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Toric complexes Partial products of spaces

Partial product construction
Input:

K , a simplicial complex on [n] = {1, . . . ,n}.
(X ,A), a pair of topological spaces, A 6= ∅.

Output:
ZK (X ,A) =

⋃
σ∈K

(X ,A)σ ⊂ X×n

where (X ,A)σ = {x ∈ X×n | xi ∈ A if i /∈ σ}.
Interpolates between

Z∅(X ,A) = ZK (A,A) = A×n and
Z∆n−1(X ,A) = ZK (X ,X ) = X×n

Examples:
Zn points(X , ∗) =

∨n X (wedge)
Z∂∆n−1(X , ∗) = T nX (fat wedge)
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Toric complexes Partial products of spaces

Properties:
L ⊂ K subcomplex⇒ ZL(X ,A) ⊂ ZK (X ,A) subspace.
(X ,A) pair of (finite) CW-complexes⇒ ZK (X ,A) is a (finite)
CW-complex.
ZK∗L(X ,A) ∼= ZK (X ,A)×ZL(X ,A).
f : (X ,A)→ (Y ,B) continuous map⇒ f×n : X×n → Y×n restricts
to a continuous map Z f : ZK (X ,A)→ ZK (Y ,B).
Consequently, (X ,A) ' (Y ,B)⇒ ZK (X ,A) ' ZK (Y ,B).
(Strickland) f : K → L simplicial Zf : ZK (X ,A)→ ZL(X ,A)
continuous (if X connected topological monoid, A submonoid).
(Denham–S. 2005) If (M, ∂M) is a compact manifold of dim d , and
K is a PL-triangulation of Sm on n vertices, then ZK (M, ∂M) is a
compact manifold of dim (d − 1)n + m + 1.
(Bosio–Meersseman 2006) If K is a polytopal triangulation of Sm,
then ZK (D2,S1) if n + m + 1 is even, or ZK (D2,S1)× S1 if
n + m + 1 is odd, is a complex manifold.
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Toric complexes Toric complexes

Toric complexes and right-angled Artin groups
Definition
Let L be simplicial complex on n vertices. The associated toric
complex, TL, is the subcomplex of the n-torus obtained by deleting the
cells corresponding to the missing simplices of L, i.e.,

TL = ZL(S1, ∗).

k -cells in TL ←→ (k − 1)-simplices in L.
CCW
∗ (TL) is a subcomplex of CCW

∗ (T n); thus, all ∂k = 0, and

Hk (TL,Z) = Csimplicial
k−1 (L,Z) = Z# (k − 1)-simplices of L.

H∗(TL,k) is the exterior Stanley-Reisner ring
∧

V ∗/JL, where
I V is the free k-module on the vertex set of L
I
∧

V ∗ is the exterior algebra on dual of V ,
I JL is the ideal generated by all monomials, tσ = v∗i1 · · · v

∗
ik

corresponding to simplices σ = {vi1 , . . . , vik } not belonging to L.
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Toric complexes Toric complexes

Right-angled Artin groups
Definition
Let Γ = (V,E) be a (finite, simple) graph. The corresponding
right-angled Artin group is

GΓ = 〈v ∈ V | vw = wv if {v ,w} ∈ E〉.

Γ = K n ⇒ GΓ = Fn; Γ = Kn ⇒ GΓ = Zn

Γ = Γ′
∐

Γ′′ ⇒ GΓ = GΓ′ ∗GΓ′′ ; Γ = Γ′ ∗ Γ′′ ⇒ GΓ = GΓ′ ×GΓ′′

Γ ∼= Γ′ ⇔ GΓ
∼= GΓ′

(Kim–Makar-Limanov–Neggers–Roush 1980)
π1(TL) = GΓ, where Γ = L(1).
K (GΓ,1) = T∆Γ

, where ∆Γ is the flag complex of Γ.
(Davis–Charney 1995, Meier–VanWyk 1995)

A := H∗(GΓ,k) =
∧

V ∗/JΓ, where JΓ is quadratic monomial ideal
⇒ A is a Koszul algebra (Fröberg 1975).
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Toric complexes Toric complexes

Formality

Definition (Sullivan)
A space X is formal if its minimal model is quasi-isomorphic to
(H∗(X ,Q),0).

Definition (Quillen)

A group G is 1-formal if its Malcev Lie algebra, mG = Prim(Q̂G), is a
(complete, filtered) quadratic Lie algebra.

Theorem (Sullivan)
If X formal, then π1(X ) is 1-formal.

Theorem (Notbohm–Ray 2005)
TL is formal, and so GΓ is 1-formal.
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Toric complexes Graded Lie algebras

Associated graded Lie algebra
Let G be a finitely-generated group. Define:

LCS series: G = G1 .G2 . · · · .Gk . · · · , where Gk+1 = [Gk ,G]

LCS quotients: grk G = Gk/Gk+1 (f.g. abelian groups)
LCS ranks: φk (G) = rank(grk G)

Associated graded Lie algebra: gr(G) =
⊕

k≥1 grk (G), with Lie
bracket [ , ] : Li × Lj → Li+j induced by group commutator.

Example (Witt, Magnus)
Let G = Fn (free group of rank n).
Then gr G = Lien (free Lie algebra of rank n), with LCS ranks given by

∞∏
k=1

(1− tk )φk = 1− nt .

Explicitly: φk (Fn) = 1
k
∑

d |k µ(d)nk/d , where µ is Möbius function.
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Toric complexes Graded Lie algebras

Holonomy Lie algebra
Definition (Chen)
The holonomy Lie algebra of G is the quadratic, graded Lie algebra

hG = Lie(H1)/ideal(im(∇))

where Hi = H1(G,Z), and ∇ : H2 → H1 ∧ H1 = Lie2(H1) is the
comultiplication map.

Properties:
U(h⊗Q) ∼= ExtA(Q,Q), for G = π1(X ) and A = H∗(X ,Q).
There is a canonical epimorphism hG � gr(G).

If G is 1-formal, then hG ⊗Q '−→ gr(G)⊗Q.

Example
G = Fn, then clearly hG = Lien, and so hG = gr(G).
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Toric complexes Graded Lie algebras

Let Γ = (V,E) graph, and PΓ(t) =
∑

k≥0 fk (Γ)tk its clique polynomial.

Theorem (Duchamp–Krob 1992, Papadima–S. 2006)
For G = GΓ:

1 gr(G) ∼= hG.
2 Graded pieces are torsion-free, with ranks given by

∞∏
k=1

(1− tk )φk = PΓ(−t).

Idea of proof:
1 A =

∧
V ∗/JΓ ⇒ hG = LΓ := Lie(V)/([v ,w ] = 0 if {v ,w} ∈ E).

2 Shelton–Yuzvinsky: U(LΓ) = A! (Koszul dual).
3 Koszul duality: Hilb(A!, t) · Hilb(A,−t) = 1.
4 Computation independent of coefficient field⇒ hG torsion-free.
5 But hG � gr(G) is iso over Q (by 1-formality)⇒ iso over Z.
6 LCS formula follows from (3) and PBW.
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Toric complexes Chen Lie algebras

Chen Lie algebras

Definition
The Chen Lie algebra of a (finitely generated) group G is gr(G/G′′),
i.e., the assoc. graded Lie algebra of its maximal metabelian quotient.
Write θk (G) = rank grk (G/G′′) for the Chen ranks.

Facts:
gr(G)� gr(G/G′′), and so φk (G) ≥ θk (G), with equality for k ≤ 3.
The map hG � gr(G) induces epimorphism hG/h

′′
G � gr(G/G′′).

(P.–S. 2004) If G is 1-formal, then hG/h
′′
G ⊗Q '−→ gr(G/G′′)⊗Q.

Example (Chen)

θk (Fn) =

(
n + k − 2

k

)
(k − 1), for all k ≥ 2.
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Toric complexes Chen Lie algebras

The Chen Lie algebra of a RAAG

Theorem (Papadima–S. 2006)
For G = GΓ:

1 gr(G/G′′) ∼= hG/h
′′
G.

2 Graded pieces are torsion-free, with ranks given by

∞∑
k=2

θk tk = QΓ

(
t

1− t

)
,

where QΓ(t) =
∑

j≥2 cj(Γ)t j is the “cut polynomial" of Γ, with

cj(Γ) =
∑

W⊂V : |W|=j

b̃0(ΓW).
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Toric complexes Chen Lie algebras

Idea of proof:
1 Write A := H∗(G, k) = E/JΓ, where E =

∧
k(v∗1 , . . . , v

∗
n ).

2 Write h = hG ⊗ k.
3 By Fröberg and Löfwall (2002)(

h′/h′′
)

k
∼= TorE

k−1(A,k)k , for k ≥ 2

4 By Aramova–Herzog–Hibi & Aramova–Avramov–Herzog (97-99):∑
k≥2

dimk TorE
k−1(E/JΓ,k)k =

∑
i≥1

dimk TorS
i (S/IΓ, k)i+1·

(
t

1− t

)i+1

,

where S = k[x1, . . . , xn] and IΓ = ideal 〈xixj | {vi , vj} /∈ E〉.
5 By Hochster (1977):

dimk TorS
i (S/IΓ,k)i+1 =

∑
W⊂V : |W|=i+1

dimk H̃0(ΓW, k) = ci+1(Γ).

6 The answer is independent of k⇒ hG/h
′′
G is torsion-free.

7 Using formality of GΓ, together with hG/h
′′
G ⊗Q '−→ gr(G/G′′)⊗Q

ends the proof.
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Toric complexes Chen Lie algebras

Example
Let Γ be a pentagon, and Γ′ a square with an edge attached to a
vertex. Then:

PΓ = PΓ′ = 1− 5t + 5t2, and so

φk (GΓ) = φk (GΓ′), for all k ≥ 1.

QΓ = 5t2 + 5t3 but QΓ′ = 5t2 + 5t3 + t4, and so

θk (GΓ) 6= θk (GΓ′), for k ≥ 4.
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Toric complexes Bestvina-Brady groups

Artin kernels

Definition
Given a graph Γ, and an epimorphism χ : GΓ � Z, the corresponding
Artin kernel is the group

Nχ = ker(χ : GL → Z)

Note that Nχ = π1(Tχ
L ), where Tχ

L → TL is the regular Z-cover defined
by χ. A classifying space for Nχ is Tχ

∆Γ
, where Γ = L(1).

Noteworthy is the case when χ is the “diagonal" homomorphism
ν : GL � Z, which assigns to each vertex the weight 1.
The corresponding Artin kernel, NΓ = Nν , is called the Bestvina–Brady
group associated to Γ.
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Toric complexes Bestvina-Brady groups

Stallings, Bieri, Bestvina and Brady: geometric and homological
finiteness properties of NΓ ←→ topology of ∆Γ, e.g.:

NΓ is finitely generated⇐⇒ Γ is connected
NΓ is finitely presented⇐⇒ ∆Γ is simply-connected.

More generally, it follows from Meier–Meinert–VanWyk (1998) and
Bux–Gonzalez (1999) that:

Theorem
Assume L is a flag complex. Let W = {v ∈ V | χ(v) 6= 0} be the
support of χ. Then:

1 Nχ is finitely generated⇐⇒ LW is connected, and, ∀ v ∈ V \W,
there is a w ∈W such that {v ,w} ∈ L.

2 Nχ is finitely presented⇐⇒ LW is 1-connected and, ∀ σ ∈ LV\W,
the space lkLW(σ) = {τ ∈ LW | τ ∪ σ ∈ L} is (1− |σ|)-acyclic.

Alex Suciu (Northeastern University) Partial products of circles U. Caen, June 2011 16 / 35



Toric complexes Bestvina-Brady groups

Theorem (P.–S. 2009)
Let Γ be a graph, and Nχ and Artin kernel.

1 If H1(Nχ,Q) is a trivial QZ-module, then Nχ is finitely generated.
2 If both H1(Nχ,Q) and H2(Nχ,Q) have trivial Z-action, then Nχ is

1-formal.
Thus, if Γ is connected, and H1(∆Γ,Q) = 0, then NΓ is 1-formal.

Theorem (P.–S. 2009)
Suppose H1(N,Q) has trivial Z-action. Then, both gr(N) and gr(N/N ′′)
are torsion-free, with graded ranks, φk and θk , given by

∞∏
k=1

(1− tk )φk =
PΓ(−t)
1− t

,

∞∑
k=2

θk tk = QΓ

( t
1− t

)
.
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Resonance varieties Resonance varieties

Resonance varieties
Let X be a connected CW-complex with finite k -skeleton (k ≥ 1).
Let k be a field; if chark = 2, assume H1(X ,Z) has no 2-torsion.
Let A = H∗(X , k). Then: a ∈ A1 ⇒ a2 = 0. Thus, get cochain complex

(A, ·a) : A0 a // A1 a // A2 // · · ·

Definition (Falk 1997, Matei–S. 2000)

The resonance varieties of X (over k) are the algebraic sets

Ri
d (X , k) = {a ∈ A1 | dimk H i(A,a) ≥ d},

defined for all integers 0 ≤ i ≤ k and d > 0.

Ri
d are homogeneous subvarieties of A1 = H1(X ,k)

Ri
1 ⊇ Ri

2 ⊇ · · · ⊇ Ri
bi +1 = ∅, where bi = bi(X ,k).

R1
d (X ,k) depends only on G = π1(X ), so denote it by Rd (G,k).
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Resonance varieties Resonance varieties

Resonance of toric complexes

Recall A = H∗(TL,k) is the exterior Stanley-Reisner ring of L. Using a
formula of Aramova, Avramov, and Herzog (1999), we prove:

Theorem (Papadima–S. 2009)

Ri
d (TL,k) =

⋃
W⊂V∑

σ∈LV\W
dimk H̃i−1−|σ|(lkLW

(σ),k)≥d

kW,

where LW is the subcomplex induced by L on W, and lkK (σ) is the link
of a simplex σ in a subcomplex K ⊆ L.

In particular:
R1

1(GΓ,k) =
⋃
W⊆V

ΓW disconnected

kW.

Alex Suciu (Northeastern University) Partial products of circles U. Caen, June 2011 19 / 35



Resonance varieties Resonance varieties
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Example
Let Γ and Γ′ be the two graphs above. Both have

P(t) = 1 + 6t + 9t2 + 4t3, and Q(t) = t2(6 + 8t + 3t2).

Thus, GΓ and GΓ′ have the same LCS and Chen ranks.
Each resonance variety has 3 components, of codimension 2:

R1(GΓ, k) = k23 ∪ k25 ∪ k35 , R1(GΓ′ , k) = k15 ∪ k25 ∪ k26 .

Yet the two varieties are not isomorphic, since

dim(k23 ∩ k25 ∩ k35) = 3, but dim(k15 ∩ k25 ∩ k26) = 2.
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Resonance varieties Kaehler manifolds

Kähler manifolds
Definition
A compact, connected, complex manifold M is called a Kähler manifold
if M admits a Hermitian metric h for which the imaginary part ω = =(h)
is a closed 2-form.

Examples: Riemann surfaces, CPn, and, more generally, smooth,
complex projective varieties.

Definition
A group G is a Kähler group if G = π1(M), for some compact Kähler
manifold M.

G is projective if M is actually a smooth projective variety.

G finite⇒ G is a projective group (Serre 1958).
G1,G2 Kähler groups⇒ G1 ×G2 is a Kähler group
G Kähler group, H < G finite-index subgroup⇒ H is a Kähler gp
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Resonance varieties Kaehler manifolds

Problem (Serre 1958)
Which finitely presented groups are Kähler (or projective) groups?

The Kähler condition puts strong restrictions on M:

1 H∗(M,Z) admits a Hodge structure
2 Hence, the odd Betti numbers of M are even
3 M is formal, i.e., (Ω(M),d) ' (H∗(M,R),0)

(Deligne–Griffiths–Morgan–Sullivan 1975)

The Kähler condition also puts strong restrictions on G = π1(M):

1 b1(G) is even
2 G is 1-formal, i.e., its Malcev Lie algebra m(G) is quadratic
3 G cannot split non-trivially as a free product (Gromov 1989)
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Resonance varieties Kaehler manifolds

Quasi-Kähler manifolds
Definition
A manifold X is called quasi-Kähler if X = X \D, where X is a compact
Kähler manifold and D is a divisor with normal crossings.

Similar definition for X quasi-projective.
The notions of quasi-Kähler group and quasi-projective group are
defined as above.

X quasi-projective⇒ H∗(X ,Z) has a mixed Hodge structure
(Deligne 1972–74)

X = CPn \ {hyperplane arrangement} ⇒ X is formal
(Brieskorn 1973)

X quasi-projective, W1(H1(X ,C)) = 0⇒ π1(X ) is 1-formal
(Morgan 1978)

X = CPn \ {hypersurface} ⇒ π1(X ) is 1-formal
(Kohno 1983)
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Resonance varieties Kaehler manifolds

Resonance varieties of quasi-Kähler manifolds
Theorem (D.–P.–S. 2009)
Let X be a quasi-Kähler manifold, and G = π1(X ). Let {Lα}α be the
non-zero irred components of R1(G). If G is 1-formal, then

1 Each Lα is a p-isotropic linear subspace of H1(G,C), with
dim Lα ≥ 2p + 2, for some p = p(α) ∈ {0,1}.

2 If α 6= β, then Lα ∩ Lβ = {0}.
3 Rd (G) = {0} ∪

⋃
α Lα, where the union is over all α for which

dim Lα > d + p(α).
Furthermore,

4 If X is compact Kähler, then G is 1-formal, and each Lα is
1-isotropic.

5 If X is a smooth, quasi-projective variety, and W1(H1(X ,C)) = 0,
then G is 1-formal, and each Lα is 0-isotropic.
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Resonance varieties Kaehler manifolds

Here we used the following

Definition
A non-zero subspace U ⊆ H1(G,C) is p-isotropic with respect to

∪G : H1(G,C) ∧ H1(G,C)→ H2(G,C)

if the restriction of ∪G to U ∧ U has rank p.

Example
Let C be a smooth complex curve with χ(C) < 0. Then

R1
1(π1(C),C) = H1(C,C)

and this space is either 1- or 0-isotropic, according to whether C is
compact or not.
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Resonance varieties Kaehler and quasi-Kaehler RAAGs

Theorem (Dimca–Papadima–S. 2009)

The following are equivalent:

1 GΓ is a quasi-Kähler group
2 Γ = Kn1,...,nr := K n1 ∗ · · · ∗ K nr

3 GΓ = Fn1 × · · · × Fnr

1 GΓ is a Kähler group
2 Γ = K2r

3 GΓ = Z2r

Example
Let Γ be a linear path on 4 vertices. The maximal disconnected
subgraphs are Γ{134} and Γ{124}. Thus:

R1(GΓ,C) = C{134} ∪ C{234}.

But C{134} ∩ C{234} = C{14}, which is a non-zero subspace.
Thus, GΓ is not a quasi-Kähler group.

Alex Suciu (Northeastern University) Partial products of circles U. Caen, June 2011 26 / 35



Resonance varieties Kaehler and quasi-Kaehler BB groups

Theorem (D.–P.–S. 2008)

For a Bestvina–Brady group NΓ = ker(ν : GΓ � Z), the following are
equivalent:

1 NΓ is a quasi-Kähler group
2 Γ is either a tree, or

Γ = Kn1,...,nr , with some ni = 1,
or all ni ≥ 2 and r ≥ 3.

1 NΓ is a Kähler group
2 Γ = K2r+1

3 NΓ = Z2r

Example
Γ = K2,2,2  GΓ = F2 × F2 × F2
NΓ = the Stallings group = π1(CP2 \ {6 lines})
NΓ is finitely presented, but H3(NΓ,Z) has infinite rank, so NΓ not FP3.
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Resonance varieties Hyperplane arrangements

Hyperplane arrangements
Let A be an arrangement of hyperplanes in C`, with complement
X = C` \

⋃
H∈AH, and group G = G(A) = π1(X ).

1 X is a smooth, quasi-projective variety, and so G is a
quasi-projective group.

2 X is formal, and so G = π1(X ) is 1-formal.
3 A = H∗(X ,Z) is the Orlik-Solomon algebra, determined by the

intersection lattice, L(A).
4 The resonance variety R1

1(X ,C) depends only on a generic
section A′ = {`1, . . . `n} in C2.

I Each component is a linear subspace.
I There are “local" components, corresponding to points where k ≥ 3

lines in A′ meet (these have dim = k − 1).
I There are also non-local components, corresponding to certain

“multinets" (these have dim = 2 or 3).
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Resonance varieties Hyperplane arrangements

Let A be an arrangement of lines in C2, with group G = G(A).

Theorem (S. 2009)
The following are equivalent:

1 G is a Kähler group.

2 G is a free abelian group of even rank.
3 A consists of an even number of lines in general position.

Theorem (S. 2009)
The following are equivalent:

1 G is a right-angled Artin group.

2 G is a finite direct product of finitely generated free groups.
3 The multiplicity graph Γ(A) is a forest.
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Bieri-Neumann-Strebel-Renz invariants BNSR-invariants

Σ-invariants

G finitely generated group C(G) Cayley graph.
χ : G→ R homomorphism Cχ(G) induced subgraph on vertex set
Gχ = {g ∈ G | χ(g) ≥ 0}.

Definition
Σ1(G) = {χ ∈ Hom(G,R) \ {0} | Cχ(G) is connected}

An open, conical subset of Hom(G,R) = H1(G,R), independent of
choice of generating set for G.

Definition

Σk (G,Z) = {χ ∈ Hom(G,R) \ {0} | the monoid Gχ is of type FPk}

Here, G is of type FPk if there is a projective ZG-resolution P• → Z,
with Pi finitely generated for all i ≤ k .
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Bieri-Neumann-Strebel-Renz invariants BNSR-invariants

The BNSR invariants Σq(G,Z) form a descending chain of open
subsets of Hom(G,R) \ {0}.
Σk (G,Z) 6= ∅ =⇒ G is of type FPk .
Σ1(G,Z) = Σ1(G).
The Σ-invariants control the finiteness properties of normal
subgroups N /G with G/N is abelian:

N is of type FPk ⇐⇒ S(G,N) ⊆ Σk (G,Z)

where S(G,N) = {χ ∈ Hom(G,R) \ {0} | χ(N) = 0}.
In particular:

ker(χ : G� Z) is f.g.⇐⇒ {±χ} ⊆ Σ1(G)
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Bieri-Neumann-Strebel-Renz invariants BNSR-invariants

Let X be a connected CW-complex with finite 1-skeleton, G = π1(X ).

Definition

The Novikov-Sikorav completion of ZG:

ẐGχ =
{
λ ∈ ZG | {g ∈ suppλ | χ(g) < c} is finite, ∀c ∈ R

}
ẐGχ is a ring, contains ZG as a subring =⇒ ẐGχ is a ZG-module.

Definition

Σq(X ,Z) = {χ ∈ Hom(G,R) \ {0} | Hi(X , ẐG−χ) = 0, ∀ i ≤ q}

Bieri: G of type FPk =⇒ Σq(G,Z) = Σq(K (G,1),Z), ∀q ≤ k .
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Theorem (P.–S.)
If X has finite k-skeleton, then, for every q ≤ k, then each Σq(X ,Z) is
contained in the complement of a union of rationally defined
subspaces (explicitly computable).

Corollary

Suppose G is a 1-formal group. Then Σ1(G) ⊆ R1
1(G,R){.

In particular, if R1
1(G,R) = H1(G,R), then Σ1(G) = ∅.

Example

The above inclusion may be strict: Let G = 〈a,b | aba−1 = b2〉.
Then G is 1-formal, Σ1(G) = (−∞,0), yet R1

1(G,R) = {0}.
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Theorem (P.-S.)

Σk (TL,Z) ⊆
( ⋃

i≤k

Ri
1(TL,R)

){
The BNSR invariants of right-angled Artin groups were computed by
Meier, Meinert, VanWyk (1998). Comparing their answer with our
computation of the resonance varieties, we get:

Corollary (P.-S.)
Suppose ∀ σ ∈ ∆ = ∆Γ, and ∀W ⊆ V such that σ ∩W = ∅, the groups
H̃j(lk∆W(σ),Z) are torsion-free, ∀ j ≤ k − dim(σ)− 2. Then:

Σk (GΓ,Z) =
( ⋃

i≤k

Ri
1(T∆Γ

,R)
){

In particular, for all graphs Γ,

Σ1(GΓ,Z) = R1
1(GΓ,R){
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