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The Johnson filtration

Filtrations and graded Lie algebras

Let G be a group, with commutator (x , y) = xyx−1y−1.
Suppose given a descending filtration

G = Φ1 ⊇ Φ2 ⊇ · · · ⊇ Φs ⊇ · · ·

by subgroups of G, satisfying

(Φs,Φt ) ⊆ Φs+t , ∀s, t ≥ 1.

Then Φs /G, and Φs/Φs+1 is abelian. Set

grΦ(G) =
⊕
s≥1

Φs/Φs+1.

This is a graded Lie algebra, with bracket [ , ] : grs
Φ×grt

Φ → grs+t
Φ

induced by the group commutator.
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The Johnson filtration

Basic example: the lower central series, Γs = Γs(G), defined as

Γ1 = G, Γ2 = G′, . . . , Γs+1 = (Γs,G), . . .

Then for any filtration Φ as above, Γs ⊆ Φs; thus, we have a morphism
of graded Lie algebras,

ιΦ : grΓ(G) // grΦ(G) .

Example (P. Hall, E. Witt, W. Magnus)

Let Fn = 〈x1, . . . , xn〉 be the free group of rank n. Then:

Fn is residually nilpotent, i.e.,
⋂

s≥1 Γs(Fn) = {1}.

grΓ(Fn) is isomorphic to the free Lie algebra Ln = Lie(Zn).

grs
Γ(Fn) is free abelian, of rank 1

s
∑

d |s µ(d)n
s
d .

If n ≥ 2, the center of Ln is trivial.
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The Johnson filtration

Automorphism groups
Let Aut(G) be the group of all automorphisms α : G→ G, with
α · β := α ◦ β. The Johnson filtration,

Aut(G) = F 0 ⊇ F 1 ⊇ · · · ⊇ F s ⊇ · · ·

with terms F s = F s(Aut(G)) consisting of those automorphisms which
act as the identity on the s-th nilpotent quotient of G:

F s = ker
(

Aut(G)→ Aut(G/Γs+1)
= {α ∈ Aut(G) | α(x) · x−1 ∈ Γs+1, ∀x ∈ G}

Kaloujnine [1950]: (F s,F t ) ⊆ F s+t .
First term is the Torelli group,

TG = F 1 = ker
(

Aut(G)→ Aut(Gab)
)
.
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The Johnson filtration

By construction, F 1 = TG is a normal subgroup of F 0 = Aut(G). The
quotient group,

A(G) = F 0/F 1 = im(Aut(G)→ Aut(Gab))

is the symmetry group of TG; it fits into exact sequence

1 // TG // Aut(G) // A(G) // 1 .

The Torelli group comes endowed with two filtrations:
The Johnson filtration {F s(TG)}s≥1, inherited from Aut(G).
The lower central series filtration, {Γs(TG)}.

The respective associated graded Lie algebras, grF (TG) and grΓ(TG),
come with natural actions of A(G), and the morphism

ιF : grΓ(TG)→ grF (TG)

is A(G)- equivariant.
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The Johnson filtration

Automorphism groups of free groups

Identify (Fn)ab = Zn, and Aut(Zn) = GLn(Z). The homomorphism
Aut(Fn)→ GLn(Z) is onto. Thus, A(Fn) = GLn(Z).
Denote the Torelli group by IAn = TFn , and the
Johnson–Andreadakis filtration by Js

n = F s(Aut(Fn)).
Magnus [1934]: IAn is generated by the automorphisms

αij :

{
xi 7→ xjxix−1

j

x` 7→ x`
αijk :

{
xi 7→ xi · (xj , xk )

x` 7→ x`

with 1 ≤ i 6= j 6= k ≤ n.
Thus, IA1 = {1} and IA2 = Inn(F2) ∼= F2 are finitely presented.
Krstić and McCool [1997]: IA3 is not finitely presentable.
It is not known whether IAn admits a finite presentation for n ≥ 4.
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The Johnson filtration

Nevertheless, IAn has some interesting finitely presented subgroups:
The McCool group of “pure symmetric” automorphisms, PΣn,
generated by αij , 1 ≤ i 6= j ≤ n.

The “upper triangular" McCool group, PΣ+
n , generated by αij , i > j .

Cohen, Pakianathan, Vershinin, and Wu [2008]:
PΣ+

n = Fn−1 o · · ·oF2 oF1, with extensions by IA-automorphisms.

The pure braid group, Pn, consisting of those automorphisms in
PΣn that leave the word x1 · · · xn ∈ Fn invariant.
Pn = Fn−1 o · · ·o F2 o F1, with extensions by pure braid
automorphisms.

PΣ+
2
∼= P2

∼= Z, PΣ+
3
∼= P3

∼= F2 × Z.

Question (CPVW): Is PΣ+
n
∼= Pn, for n ≥ 4?

Bardakov and Mikhailov [2008]: PΣ+
4 6∼= P4.
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The Johnson homomorphism

The Johnson homomorphism
Given a graded Lie algebra g, let

Der s(g) = {δ : g• → g•+s linear | δ[x , y ] = [δx , y ] + [x , δy ],∀x , y ∈ g}.

Then Der(g) =
⊕

s≥1 Ders(g) is a graded Lie algebra, with bracket
[δ, δ′] = δ ◦ δ′ − δ′ ◦ δ.

Theorem
Given a group G, there is a monomorphism of graded Lie algebras,

J : grF (TG) // Der(grΓ(G)) ,

given on homogeneous elements α ∈ F s(TG) and x ∈ Γt (G) by

J(ᾱ)(x̄) = α(x) · x−1.

Moreover, J is equivariant with respect to the natural actions of A(G).
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The Johnson homomorphism

The Johnson homomorphism informs on the Johnson filtration.

Theorem

Let G be a group. For each q ≥ 1, the following are equivalent:

1 J ◦ ιF : grs
Γ(TG)→ Ders(grΓ(G)) is injective, for all s ≤ q.

2 Γs(TG) = F s(TG), for all s ≤ q + 1.

Proposition
Suppose G is residually nilpotent, grΓ(G) is centerless, and
J ◦ ιF : gr1

Γ(TG)→ Der1(grΓ(G)) is injective. Then F 2(TG) = T ′G.
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The Johnson homomorphism

Let Inn(G) = im(Ad : G→ Aut(G)), where Adx : G→ G, y 7→ xyx−1.
Define the outer automorphism group of a group G by

1 // Inn(G) // Aut(G)
π // Out(G) // 1 .

Obtain:
Filtration {F̃ s}s≥0 on Out(G): F̃ s := π(F s).

The outer Torelli group of G: subgroup T̃G = F̃ 1 of Out(G)

Exact sequence: 1 // T̃G // Out(G) // A(G) // 1 .

Let g be a graded Lie algebra, and ad : g→ Der(g), where adx : g→ g,
y 7→ [x , y ]. Define the Lie algebra of outer derivations of g by

0 // im(ad) // Der(g)
q // D̃er(g) // 0 .

Alex Suciu (Northeastern University) The Andreadakis–Johnson filtration U. Caen, June 2011 12 / 26



The Johnson homomorphism

Theorem

Suppose Z (grΓ(G)) = 0. Then the Johnson homomorphism induces
an A(G)-equivariant monomorphism of graded Lie algebras,

J̃ : grF̃ (T̃G) // D̃er(grΓ(G)) .

To summarize:

grΓ(G)
= //

� _

grΓ(Ad)

��

grΓ(G)
= //

� _

Ad
��

grΓ(G)� _

ad
��

grΓ(TG)
ιF //

grΓ(π)
����

grF (TG) �
� J //

π̄����

Der(grΓ(G))

q
����

grΓ(T̃G)
ιF̃ // grF̃ (T̃G) �

� J̃ // D̃er(grΓ(G)) ,

Alex Suciu (Northeastern University) The Andreadakis–Johnson filtration U. Caen, June 2011 13 / 26



The Torelli group of the free group

The Torelli group of Fn
Let TFn = J1

n = IAn be the Torelli group of Fn. Recall we have an
equivariant GLn(Z)-homomorphism,

J : grF (IAn)→ Der(Ln),

In degree 1, this can be written as

J : gr1
F (IAn)→ H∗ ⊗ (H ∧ H),

where H = (Fn)ab = Zn, viewed as a GLn(Z)-module via the defining
representation. Composing with ιF , we get a homomorphism

J ◦ ιF : (IAn)ab // H∗ ⊗ (H ∧ H) .

Theorem (Andreadakis, Cohen–Pakianathan, Farb, Kawazumi)
For each n ≥ 3, the map J ◦ ιF is a GLn(Z)-equivariant isomorphism.

Thus, H1(IAn,Z) is free abelian, of rank b1(IAn) = n2(n − 1)/2.
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The Torelli group of the free group

We have a commuting diagram,

Inn(Fn)
= //

� _

��

Inn(Fn)� _

��
1 // IAn //

π����

Aut(Fn)

π����

// GLn(Z)

=
��

// 1

1 // OAn // Out(Fn) // GLn(Z) // 1

Thus, OAn = T̃Fn .
Write the induced Johnson filtration on Out(Fn) as J̃s

n = π(Js
n).

GLn(Z) acts on (OAn)ab, and the outer Johnson homomorphism
defines a GLn(Z)-equivariant isomorphism

J̃ ◦ ιF̃ : (OAn)ab
∼= // H∗ ⊗ (H ∧ H)/H .

Moreover, J̃2
n = OA′n, and we have an exact sequence

1 // F ′n
Ad // IA′n // OA′n // 1 .
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The Torelli group of the free group

Consider the commuting diagram

grΓ(Fn) ∼= Ln
J jAd

ww

� t
ad
&&

grΓ(IAn)
ιF //

grΓ(π)

����

grF (IAn)
J //

π

����

Der(Ln)

q

����

evi // Ln

Ln−1
∼= grΓ(Kn)

grΓ(κ) 66

grΓ(π◦κ)

''

ψ

11

grΓ(OAn)
ιF̃ // grF̃ (OAn)

J̃ // D̃er(Ln)

where
Kn := ker(PΣ+

n � PΣ+
n−1) ∼= Fn−1, and κ : Kn ↪→ IAn inclusion.

evi : Der∗(Ln)→ L∗+1
n , evi(δ) = δ(x̄i).

Then, the restriction of evi ◦ψ to Ls
n−1 equals (−1)s adx̄n if i = n, and 0

otherwise. Moreover, im(ψ) ∩ im(ad) = {0}.
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The Torelli group of the free group

From this, we get:

Theorem

Let G be either IAn or OAn, and assume n ≥ 3. Then:
1 The Q-vector space grΓ(G)⊗Q is infinite-dimensional.

2 The QGab-module H1(G′,Q) is not trivial.

Alex Suciu (Northeastern University) The Andreadakis–Johnson filtration U. Caen, June 2011 17 / 26



The Torelli group of the free group

Deeper into the Johnson filtration

Conjecture (F. Cohen, A. Heap, A. Pettet 2010)

If n ≥ 3, s ≥ 2, and 1 ≤ i ≤ n − 2, the cohomology group H i(Js
n ,Z) is

not finitely generated.

We disprove this conjecture, at least rationally, in the case when n ≥ 5,
s = 2, and i = 1.

Theorem
If n ≥ 5, then dimQ H1(J2

n ,Q) <∞.

To start with, note that J2
n = IA′n. Thus, it remains to prove that

b1(IA′n) <∞, i.e., (IA′n/IA′′n)⊗Q is finite dimensional.
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Alexander invariant and cohomology jump loci

The Alexander invariant
Let G be a group. Recall G′ = (G,G) and Gab = G/G′ is the maximal
abelian quotient of G.
Similarly, G′′ = (G′,G′) and G/G′′ is the maximal metabelian quotient.
Get exact sequence 0 // G′/G′′ // G/G′′ // Gab // 0 .
Conjugation in G/G′′ turns the abelian group

B(G) := G′/G′′ = H1(G′,Z)

into a module over R = ZGab, called the Alexander invariant of G.
Since both G′ and G′′ are characteristic subgroups of G, the action of
Aut(G) on G induces an action on B(G). Although this action need not
respect the R-module structure, we have:

Proposition
The Torelli group TG acts R-linearly on the Alexander invariant B(G).
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Alexander invariant and cohomology jump loci

Characteristic varieties
Let G be a finitely generated group.

The character group Ĝ = Hom(G,C×) is an algebraic group.

The projection ab : G→ Gab induces an isomorphism Ĝab
'−→ Ĝ.

The identity component, Ĝ0, is isomorphic to a complex algebraic
torus of dimension n = rank Gab.
The coordinate ring of Ĝ = H1(G,C×) is RC = C[Gab].
The (first) characteristic variety of G is the support of the
Alexander invariant: V(G) = V (ann B) ∪ {1} ⊂ Ĝ.
V(G) finite⇐⇒ dimQ B(G)⊗Q <∞.

Example
If G = Zn, then B(G) = 0 and V(G) = {1} ⊂ (C×)n.
If G = Fn, n ≥ 2, then V(G) = (C×)n.
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Alexander invariant and cohomology jump loci

Resonance varieties
Let ∪ : H1(G,C) ∧ H1(G,C)→ H2(G,C) be the cup-product map.
The (first) resonance variety of G is defined as

R(G) = {z ∈ H1(G,C) | ∃u ∈ H1(G,C),u 6= λz and z ∪ u = 0}.

This is a homogeneous algebraic subvariety of H1(G,C) = Cn,
where n = b1(G).
Let TC1(V(G)) be the tangent cone to V(G) at 1, viewed as a
subset of T1(T(G)) = H1(G,C). Then:

TC1(V(G)) ⊆ R(G).

Example
If G = Zn, then R(G) = {0}.
If G = Fn, n ≥ 2, then R(G) = Cn.
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Cohomology and sln(C)-representation spaces

Representations of sln(C)
h: the Cartan subalgebra of gln(C), with coordinates t1, . . . , tn.
{ti − tj | 1 ≤ i < j ≤ n}: the positive roots of sln(C).
λi = t1 + · · ·+ ti .
V (λ): the irreducible, finite dimensional representation of sln(C)
with highest weight λ =

∑
i<n aiλi , with ai ∈ Z≥0.

Set HC = H1(Fn,C) = Cn, and

V := H1(OAn,C) = HC ⊗ (H∗C ∧ H∗C)/H∗C.

K := ker
(
∪ : V ∧ V → H2(OAn,C)

)
.

Theorem (Pettet 2005)
Fix n ≥ 4, and set λ = λ1 + λn−2 and µ = λ1 + λn−2 + λn−1 Then
V = V (λ) and K = V (µ), as sln(C)-modules.
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Cohomology and sln(C)-representation spaces

Theorem
R(OAn) = {0}, for all n ≥ 4.

Proof.
Let u0 ∈ V (µ) be a maximal vector.
Suppose R 6= {0}. Then, since R is a Zariski closed,
sln(C)-invariant cone in V (λ), it must contain a maximal vector
v0 ∈ V (λ). (This follows from the Borel fixed point theorem.)
Since v0 ∈ R, there is a w ∈ V (λ) such that u0 = v0 ∧ w .
Let x ∈ sln(C)+. Since u0, v0 are max vectors, xu0 = xv0 = 0.
Since u0 = v0 ∧ w , we have xu0 = xv0 ∧ w + v0 ∧ xw .
Hence, v0 ∧ xw = 0, and thus xw ∈ C · v0.
This implies w = 0, and so u0 = v0 ∧ w = 0, contradicting the
maximality of u0.
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Cohomology and sln(C)-representation spaces

Let S be a complex, simple linear algebraic group defined over Q, with
Q-rank(S) ≥ 1, and let Γ be an arithmetic subgroup of S.

Theorem (Dimca, Papadima 2010)
Suppose Γ acts on a lattice L, such that the action of Γ on L⊗ C
extends to a rational, irreducible S-representation. Then, the
corresponding action of Γ on the complex algebraic torus
L̂ = Hom(L,C×) is geometrically irreducible, i.e., the only Γ-invariant,
Zariski closed subsets of L̂ are either equal to L̂, or finite.
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Cohomology and sln(C)-representation spaces

Theorem
If n ≥ 4, then V(OAn) is finite, and so b1(OA′n) <∞.

Proof.
Set S = sln(C), Γ = SL(n,Z), L = (OAn)ab. By above result:
L̂ = H1(OAn,C×) is geometrically Γ-irreducible.

The variety V = V(OAn) is a Γ-invariant, Zariski closed subset of L̂.

Suppose V is infinite. Then V = L̂, and so R(OAn) = H1(OAn,C),
contradicting R = {0}.
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Cohomology and sln(C)-representation spaces

Theorem
If n ≥ 5, then b1(IA′n) <∞.

Proof.
For each n, the Hochschild-Serre spectral sequence of the extension
1 // F ′n // IA′n // OA′n // 1 gives rise to exact sequence

H1(F ′n,C)IA′
n

// H1(IA′n,C) // H1(OA′n,C) // 0 .

The last term is finite-dimensional for all n ≥ 4 by previous theorem,
while the first term is finite-dimensional for all n ≥ 5, by the nilpotency
of the action of IA′n on F ′n/F ′′n .
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