Lr) = A' (Koszul dual).

© Koszul duality: Hilb(A', t) - Hilo(A, —t) = 1.

© Computation independent of coefficient field = hg torsion-free.
@ But hg — gr(G) is iso over Q (by 1-formality) = iso over Z.

Q@ LCS formula follows from (3) and PBW.
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Chen Lie algebras
Chen Lie algebras

Definition
The Chen Lie algebra of a (finitely generated) group G is gr(G/G"),

i.e., the assoc. graded Lie algebra of its maximal metabelian quotient.
Write 6(G) = rankgr,(G/G") for the Chen ranks.

Facts:
@ gr(G) — gr(G/G"), and so ¢«(G) > 0«(G), with equality for k < 3.
@ The map hg — gr(G) induces epimorphism bg/bs — gr(G/G").
@ (P-S.2004) If Gis 1-formal, then hg/b’%s © Q — gr(G/G") Q.

Example (Chen)

Ox(Fn) = <n+:_2>(k— 1), forallk >2.
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The Chen Lie algebra of a RAAG

Theorem (Papadima—S. 2006)
For G = Gr:
@ 9r(G/G") = ba/h:
© Graded pieces are torsion-free, with ranks given by

Kk _ t
Z it ( 11—t
where Qr(t) = Y-, Gi(N)t is the “cut polynomial” of T, with

gN= > bo(Tw).

WCV: |W|=j
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Toric complexes

Idea of proof:

@ Write A:= H*(G,k) = E/Jr, where E = A\, (v],..., V).
Q Write h = hg o k.

© By Froberg and Lofwall (2002)

(b'/0"), = Torg_;(Ak)k, fork>2
© By Aramova—Herzog—Hibi & Aramova—Avramov—Herzog (97-99):

. . t o\
> " dimy Torg_4(E/dr,k)x =Y _ dimy Tor?(S/ I, k)1 (1——t> :

k>2 i>1
where S = k[xq,...,xp] and Ir = ideal (x;x; | {v;, v;} ¢ E).
© By Hochster (1977):
dimy Tor?(S/lr k)1 = > dimy Ho(Tw, k) = ci1(T).
WCV: [W|=it1

© The answer is independent of k = hg/b7 is torsion-free.
@ Using formality of Gr, together with hg/h% ©® Q — gr(G/G") ® Q
ends the proof.
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Toric complexes

Example

Let I be a pentagon, and I’ a square with an edge attached to a
vertex. Then:

@ Pr =P =1-5t+5¢,and so
d)k(Gr) = qbk(Gr/), forall k > 1.
@ Qr =5 + 513 but Q =512+ 5t + t4, and so

0k(Gr) # 0k(Gr), for k > 4.
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Bestvina-Brady groups
Artin kernels

Definition
Given a graph I', and an epimorphism x: Gr — Z, the corresponding
Artin kernel is the group

N, =ker(x: GL = Z)

Note that N, = m1(T)¥), where T} — T, is the regular Z-cover defined
by x. A classifying space for N, is Tx , where I = L(1).

Noteworthy is the case when y is the “diagonal” homomorphism

v: Gy — 7Z, which assigns to each vertex the weight 1.

The corresponding Artin kernel, Nr = N,, is called the Bestvina—Brady
group associated to I'.
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Stallings, Bieri, Bestvina and Brady: geometric and homological
finiteness properties of N <— topology of Ar, e.g.:

@ N is finitely generated < T is connected
@ Ny is finitely presented <= Ar is simply-connected.

More generally, it follows from Meier—Meinert—VanWyk (1998) and
Bux—Gonzalez (1999) that:

Theorem
Assume L is a flag complex. LetW = {v € V| x(v) # 0} be the
support of x. Then:

Q N, is finitely generated <= Lyy is connected, and, vV v € V\ W,
there isaw € W such that {v,w} € L.

Q N, is finitely presented <= Ly is 1-connected and, ¥V o € Lyw;
the space Ik, (0) = {r € Lw | TU o € L} is (1 — |o|)-acyclic.
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Theorem (P-S. 2009)
LetT be a graph, and N, and Artin kernel.
Q IfHi(Ny,Q) is a trivial QZ-module, then N,, is finitely generated.

@ If both Hi(N,, Q) and Hx(N,, Q) have trivial Z-action, then N, is
1-formal.

Thus, ifT is connected, and H{(Ar, Q) = 0, then Nr is 1-formal.

Theorem (P—-S. 2009)

Suppose Hi(N, Q) has trivial Z-action. Then, both gr(N) and gr(N/N")
are torsion-free, with graded ranks, ¢, and 0k, given by

- . Pr(=1)
;[[1(1_tk)¢ B 1r—t ’

ig"tk - Qr<1 it)
k=2
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Resonance varieties

Let X be a connected CW-complex with finite k-skeleton (k > 1).

Let k be a field; if chark = 2, assume H;(X,Z) has no 2-torsion.

Let A= H*(X,k). Then: a € A" = &% = 0. Thus, get cochain complex
(A -a): A 8- A1 4. A2

Definition (Falk 1997, Matei—S. 2000)
The resonance varieties of X (over k) are the algebraic sets
RL(X, k) ={ae A" | dim; H'(A a) > d},

defined for all integers 0 </ < kand d > 0.

@ R/ are homogeneous subvarieties of A" = H'(X, k)
@RI DRLD---D Ri);+1 = (), where b; = bj(X, k).
@ Rl (X, k) depends only on G = 71(X), so denote it by R4(G, k).
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Resonance of toric complexes

Recall A= H*(T,k) is the exterior Stanley-Reisner ring of L. Using a
formula of Aramova, Avramov, and Herzog (1999), we prove:

Theorem (Papadima-S. 2009)

RL(TL, k) = U kW,
WwcVv

> dimy Hj_ 1|5k (0) k) >d

a€ly\w

where Ly is the subcomplex induced by L on W, and Ikk (o) is the link
of a simplex o in a subcomplex K C L.

In particular:
RI(Gr, k) = U &"

_wgv
I'w disconnected
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1 1 2 3

Example
Let I and I’ be the two graphs above. Both have

P(t)=1+6t+9t2 + 43, and Q(t) = t3(6 + 8t + 3t2).

Thus, Gr and Grr have the same LCS and Chen ranks.
Each resonance variety has 3 components, of codimension 2:

R1(Gr, k) =kB UKD UK®, R(Gr,k) =k Uk® UK®.

Yet the two varieties are not isomorphic, since

dim(k® kB Nk*®) =3, but dim(k'® k5 Nk?*) =2.

V.
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Kahler manifolds
Definition
A compact, connected, complex manifold M is called a Kédhler manifold

if M admits a Hermitian metric h for which the imaginary part w = (h)
is a closed 2-form.

Examples: Riemann surfaces, CP"”, and, more generally, smooth,
complex projective varieties.
Definition

A group G is a Kéhler group if G = 71(M), for some compact Kéhler
manifold M.

G is projective if M is actually a smooth projective variety.
@ Gfinite = G is a projective group (Serre 1958).
@ Gy, G, Kahler groups = G; x Gy is a Kahler group
@ G Kéhler group, H < G finite-index subgroup = H is a K&hler gp
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Problem (Serre 1958)
Which finitely presented groups are Kéhler (or projective) groups? J

The Kahler condition puts strong restrictions on M:

Q@ H*(M,Z) admits a Hodge structure
© Hence, the odd Betti numbers of M are even
©Q Mis formal, i.e., (Q(M), d) ~ (H*(M,R),0)
(Deligne—Griffiths—Morgan—Sullivan 1975)

The Ké&hler condition also puts strong restrictions on G = 71 (M):
Q@ bHi(G)iseven
@ Gis 1-formal, i.e., its Malcev Lie algebra m(G) is quadratic
© G cannot split non-trivially as a free product (Gromov 1989)
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Kaehler manifolds
Quasi-Kahler manifolds
Definition

A manifold X is called quasi-K&hlerif X = X \ D, where X is a compact
Kéhler manifold and D is a divisor with normal crossings.

Similar definition for X quasi-projective.
The notions of quasi-Kahler group and quasi-projective group are
defined as above.
@ X quasi-projective = H*(X,Z) has a mixed Hodge structure
(Deligne 1972—74)
@ X = CP"\ {hyperplane arrangement} = X is formal
(Brieskorn 1973)
@ X quasi-projective, W;(H'(X,C)) = 0 = m¢(X) is 1-formal
(Morgan 1978)
@ X = CP"\ {hypersurface} = m(X) is 1-formal
(Kohno 1983)
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Resonance varieties of quasi-Kahler manifolds
Theorem (D.—P—-S. 2009)

Let X be a quasi-Kéhler manifold, and G = ©1(X). Let {L.}.. be the
non-zero irred components of R1(G). If G is 1-formal, then

@ Each L, is a p-isotropic linear subspace of H'(G, C), with
dimL, > 2p+ 2, for some p = p(«) € {0,1}.
Q Ifa# 3, thenL,NLg ={0}.
Q R4(G) = {0} U, La, where the union is over all o for which
dimL, > d+ p(«).
Furthermore,

Q If X is compact Kéhler, then G is 1-formal, and each L, is
1-isotropic.

© If X is a smooth, quasi-projective variety, and Wy (H'(X,C)) = 0,
then G is 1-formal, and each L,, is 0-isotropic.
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Here we used the following
Definition
A non-zero subspace U C H'(G, C) is p-isotropic with respect to

Ug: H'(G,C) A H'(G,C) —» H(G,C)

if the restriction of Ug to U A U has rank p.

Example
Let C be a smooth complex curve with x(C) < 0. Then

R](W1(C)v (C) =H' (C7 (C)

and this space is either 1- or 0-isotropic, according to whether C is
compact or not.
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Kaehler and quasi-Kaehler RAAGS
Theorem (Dimca—Papadima—S. 2009)

The following are equivalent:

@ Gr is a quasi-Kéhler group Q Gr is a Kahler group

Q I'=Kn,..n, :=Kp x--- % Kp, Q=Ko

O Gr=Fn x - x Fr G -z
Example

Let I be a linear path on 4 vertices. The maximal disconnected
subgraphs are I'g134y and ;124 Thus:

R1(Gr,C) = cl3* y {234,

But C{134} 0 {234} — {14}, which is a non-zero subspace.
Thus, Gr is not a quasi-Kéhler group.
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Theorem (D.—P—-S. 2008)

For a Bestvina—Brady group Nr = ker(v: Gr — Z), the following are
equivalent:

@ Nr is a quasi-Kahler group @ Nr is a Kahler group
© T is either a tree, or Q =Koy
= Kn,...n,, Withsomeni =1, @ N = 72"
orallnj>2andr > 3.

Example

I_:KQ’Q’QWGF:FQXFZXFQ

Nr = the Stallings group = 74(CP? \ {6 lines})

Nr is finitely presented, but H3(Nr, Z) has infinite rank, so Ni not FP3.

v

Alex Suciu (Northeastern University) Partial products of circles U. Caen, June 2011 27/35



Resonance varieties

Hyperplane arrangements

Let A be an arrangement of hyperplanes in C¢, with complement
X = C"\ Uyea H, and group G = G(A) = m1(X).
@ X is a smooth, quasi-projective variety, and so G is a
quasi-projective group.
@ Xisformal, and so G = m(X) is 1-formal.
© A= H*(X,Z) is the Orlik-Solomon algebra, determined by the
intersection lattice, L(.A).
© The resonance variety R} (X, C) depends only on a generic
section A’ = {¢;,...¢p} in C?.
» Each component is a linear subspace.
» There are “local" components, corresponding to points where k > 3
lines in A’ meet (these have dim = k — 1).

» There are also non-local components, corresponding to certain
“multinets" (these have dim = 2 or 3).
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Let .4 be an arrangement of lines in C2, with group G = G(A).
Theorem (S. 2009)
The following are equivalent:

Q@ G is a Kahler group.

@ G is a free abelian group of even rank.

© A consists of an even number of lines in general position.

Theorem (S. 2009)
The following are equivalent:

@ G is a right-angled Artin group.
@ G is afinite direct product of finitely generated free groups.

© The multiplicity graph T (.A) is a forest.
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Bieri-Neumann-Strebel-Renz invariants BNSR-invariants

Y -invariants

G finitely generated group ~~ C(G) Cayley graph.

x: G — R homomorphism ~~ C,(G) induced subgraph on vertex set

Gy ={g€G|x(9) =0}

Definition

¥'(G) = {x € Hom(G,R) \ {0} | C,(G) is connected} J

An open, conical subset of Hom(G, R) = H'(G,R), independent of
choice of generating set for G.

Definition
YK(G,Z) = {x € Hom(G,R) \ {0} | the monoid G, is of type FP} J

Here, G is of type FPy if there is a projective ZG-resolution Py, — Z,
with P; finitely generated for all i < k.

Alex Suciu (Northeastern University) Partial products of circles U. Caen, June 2011 30/35



Bieri-Neumann-Strebel-Renz invariants

@ The BNSR invariants X9( G, Z) form a descending chain of open
subsets of Hom(G,R) \ {0}.

e YK(G,Z) # 0 = Gis of type FP.

e Y'(G,zZ)=x'(G).

@ The Z-invariants control the finiteness properties of normal
subgroups N < G with G/N is abelian:

N is of type FP, < S(G, N) C £X(G,z)

where S(G, N) = {x € Hom(G,R) \ {0} | x(N) = 0}.
@ In particular:

ker(x: G— Z)isf.g. <= {£x} C X'(G)
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Bieri-Neumann-Strebel-Renz invariants

Let X be a connected CW-complex with finite 1-skeleton, G = m1(X).
Definition

The Novikov-Sikorav completion of Z.G:

ZG, = {)\ e Z% | {g e supp X | x(9) < c} is finite, Vc € R}

ZE‘X is a ring, contains ZG as a subring = Z@X is a ZG-module.
Definition
¥9(X,Z) = {x € Hom(G,R) \ {0} | Hi(X,ZG_,) =0, ¥i < q} J

Bieri: G of type FPy — Y¥9(G,Z) = X9(K(G,1),Z), Vg < k.
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Bieri-Neumann-Strebel-Renz invariants BNSR-invariants

Theorem (P-S.)

If X has finite k-skeleton, then, for every q < k, then each ¥9(X,Z) is
contained in the complement of a union of rationally defined
subspaces (explicitly computable).

Corollary

Suppose G is a 1-formal group. Then £'(G) C R1(G,R)".
In particular, if R1(G,R) = H'(G, R), then £'(G) = 0.

Example

The above inclusion may be strict: Let G = ( ,b| aba—! = b?).
Then Gis 1-formal, £'(G) = (-0, 0), yet R1(G,R) = {0}.
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Bieri-Neumann-Strebel-Renz invariants BNSR-invariants of toric complexes
Theorem (P--S.)

TL7 U R (TLv

i<k

The BNSR invariants of right-angled Artin groups were computed by
Meier, Meinert, VanWyk (1998). Comparing their answer with our
computation of the resonance varieties, we get:

Corollary (P--S.)

SupposeV o € A = Ar, andV W C V such that o N W = (), the groups
Hi(Ikay, (o), Z) are torsion-free, ¥V j < k — dim(o) — 2. Then:

T%(Gr,z) = (| Ri(Ta,R))*

i<k

In particular, for all graphs T,
Y(Gr,7) = R}(Gr,R)"
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