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INTRODUCTION

§ The work of Ştefan Papadima spans some
four decades (1977–2017).

§ His research covered many areas of
Algebraic, Geometric, and Differential
Topology; Algebraic and Differential
Geometry; Several Complex Variables; Group
Theory; Lie Algebras; and Combinatorics. Bucharest 1980

§ He published over 70 articles, many in top journals, with half a
dozen papers still coming out.

§ The two of us collaborated on 28 papers, starting in late 1999
during a 6-week Research in Pairs at Oberwolfach, with the last
one completed in November 2017.
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Here are some of the themes from Papadima’s work:

§ Rational Homotopy Theory
§ Rational homotopy of Thom spaces
§ Formality of spaces and maps
§ Rational classification of differentiable

manifolds
§ Rigidity properties of homogeneous

spaces
§ Isometry-invariant geodesics
§ Closed manifolds and Artinian complete

intersections
§ Rational K pπ,1q spaces and Koszul

algebras
§ Finite algebraic models and actions of

compact Lie groups

Boston 2006
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§ Lie Algebras
§ Malcev Lie algebras
§ Holonomy Lie algebras
§ Chen Lie algebras
§ Homotopy Lie algebras and the

Rescaling Formula
§ Infinitesimal finiteness obstructions

§ Discrete Groups
§ Braids and Campbell-Hausdorff invariants
§ Finite-type invariants for braid groups
§ Right-angled Artin groups
§ Bestvina–Brady groups
§ McCool groups
§ Finiteness properties for Torelli groups
§ Johnson filtration of automorphism

groups
Trieste 2006
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Venice 2007

§ Hyperplane Arrangements
§ Hypersolvable arrangements
§ Decomposable arrangements
§ Homotopy theory of complements of arrangements
§ Minimality of arrangement complements
§ Milnor fibrations of arrangements
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Nice 2009

§ Cohomology Jump Loci and Representation Varieties
§ Germs of cohomology jump loci
§ The Tangent Cone Formula
§ Jump loci for quasi-projective manifolds
§ Vanishing resonance and representations of Lie algebras
§ Representation varieties and deformation theory
§ Higher rank cohomology jump loci
§ Naturality properties of embedded jump loci
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ASSOCIATED GRADED LIE ALGEBRAS

§ Let G be a group. The lower central series of G is defined
inductively by γ1pGq “ G, γ2pGq “ G1 “ rG,Gs, and

γk`1pGq “ rγk pGq,Gs.

§ Then γk pGq ŸG, and grk pGq :“ γk pGq{γk`1pGq is abelian. Set

grpGq “
à

kě1
grk pGq.

§ This is a graded Lie algebra, with Lie bracket
r , s : grk ˆ gr` Ñ grk`` induced by the group commutator.

§ IfG is finitely generated, then grpGq is also finitely generated, by
gr1pGq “ Gab. We let φk pGq “ rank grk pGq.

§ Example: if Fn is the free group of rank n, then
§ grpFnq is the free Lie algebra LiepZnq.
§ grk pFnq is free abelian, of rank φk pFnq “

1
s

ř

d|k µpdqn
k
d .
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MALCEV LIE ALGEBRAS

§ The group-algebra QG has a natural Hopf algebra structure,
with comultiplication ∆pgq “ g b g and counit ε : QG Ñ Q.

§ (Quillen 1968) Let I “ ker ε. The I-adic completion
yQG “ lim

ÐÝk QG{Ik is a filtered, complete Hopf algebra.

§ An element x P xkG is called primitive if p∆x “ x pb1` 1pbx . The
set of all such elements,

mpGq “ PrimpyQGq,
with bracket rx , ys “ xy ´ yx , is a complete, filtered Lie algebra,
called the Malcev Lie algebra of G.

§ Moreover, if we set grQpGq “ grpGq bQ, then

grpmpGqq – grQpGq.

§ (Sullivan 1977) A finitely genetared group G is 1-formal if and
only if mpGq is a quadratic Lie algebra.
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HOLONOMY LIE ALGEBRAS

§ Let G be a finitely generated group, with Gab torsion-free.

§ Set Ai “ H ipG,Zq and Ai “ pAiq˚ “ HompAi ,Zq.
§ The cup-product map A1 b A1 Ñ A2 factors through a linear

map µ : A1 ^ A1 Ñ A2.

§ Dualizing, and identifying pA1 ^ A1q˚ – A1 ^ A1, we obtain a
linear map, µ˚ : A2 Ñ A1 ^ A1 “ Lie2pA1q.

DEFINITION (CHEN 1973, MARKL–PAPADIMA 1992)

The holonomy Lie algebra of G is hpGq “ LiepA1q{ximµ˚y.

§ hpGq inherits a natural grading from LiepA1q.

§ hpGq is a quadratic Lie algebra.

§ There is a canonical surjection hpGq� grpGq, which is an
isomorphism precisely when grpGq is quadratic.
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CHEN LIE ALGEBRAS

§ The Chen Lie algebra of a group G is grpG{G2q, the associated
graded Lie algebra of its maximal metabelian quotient.

§ Assuming G is finitely generated, write θk pGq “ rank grk pG{G2q
for the Chen ranks.

§ (Chen 1951) θk pFnq “
`n`k´2

k

˘

pk ´ 1q, for all k ě 2.

§ The projection G � G{G2 induces grpGq� grpG{G2q, and so
φk pGq ě θk pGq, with equality for k ď 3.

§ The map hpGq� grpGq induces hpGq{hpGq2 � grpG{G2q.

THEOREM (PAPADIMA–S. 2004)

If G is 1-formal, then hQpGq{hQpGq2 »ÝÑ grQpG{G2q.

Further improvements can be found in [S.–He Wang, 2017].
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LIE ALGEBRAS OF A RAAG
Let G “ GΓ “ xv P V pΓq | vw “ wv if tv ,wu P EpΓqy be the
right-angled Artin group associated to a finite simple graph Γ.

THEOREM (DUCHAMP–KROB 1992, PAPADIMA–S. 2006)

§ grpGq – hpGq.

§ The graded pieces are torsion-free, with ranks given by
ś8

k“1p1´ tk qφk “ PΓp´tq, where PΓptq “
ř

kě0 fk pΓqtk is the
clique polynomial of Γ, with fk pΓq “ #tk-cliques of Γu.

THEOREM (PS 2006)

§ grpG{G2q – hpGq{hpGq2.

§ The graded pieces are torsion-free, with ranks given by
ř8

k“2 θk tk “ QΓ

`

t{p1´ tq
˘

, where QΓptq “
ř

jě2 cjpΓqt j is the
“cut polynomial" of Γ, with cjpΓq “

ř

WĂV : |W |“j b̃0pΓW q.
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THE RESCALING FORMULA

Let X be a connected space, and let Y be a simply-connected
space (all spaces » to finite-type CW-complexes)

DEFINITION (PAPADIMA–S. 2004)

We say Y is a k-rescaling of X (over a ring R) if:

H˚pY ,Rq – H˚pX ,Rqrks as graded rings

that is, H ipY ,Rq – H jpX ,Rq if i “ p2k ` 1qj and vanishes
otherwise, and all isomorphisms compatible with cup products.

Examples of rescalings (over R “ Z)
§ X “ S1, Y “ S2k`1

§ X “ #
g
1S1 ˆ S1, Y “ #

g
1S2k`1 ˆ S2k`1

§ X “ C`z
Ťn

i“1 Hi , Y “ Cpk`1q`z
Ťn

i“1 Hˆpk`1q
i , where

A “ tH1, . . . ,Hnu is a hyperplane arrangement in C` and
Ak`1 :“ tHˆpk`1q

1 , . . . ,Hˆpk`1q
n u (the redundant subspace arr.)
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§ For a graded Lie algebra L, its k -rescaling is the graded Lie
algebra Lrks with Lrks2kq “ Lq and Lrksp “ 0 otherwise, and
with Lie bracket rescaled accordingly.

§ The homotopy Lie algebra of a simply-connected space Y is
the graded Lie algebra π˚pΩY q bQ :“

À

rě1 πr pΩY q bQ, with
Lie bracket coming from the Whitehead product.

THEOREM (PS 2004)

Let Y be a k-rescaling of X , and suppose H˚pX ,Qq is a Koszul
algebra. Then:

§ π˚pΩY q bQ – gr˚pπ1X q bQ rks.
§ Set Φr :“ rankπr pΩY q “ rankπr`1pY q. Then Φr “ 0 if 2k - r ,

and
ź

iě1

`

1´ tp2k`1qi˘Φ2ki
“ PoinX p´tk q.

Consequently, PoinΩY ptq “ PoinX p´t2k q´1.
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ALGEBRAIC MODELS FOR SPACES

§ For any (path-connected) space X , Sullivan defined a
commutative differential graded algebra over Q, denoted
APLpX q, such that H‚pAPLpX qq “ H‚pX ,Qq.

§ An algebraic (q-)model for X over a field k of characteristic 0 is
a k-cgda pA,dq which is (q-) equivalent (i.e., connected by a
zig-zag of (q-) quasi-isomorphisms) to APLpX q bQ k.

§ A cdga A is formal (or just q-formal) if it is (q-) equivalent to
pH‚pAq,d “ 0q.

§ A CDGA A is of finite-type (or q-finite) if it is connected (i.e.,
A0 “ k ¨ 1) and each graded piece Ai (with i ď q) is
finite-dimensional.

§ Examples of spaces having finite-type models include:
§ Formal spaces (such as compact Kähler manifolds, hyperplane

arrangement complements, toric spaces, etc).
§ Quasi-projective manifolds, compact solvmanifolds, and

Sasakian manifolds, etc.
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CHARACTERISTIC VARIETIES

§ Let X be a connected, finite-type CW-complex, and G “ π1pX q.
§ The algebra R “ CrGabs is the coordinate ring of the character

group, CharpX q “ HompG,C˚q – pC˚qb1pXq ˆ TorspGabq.
§ The characteristic varieties of X are the homology jump loci

V i
spX q “ tρ P CharpX q | dimC HipX ,Cρq ě su.

§ The algebraic sets V i
spX q are homotopy-type invariants of X .

§ V1
s pGq :“ V1

s pX q depend only on G; in fact, V1
s pGq “ V1

s pG{G2q.
§ These varieties can be arbitrarily complicated. E.g., if

f P Zrt˘1
1 , . . . , t˘1

n s is a Laurent polynomial with f p1q “ 0, there
is a f.p. group G with Gab “ Zn such that V1

1 pGq “ tf “ 0u.

THEOREM (. . . , ARAPURA 1999, . . . , BUDUR–WANG 2015)

If X is a quasi-projective manifold, the varieties V i
spX q are finite

unions of torsion-translates of subtori of CharpX q.
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RESONANCE VARIETIES

§ Let A “ pA‚, dq be a connected, finite-type cdga over C.

§ For each a P Z 1pAq – H1pAq, we get a cochain complex,

pA‚, δaq : A0 δ0
a // A1 δ1

a // A2 δ2
a // ¨ ¨ ¨ ,

with differentials δi
apuq “ a ¨ u ` d u, for all u P Ai .

§ The resonance varieties of A are the affine varieties

Ri
spAq “ ta P H1pAq | dim H ipA‚, δaq ě su.

§ For a space X , the resonance varieties Ri
spX q :“ Ri

spH‚pX ,Cqq
are homogeneous subsets of H1pX ,Cq.
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THE TANGENT CONE THEOREM

§ Let exp: H1pX ,Cq Ñ H1pX ,C˚q be the coefficient
homomorphism induced by CÑ C˚, z ÞÑ ez .

§ (DPS 2010) For a Zariski closed subset W Ă H1pX ,C˚q, define

τ1pW q “ tz P H1pX ,Cq | exppλzq P W , @λ P Cu.

§ The exponential tangent cone τ1pW q is a finite union of
rationally defined linear subspaces included in TC1pW q.

THEOREM (LIBGOBER 2002)

TC1pV i
spX qq Ď Ri

spX q.

THEOREM (DIMCA–PAPADIMA–S. 2010, DIMCA–PAPADIMA 2014)

Let X be a formal space. Then:
§ The map exp: H1pX ,Cq Ñ H1pX ,C˚q induces isomorphisms

of analytic germs, Ri
spX ,Cqp0q »ÝÑ V i

spX qp1q.
§ τ1pV i

spX qq “ TC1pV i
spX qq “ Ri

spX q.
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SPACES WITH FINITE MODELS

THEOREM

Let X be a connected CW-complex with finite q-skeleton.
Assume X admits a q-finite q-model A. Then, for all i ď q:

§ (Dimca–Papadima 2014) V i
spX qp1q – Ri

spAqp0q.
§ (Măcinic–Papadima–Popescu–S. 2017)

TC0pRi
spAqq Ď Ri

spX q.
§ (Budur–Wang 2017) All irreducible components of V i

spX q
passing through the identity of H1pX ,C˚q are algebraic
subtori.

EXAMPLE

Let G be a f.p. group with Gab “ Zn and V1pGq “ tt P pC˚qn |
řn

i“1 ti “ nu. Then G admits no 1-finite 1-model.
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THEOREM (PAPADIMA–S. 2017)

Let X be a space which admits a q-finite q-model. If MqpX q is
the Sullivan q-minimal model of X , then bipMqpX qq ă 8, for all
i ď q ` 1.

EXAMPLE

§ Consider the free metabelian group G “ Fn {F2n with n ě 2.
§ We have V1pGq “ V1pFnq “ pC˚qn, and so G passes the

Budur–Wang test.
§ But b2pM1pGqq “ 8, and so G admits no 1-finite 1-model.
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FINITENESS OBSTRUCTIONS FOR GROUPS

THEOREM (PAPADIMA–S 2017)

Let G be a metabelian group of the form G “ π{π2, where π is
a f.g. group which has a free, non-cyclic quotient. Then:

§ G is not finitely presentable.

§ G does not admit a 1-finite 1-model.

THEOREM (PS 2017)

A finitely generated group G admits a 1-finite 1-model if and
only if its Malcev Lie algebra mpGq is the LCS completion of a
finitely presented Lie algebra.
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BIERI–NEUMANN–STREBEL–RENZ INVARIANTS

§ (Bieri–Neumann–Strebel 1987) For a f.g. group G, let

Σ1pGq “ tχ P SpGq | CχpGq is connectedu,

where SpGq “ pHompG,Rqzt0uq{R` and CχpGq is the induced
subgraph of CaypGq on vertex set Gχ “ tg P G | χpgq ě 0u.

§ Σ1pGq is an open set, independent of generating set for G.
§ (Bieri, Renz 1988)

Σk pG,Zq “ tχ P SpGq | the monoid Gχ is of type FPku.

In particular, Σ1pG,Zq “ Σ1pGq.
§ The Σ-invariants control the finiteness properties of normal

subgroups N ŸG for which G{N is free abelian:
N is of type FPk ðñ SpG,Nq Ď Σk pG,Zq

where SpG,Nq “ tχ P SpGq | χpNq “ 0u. In particular:
kerpχ : G � Zq is f.g. ðñ t˘χu Ď Σ1pGq.
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BOUNDING THE Σ-INVARIANTS

§ The Σ-invariants were extended to spaces by Farber,
Geoghegan, and Schütz (2010), using Novikov homology.

§ For a connected CW-complex X with let G “ π1pX q, define

Σk pX ,Zq :“ tχ P SpGq | HipX ,yZG´χq “ 0, @ i ď ku.

§ Set τR1 pW q “ τ1pW q X H1pX ,Rq and W ipX q “
Ť

qďi V
q
1 pX q.

THEOREM (PAPADIMA–S. 2010)

ΣipX ,Zq Ď SpGqzSpτR1 pW ipX qq.

§ If X is formal, we may replace τR1 pW ipX qq with
Ť

qďi R
q
1pX ,Rq.

§ (PS 2006/09) Equality holds for RAAGs and toric complexes.
§ (Koban–McCammond–Meier 2015) Equality holds for the pure

braid groups Pn in degree i “ 1.
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KOLLÁR’S QUESTION

Two groups, G1 and G2, are said to be commensurable up to
finite kernels if there is a zig-zag of homomorphisms,

G1 H2 ¨ ¨ ¨ G2

H1

cc ;;

¨ ¨ ¨

dd

Hq

dd ;; ,

with all arrows of finite kernel and cofinite image.

QUESTION (J. KOLLÁR 1995)

Given a smooth, projective variety M, is the group G “ π1pMq
commensurable, up to finite kernels, with another group, π,
admitting a K pπ,1q which is a quasi-projective variety?

THEOREM (DIMCA–PAPADIMA–S. 2009)

For each k ě 3, there is a smooth, irreducible, complex
projective variety M of complex dimension k ´ 1, such that
π1pMq is of type Fk´1, but not of type FPk .
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HYPERPLANE ARRANGEMENTS

§ An arrangement of hyperplanes is a finite set A of
codimension 1 linear subspaces in a finite-dimensional
C-vector space V .

§ The intersection lattice, LpAq, is the poset of all intersections of
A, ordered by reverse inclusion, and ranked by codimension.

§ The complement, MpAq “ V z
Ť

HPA H, is a connected, smooth
quasi-projective variety, and also a Stein manifold.

§ The fundamental group π “ π1pMpAqq admits a finite
presentation, with generators xH for each H P A.

§ Set UpAq “ PpMpAqq. Then MpAq – UpAq ˆ C˚.

THEOREM (DIMCA–PAPADIMA 2003)

MpAq has the homotopy type of a minimal CW-complex.

This solved a conjecture made by Papadima–S. at MFO in 1999.
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COHOMOLOGY RING

§ The logarithmic 1-form ωH “
1

2πi d logαH P ΩdRpMq is a closed
form, representing a class eH P H1pM,Zq.

§ Let E be the Z-exterior algebra on teH | H P Au, and let
B : E‚ Ñ E‚´1 be the differential given by BpeHq “ 1.

§ The ring H.pMpAq,Zq is isomorphic to the OS-algebra E{I,
where

I “ ideal
!

B

´

ź

HPB
eH

¯
ˇ

ˇ

ˇ
B Ď A and codim

č

HPB
H ă |B|

)

.

§ Hence, the map eH ÞÑ ωH extends to a cdga quasi-isomor-
phism, ω : pH.pM,Rq, d “ 0q // Ω.dRpMq .

§ Therefore, MpAq is formal.

§ MpAq is minimally pure (i.e., Hk pMpAq,Qq is pure of weight 2k ,
for all k ), which again implies formality (Dupont 2016).
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MULTINETS AND DEGREE 1 RESONANCE

2

2

2

FIGURE: p3,2q-net; p3,4q-multinet; non-3-net, reduced p3,4q-multinet

THEOREM (FALK, COHEN–S., LIBGOBER–YUZVINSKY, FALK–YUZ)

R1
spMpAq,Cq “

ď

BĎA

ď

N a k-multinet on B
with at least s ` 2 parts

PN .

where PN is the pk ´ 1q-dimensional linear subspace spanned
by the vectors u2 ´ u1, . . . ,uk ´ u1, where uα “

ř

HPBα
mHeH .
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MILNOR FIBRATION

A

F

h

F

§ Let A be an arrangement of n hyperplanes in Cd`1. For each
H P A let αH be a linear form with kerpαHq “ H, and let
Q “

ś

HPA αH .

§ Q : Cd`1 Ñ C restricts to a smooth fibration, Q : MpAq Ñ C˚.
The Milnor fiber of the arrangement is F pAq :“ Q´1p1q.

§ F is a Stein manifold. It has the homotopy type of a finite cell
complex of dim d . In general, F is neither formal, nor minimal.

§ F “ F pAq is the regular, Zn-cover of U “ UpAq, classified by
the morphism π1pUq� Zn taking each loop xH to 1.
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MODULAR INEQUALITIES

§ The monodromy diffeo, h : F Ñ F , is given by hpzq “ e2πi{nz.

§ Let ∆ptq be the characteristic polynomial of h˚ : H1pF ,Cq".
Since hn “ id, we have

∆ptq “
ź

r |n

Φr ptqer pAq,

where Φr ptq is the r -th cyclotomic polynomial, and er pAq P Zě0.

§ WLOG, we may assume d “ 2, so that Ā “ PpAq is an
arrangement of lines in CP2.

§ If there is no point of Ā of multiplicity q ě 3 such that r | q, then
er pAq “ 0 (Libgober 2002).

§ In particular, if Ā has only points of multiplicity 2 and 3, then
∆ptq “ pt ´ 1qn´1pt2 ` t ` 1qe3 . If multiplicity 4 appears, then we
also get factor of pt ` 1qe2 ¨ pt2 ` 1qe4 .
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§ Let A “ H.pMpAq,kq, and let σ “
ř

HPA eH P A1.

§ Assume k has characteristic p ą 0, and define

βppAq “ dimk H1pA, ¨σq.

That is, βppAq “ maxts | σ P R1
spA,kqu.

THEOREM (COHEN–ORLIK 2000, PAPADIMA–S. 2010)

epmpAq ď βppAq, for all m ě 1.

THEOREM (PAPADIMA–S. 2017)

§ Suppose A admits a k-net. Then βppAq “ 0 if p - k and
βppAq ě k ´ 2, otherwise.

§ If A admits a reduced k-multinet, then ek pAq ě k ´ 2.
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COMBINATORICS AND MONODROMY

THEOREM (PAPADIMA–S. 2017)

Suppose Ā has no points of multiplicity 3r with r ą 1. TFAE:
§ A admits a reduced 3-multinet.
§ A admits a 3-net.
§ β3pAq ‰ 0.

Moreover, the following hold:
§ β3pAq ď 2.
§ e3pAq “ β3pAq, and thus e3pAq is determined by Lď2pAq.

In particular, if Ā has only double and triple points, then ∆ptq is
combinatorially determined.

THEOREM (PS 2017)

Suppose A supports a 4-net and β2pAq ď 2. Then
e2pAq “ e4pAq “ β2pAq “ 2.
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CONJECTURE (PAPADIMA–S. 2017)

The characteristic polynomial of the degree 1 algebraic
monodromy for the Milnor fibration of an arrangement A of rank
at least 3 is given by the combinatorial formula

∆Aptq “ pt ´ 1q|A|´1ppt ` 1qpt2 ` 1qqβ2pAqpt2 ` t ` 1qβ3pAq.

The conjecture has been verified for several classes of
arrangements, such as:

§ All sub-arrangements of non-exceptional Coxeter arrangements
(Măcinic, Papadima).

§ All complex reflection arrangements (Măcinic, Papadima,
Popescu, Dimca, Sticlaru).

§ Certain types of complexified real arrangements (Yoshinaga,
Bailet, Torielli, Settepanella).
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