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INTRODUCTION

» The work of Stefan Papadima spans some
four decades (1977-2017).

» His research covered many areas of
Algebraic, Geometric, and Differential
Topology; Algebraic and Differential
Geometry; Several Complex Variables; Group
Theory; Lie Algebras; and Combinatorics.

» He published over 70 articles, many in top journals, with half a
dozen papers still coming out.

» The two of us collaborated on 28 papers, starting in late 1999
during a 6-week Research in Pairs at Oberwolfach, with the last
one completed in November 2017.
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Here are some of the themes from Papadima’s work:

» Rational Homotopy Theory

» Rational homotopy of Thom spaces

» Formality of spaces and maps

» Rational classification of differentiable
manifolds

» Rigidity properties of homogeneous
spaces

» Isometry-invariant geodesics

» Closed manifolds and Artinian complete
intersections

» Rational K (=, 1) spaces and Koszul S
algebras Boston 2006

» Finite algebraic models and actions of
compact Lie groups

Bl
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» Lie Algebras

» Malcev Lie algebras

» Holonomy Lie algebras

» Chen Lie algebras

» Homotopy Lie algebras and the
Rescaling Formula

» Infinitesimal finiteness obstructions

» Discrete Groups

» Braids and Campbell-Hausdorff invariants

» Finite-type invariants for braid groups

» Right-angled Artin groups

» Bestvina—Brady groups

» McCool groups

» Finiteness properties for Torelli groups

» Johnson filtration of automorphism Trieste 2006
groups
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Venice 2007

» Hyperplane Arrangements

» Hypersolvable arrangements

» Decomposable arrangements

Homotopy theory of complements of arrangements
» Minimality of arrangement complements

Milnor fibrations of arrangements

v

v
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Nice 2009

» Cohomology Jump Loci and Representation Varieties

» Germs of cohomology jump loci

» The Tangent Cone Formula

» Jump loci for quasi-projective manifolds

» Vanishing resonance and representations of Lie algebras
» Representation varieties and deformation theory

» Higher rank cohomology jump loci

» Naturality properties of embedded jump loci

ARRANGEMENTS
000000000
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ASSOCIATED GRADED LIE ALGEBRAS
» Let G be a group. The lower central series of G is defined
inductively by v1(G) = G, 12(G) = G' = [G, G], and

Yk+1(G) = [%(G), GI.

» Then v (G) < G, and gri(G) := v« (G)/vk+1(G) is abelian. Set
gr(G) = D gr(Q).
k=1

» This is a graded Lie algebra, with Lie bracket
[, ]: grg x gr, — grg., induced by the group commutator.

» IfG is finitely generated, then gr(G) is also finitely generated, by
gr1(G) = Gap. We let ¢ (G) = rankgri(G).

» Example: if F,, is the free group of rank n, then
» gr(Fy) is the free Lie algebra Lie(Z").
» gri(Fp) is free abelian, of rank ¢« (F,) = %Zcﬂkﬂ(d)ng'
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MALCEV LIE ALGEBRAS

» The group-algebra QG has a natural Hopf algebra structure,
with comultiplication A(g) = g ® g and counite: QG — Q.

» (Quillen 1968) Let | = kere. The [-adic completion

S —

QG = lim, QG/I¥ is a filtered, complete Hopf algebra.
» An element x ¢ kG is called primitive if Ax = x®1 + 1&x. The
set of all such elements,
m(G) = Prim(QG),

with bracket [x, y] = xy — yx, is a complete, filtered Lie algebra,
called the Malcev Lie algebra of G.

» Moreover, if we set gry(G) = gr(G) ® Q, then
gr(m(G)) = gro(G).

» (Sullivan 1977) A finitely genetared group G is 1-formal if and
only if m(@) is a quadratic Lie algebra.
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HOLONOMY LIE ALGEBRAS
Let G be a finitely generated group, with G,;, torsion-free.
Set A = H'(G,7Z) and A; = (A)* = Hom(A', 7).

» The cup-product map A' ® A" — A? factors through a linear
map p: A A A — A2

v

v

» Dualizing, and identifying (A" A A')* =~ A; A A;, we obtain a
linear map, ©*: A — Ay A Ay = Liea(Aq).
DEFINITION (CHEN 1973, MARKL-PAPADIMA 1992)
The holonomy Lie algebra of G is h(G) = Lie(Aq)/{im p*).

» h(@G) inherits a natural grading from Lie(A+).
» h(@G) is a quadratic Lie algebra.

» There is a canonical surjection h(G) — gr(G), which is an
isomorphism precisely when gr(G) is quadratic.
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CHEN LIE ALGEBRAS

» The Chen Lie algebra of a group G is gr(G/G"), the associated
graded Lie algebra of its maximal metabelian quotient.

» Assuming G is finitely generated, write 04 (G) = rankgr,(G/G")
for the Chen ranks.

» (Chen 1951) Ok (Fp) = ("X 2)(k — 1), for all k > 2.

» The projection G — G/G” induces gr(G) — gr(G/G"), and so
ok (G) = 0k(G), with equality for k < 3.

» The map h(G) — gr(G) induces b(G)/b(G)" — gr(G/G").

THEOREM (PAPADIMA-S. 2004)
If G is 1-formal, then bho(G)/bo(G)" = gro(G/G").

Further improvements can be found in [S.—He Wang, 2017].
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LIE ALGEBRAS OF A RAAG
Let G=Gr={(ve V(I |vw=wvif{v,w}e E(I')) be the
right-angled Artin group associated to a finite simple graph I'.

THEOREM (DUCHAMP-KROB 1992, PAPADIMA-S. 2006)
> gr(G) = h(G).

» The graded pieces are torsion-free, with ranks given by
[T5,(1 — t5)%« = Pr(—t), where Pr(t) = 2 k>0 fi (D)X is the
clique polynomial of ', with f, (') = #{k-cliques of T'}.

THEOREM (PS 2006)

> gr(G/G") = b(G)/H(G)".

» The graded pieces are torsion-free, with ranks given by
Shlo Okt = Qr(t/(1 — 1)), where Qr(t) = 3., (Tt is the
“cut polynomial” of T, with ¢(I) = Xy jw—; Bo(Tw).
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THE RESCALING FORMULA
Let X be a connected space, and let Y be a simply-connected

space (all spaces ~ to finite-type CW-complexes)
DEFINITION (PAPADIMA-S. 2004)

We say Y is a k-rescaling of X (over a ring R) if:
H*(Y,R) ~ H*(X,R)[k] as graded rings

thatis, H'(Y,R) = H/(X,R) if i = (2k + 1)j and vanishes
otherwise, and all isomorphisms compatible with cup products.

Examples of rescalings (over R = Z)
» X = 81, Y = 82k+1
» X = #‘?81 % 81, Y = #$82k+1 > 82k+1
> X = COUL, Hp, Y = chenn g {6 where
A= {Hy,..., Hy} is a hyperplane arrangement in C* and

AR = (HS W H %Y (the redundant subspace arr.)
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» For a graded Lie algebra L, its k-rescaling is the graded Lie
algebra L[k] with L[k]oxg = Lg and L[k]p, = O otherwise, and
with Lie bracket rescaled accordingly.

» The homotopy Lie algebra of a simply-connected space Y is
the graded Lie algebra 7. (QY) ® Q := @, 7(Q2Y) ® Q, with
Lie bracket coming from the Whitehead product.

THEOREM (PS 2004)

Let Y be a k-rescaling of X, and suppose H*(X,Q) is a Koszul
algebra. Then:

» T(QY) ® Q = gr,. (m X) ® Q[K].
» Set &, :=rank 7, (QY) = rank 71 (Y). Then®, =0 if2k 1 r,

and .
H (1 — t(2k+1)/)¢2ki _ POInX(—tk)

i=1

Consequently, Poingy (t) = Poiny (—t2%)~1.
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ALGEBRAIC MODELS FOR SPACES

» For any (path-connected) space X, Sullivan defined a
commutative differential graded algebra over QQ, denoted
Ap(X), such that H*(ApL (X)) = H*(X, Q).

» An algebraic (q-)model for X over a field k of characteristic 0 is
a k-cgda (A, d) which is (g-) equivalent (i.e., connected by a
zig-zag of (g-) quasi-isomorphisms) to Ap(X) ®q k.

» A cdga Ais formal (or just g-formal) if it is (g-) equivalent to
(H*(A).d = 0).

» A CDGA Alis of finite-type (or g-finite) if it is connected (i.e.,

A — - 1) and each graded piece A’ (with i < q) is
finite-dimensional.

» Examples of spaces having finite-type models include:

» Formal spaces (such as compact Kahler manifolds, hyperplane
arrangement complements, toric spaces, etc).

» Quasi-projective manifolds, compact solvmanifolds, and
Sasakian manifolds, etc.
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CHARACTERISTIC VARIETIES
» Let X be a connected, finite-type CW-complex, and G = 71 (X).

» The algebra R = C[G,}] is the coordinate ring of the character
group, Char(X) = Hom(G, C*) = (C*)?(X) x Tors(Gap).

The characteristic varieties of X are the homology jump loci
VLX) = {p € Char(X) | dim¢c H;(X,C,) = s}.

v

v

The algebraic sets V.(X) are homotopy-type invariants of X.

VI(G) := V! (X) depend only on G;in fact, VI(G) = VI(G/G").
These varieties can be arbitrarily complicated. E.g., if

fez[tf',... t7'] is a Laurent polynomial with f( ) = 0, there
is a f.p. group G with G, = Z" such that V] (G) = {f = 0}.

v

v

THEOREM (..., ARAPURA 1999, ..., BUDUR-WANG 2015)

If X is a quasi-projective manifold, the varieties VL(X) are finite
unions of torsion-translates of subtori of Char(X).
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RESONANCE VARIETIES

» Let A= (A°®,d) be a connected, finite-type cdga over C.

v

For each ae Z'(A) = H'(A), we get a cochain complex,

0 5

A2

§9
(A%, 6,): A0 2. Al
with differentials 6. (u) = a-u+du,forall ue A’

The resonance varieties of A are the affine varieties

v

RL(A) = {ae H'(A) | dim H'(A®,8,) = s}.

» For a space X, the resonance varieties RL(X) := RL(H*(X,C))
are homogeneous subsets of H' (X, C).
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THE TANGENT CONE THEOREM
» Letexp: H'(X,C) — H'(X,C*) be the coefficient
homomorphism induced by C — C*, z — €&~.

» (DPS 2010) For a Zariski closed subset W < H'(X,C*), define
(W) = {ze H'(X,C) | exp(A\z) € W, YA e C}.

» The exponential tangent cone 7 (W) is a finite union of
rationally defined linear subspaces included in TCy(W).
THEOREM (LIBGOBER 2002)

TC1(Vi(X)) € RE(X).

THEOREM (DIMCA-PAPADIMA-S. 2010, DIMCA-PAPADIMA 2014)
Let X be a formal space. Then:
» The map exp: H'(X,C) — H'(X,C*) induces isomorphisms
of analytic germs, R(X, C) gy = Vg(X)(1)-
» (VX)) = TC1(VL(X)) = RE(X).
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SPACES WITH FINITE MODELS

THEOREM

Let X be a connected CW-complex with finite q-skeleton.
Assume X admits a q-finite g-model A. Then, for all i < q:
» (Dimca—Papadima 2014) VL(X)1) = R5(A)o)-
> (Macinic—Papadima—Popescu—S. 2017)
TCo(Rs(A)) = Rs(X).
» (Budur-Wang 2017) All irreducible components of VL(X)
passing through the identity of H' (X, C*) are algebraic
subtori.

EXAMPLE

Let G be a f.p. group with G,, = Z" and V! (G) = {t e (C*)" |
>, ti = n}. Then G admits no 1-finite 1-model.
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THEOREM (PAPADIMA-S. 2017)

Let X be a space which admits a q-finite g-model. If My(X) is
the Sullivan q-minimal model of X, then bj(Mq(X)) < oo, for all
I<qg+1.

EXAMPLE

» Consider the free metabelian group G = F,, /F} with n > 2.

» We have V' (G) = V'(F,) = (C*)", and so G passes the
Budur-Wang test.

» But bo(M1(G)) = w0, and so G admits no 1-finite 1-model.
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FINITENESS OBSTRUCTIONS FOR GROUPS

THEOREM (PAPADIMA-S 2017)

Let G be a metabelian group of the form G = = /", where = is
a f.g. group which has a free, non-cyclic quotient. Then:

» @G is not finitely presentable.

» G does not admit a 1-finite 1-model.

THEOREM (PS 2017)

A finitely generated group G admits a 1-finite 1-model if and
only if its Malcev Lie algebra m(G) is the LCS completion of a
finitely presented Lie algebra.
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BIERI-NEUMANN-STREBEL-RENZ INVARIANTS
» (Bieri-Neumann-Strebel 1987) For a f.g. group G, let

Y1(G) = {x € S(G) | C,(G) is connected},
where S(G) = (Hom(G,R)\{0})/R* and C, (G) is the induced
subgraph of Cay(G) on vertex set G, = {ge G| x(g) = 0}.

» ¥1(G) is an open set, independent of generating set for G.
» (Bieri, Renz 1988)
YX(G,Z) = {x € S(G) | the monoid G, is of type FPx}.
In particular, X' (G, Z) = ¥1(G).
» The X-invariants control the finiteness properties of normal
subgroups N < G for which G/N is free abelian:

N is of type FPx < S(G,N) = ¥(G,Z)
where S(G, N) = {x € S(G) | x(N) = 0}. In particular:

ker(x: G — Z)isf.g. — {+x} = £'(G).
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BOUNDING THE Y -INVARIANTS

» The Z-invariants were extended to spaces by Farber,
Geoghegan, and Schitz (2010), using Novikov homology.

» For a connected CW-complex X with let G = 71(X), define
YK(X.Z) := {x € S(G) | H(X,ZG_,) = 0, Vi < k}.

> Set i (W) = 7 (W) n H'(X,R) and W/(X) = [Jg<; V] (X).
THEOREM (PAPADIMA-S. 2010)
(X, Z) = S(G\S(TF (W' (X)).
» If X is formal, we may replace 7 (W'(X)) with (J,, R{(X,R).

» (PS 2006/09) Equality holds for RAAGs and toric complexes.

» (Koban—McCammond—Meier 2015) Equality holds for the pure
braid groups P, in degree /i = 1.
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KOLLAR’S QUESTION

Two groups, Gi and Go, are said to be commensurable up to
finite kernels if there is a zig-zag of homomorphisms,

Gi Ho T Gz ,
N /
H Hy

with all arrows of finite kernel and cofinite image.
QUESTION (J. KOLLAR 1995)

Given a smooth, projective variety M, is the group G = 71 (M)
commensurable, up to finite kernels, with another group, ,
admitting a K (m, 1) which is a quasi-projective variety?

THEOREM (DIMCA-PAPADIMA-S. 2009)

For each k > 3, there is a smooth, irreducible, complex
projective variety M of complex dimension k — 1, such that
w1 (M) is of type F_1, but not of type FPy.
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HYPERPLANE ARRANGEMENTS

» An arrangement of hyperplanes is a finite set A of
codimension 1 linear subspaces in a finite-dimensional
C-vector space V.

» The intersection lattice, L(A), is the poset of all intersections of
A, ordered by reverse inclusion, and ranked by codimension.

» The complement, M(A) = V\ | Jy 4 H, is a connected, smooth
quasi-projective variety, and also a Stein manifold.

» The fundamental group = = 71(M(.A)) admits a finite
presentation, with generators xy for each H € A.

+ Set U(A) = P(M(A)). Then M(A) =~ U(A) x C*.

THEOREM (DIMCA-PAPADIMA 2003)
M(A) has the homotopy type of a minimal CW-complex.

This solved a conjecture made by Papadima-S. at MFO in 1999.
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COHOMOLOGY RING

» The logarithmic 1-form wyy = 5= dlog ay € Qur(M) is a closed
form, representing a class ey € H' (M, Z).

» Let E be the Z-exterior algebra on {ey | H € A}, and let
0: E* — E*~ be the differential given by d(ey) = 1.

» Thering H*(M(A), Z) is isomorphic to the OS-algebra E/I,
where

| = ideal {8(%@) ‘B c Aand COdim,‘EJBH < |B| }

» Hence, the map ey — wy extends to a cdga quasi-isomor-
phism, w: (H*(M,R),d = 0) —= Qi (M) .

» Therefore, M(.A) is formal.

» M(A) is minimally pure (i.e., H*(M(A), Q) is pure of weight 2k,
for all k), which again implies formality (Dupont 2016).
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MULTINETS AND DEGREE 1 RESONANCE

FIGURE: (3,2)-net; (3,4)-multinet; non-3-net, reduced (3, 4)-multinet

THEOREM (FALK, COHEN-S., LIBGOBER-YUZVINSKY, FALK-YUZ)

RM(A),C) = | J J A

BEA N ak-multinet on B
with at least s + 2 parts

where Py is the (k — 1)-dimensional linear subspace spanned
by the vectors u> — uy, ..., Ux — Uy, where u, = ZHE& myeéey.
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MILNOR FIBRATION

\_/a
F
Bl F
» Let A be an arrangement of n hyperplanes in C?*'. For each
H e Alet ay be a linear form with ker(ay) = H, and let

Q= HHEA aH.

» Q: C9*1 - C restricts to a smooth fibration, Q: M(A) — C*.
The Milnor fiber of the arrangement is F(A) := Q~'(1).

» F is a Stein manifold. It has the homotopy type of a finite cell
complex of dim d. In general, F is neither formal, nor minimal.

» F = F(A) is the regular, Z,-cover of U = U(A), classified by
the morphism 71 (U) — Z, taking each loop xy to 1.
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MODULAR INEQUALITIES
» The monodromy diffeo, h: F — F, is given by h(z) = g2mi/nz,

» Let A(t) be the characteristic polynomial of h,: H{(F,C)O.
Since h" = id, we have

A(t) = o (™,
rin
where ®,(t) is the r-th cyclotomic polynomial, and e,(.A) € Zo.

» WLOG, we may assume d = 2, so that A = P(A) is an
arrangement of lines in CP?,

» If there is no point of A of multiplicity g > 3 such that r | g, then
er(A) = 0 (Libgober 2002).

» In particular, if A has only points of multiplicity 2 and 3, then
A(t) = (t—1)""1(#? + t 4+ 1)%. If multiplicity 4 appears, then we
also get factor of (t 4+ 1)% . (1% + 1),
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» Let A= H*(M(A),k),and leto =Y, sene A"
» Assume k has characteristic p > 0, and define
Bp(A) = dimy H' (A, -0).
Thatis, Bp(A) = max{s | 0 € RL(A k)}.

THEOREM (COHEN-ORLIK 2000, PAPADIMA-S. 2010)
epm(A) < Bp(A), forallm > 1.

THEOREM (PAPADIMA-S. 2017)

» Suppose A admits a k-net. Then 3,(A) = 0 ifpt k and
Bp(A) = k — 2, otherwise.

» If A admits a reduced k-multinet, then e, (A) > k — 2.
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COMBINATORICS AND MONODROMY
THEOREM (PAPADIMA-S. 2017)

Suppose A has no points of multiplicity 3r with r > 1. TFAE:
» A admits a reduced 3-multinet.
» A admits a 3-net.
» B3(A) # 0
Moreover, the following hold:
» B3(A) <2
» e3(A) = (3(A), and thus e;(A) is determined by L.>(A).

In particular, if A has only double and triple points, then A(t) is
combinatorially determined.

THEOREM (PS 2017)

Suppose A supports a 4-net and 5o(A) < 2. Then
62(A) = e4(A) = f2(A) =
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CONJECTURE (PAPADIMA-S. 2017)

The characteristic polynomial of the degree 1 algebraic
monodromy for the Milnor fibration of an arrangement A of rank
at least 3 is given by the combinatorial formula

Aa(t) = (t = DAt + 1) + 1)) + £+ 1)BA,

The conjecture has been verified for several classes of
arrangements, such as:

» All sub-arrangements of non-exceptional Coxeter arrangements
(Macinic, Papadima).

» All complex reflection arrangements (Macinic, Papadima,
Popescu, Dimca, Sticlaru).

» Certain types of complexified real arrangements (Yoshinaga,
Bailet, Torielli, Settepanella).
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Stefan Papadima, 1953-2018
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