MILNOR FIBRATIONS OF HYPERPLANE ARRANGEMENTS

Alex Suciu

Northeastern University

Colloquium
University of Bremen
October 22, 2013

HYPERPLANE ARRANGEMENTS

- An arrangement of hyperplanes is a finite set A of codimension-1 linear subspaces in \mathbb{C}^{ℓ} .
- Intersection lattice L(A): poset of all intersections of A, ordered by reverse inclusion, and ranked by codimension.
- Complement: $M(A) = \mathbb{C}^{\ell} \setminus \bigcup_{H \in A} H$.
- The Boolean arrangement \mathcal{B}_n
 - \mathcal{B}_n : all coordinate hyperplanes $z_i = 0$ in \mathbb{C}^n .
 - $L(\mathcal{B}_n)$: Boolean lattice of subsets of $\{0,1\}^n$.
 - $M(\mathcal{B}_n)$: complex algebraic torus $(\mathbb{C}^*)^n$.
- The braid arrangement A_n (or, reflection arr. of type A_{n-1})
 - A_n : all diagonal hyperplanes $z_i z_j = 0$ in \mathbb{C}^n .
 - $L(A_n)$: lattice of partitions of $[n] = \{1, ..., n\}$.
 - $M(A_n)$: configuration space of n ordered points in \mathbb{C} (a classifying space for the pure braid group on n strings).

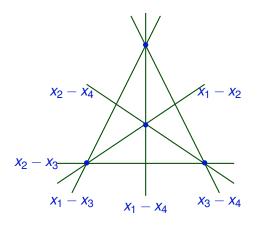


FIGURE : A planar slice of the braid arrangement A_4

- We may assume that A is essential, i.e., $\bigcap_{H \in A} H = \{0\}$.
- Fix an ordering $A = \{H_1, ..., H_n\}$, and choose linear forms $f_i \colon \mathbb{C}^\ell \to \mathbb{C}$ with $\ker(f_i) = H_i$.
- Define an injective linear map

$$\iota_{\mathcal{A}} \colon \mathbb{C}^{\ell} \to \mathbb{C}^{n}, \quad z \mapsto (f_{1}(z), \dots, f_{n}(z)).$$

• This map restricts to an inclusion $\iota \colon M(\mathcal{A}) \hookrightarrow M(\mathcal{B}_n)$. Thus,

$$M(A) = \iota_A(\mathbb{C}^\ell) \cap (\mathbb{C}^*)^n$$
,

- a "very affine" subvariety of $(\mathbb{C}^*)^n$.
- The tropicalization of this sub variety is a fan in \mathbb{R}^n . Feichtner and Sturmfels: this is the Bergman fan of L(A).

- M(A) has the homotopy type of a connected, finite cell complex of dimension ℓ .
- In fact, M = M(A) admits a *minimal* cell structure. Consequently, $H_*(M, \mathbb{Z})$ is torsion-free.
- The Betti numbers $b_q(M) := \operatorname{rank} H_q(M, \mathbb{Z})$ are given by

$$\sum_{q=0}^{\ell} b_q(M) t^q = \sum_{X \in L(\mathcal{A})} \mu(X) (-t)^{\operatorname{rank}(X)},$$

where $\mu \colon L(\mathcal{A}) \to \mathbb{Z}$ is the Möbius function, defined recursively by $\mu(\mathbb{C}^{\ell}) = 1$ and $\mu(X) = -\sum_{Y \ni X} \mu(Y)$.

- The Orlik–Solomon algebra $H^*(M, \mathbb{Z})$ is the quotient of the exterior algebra on generators $\{e_H \mid H \in \mathcal{A}\}$ by an ideal determined by the circuits in the matroid of \mathcal{A} .
- Thus, the ring $H^*(M, \mathbb{k})$ is determined by L(A), for every field \mathbb{k} .

THE MILNOR FIBRATION(S) OF AN ARRANGEMENT

- For each $H \in \mathcal{A}$, let $f_H : \mathbb{C}^{\ell} \to \mathbb{C}$ be a linear form with kernel H.
- For each choice of multiplicities $m = (m_H)_{H \in \mathcal{A}}$ with $m_H \in \mathbb{N}$, let

$$Q_m := Q_m(A) = \prod_{H \in A} f_H^{m_H},$$

a homogeneous polynomial of degree $N = \sum_{H \in \mathcal{A}} m_H$.

- The map $Q_m : \mathbb{C}^{\ell} \to \mathbb{C}$ restricts to a map $Q_m : M(A) \to \mathbb{C}^*$.
- This is the projection of a smooth, locally trivial bundle, known as the *Milnor fibration* of the multi-arrangement (A, m),

$$F_m(A) \longrightarrow M(A) \xrightarrow{Q_m} \mathbb{C}^*.$$

- The typical fiber, $F_m(A) = Q_m^{-1}(1)$, is called the *Milnor fiber* of the multi-arrangement.
- $F_m(A)$ has the homotopy type of a finite cell complex, with gcd(m) connected components, and of dimension $\ell 1$.
- The (geometric) monodromy is the diffeomorphism

$$h: F_m(\mathcal{A}) \to F_m(\mathcal{A}), \quad z \mapsto e^{2\pi i/N} z.$$

• If all $m_H = 1$, the polynomial $Q = Q_m(A)$ is the usual defining polynomial, and $F(A) = F_m(A)$ is the usual Milnor fiber of A.

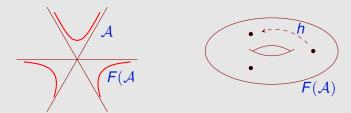
EXAMPLE

Let \mathcal{A} be the single hyperplane $\{0\}$ inside \mathbb{C} . Then:

- \bullet $M(A) = \mathbb{C}^*$.
- $Q_m(A) = z^m$.
- $F_m(A) = m$ -roots of 1.

EXAMPLE

Let \mathcal{A} be a pencil of 3 lines through the origin of \mathbb{C}^2 . Then $F(\mathcal{A})$ is a thrice-punctured torus, and h is an automorphism of order 3:



More generally, if \mathcal{A} is a pencil of n lines in \mathbb{C}^2 , then $F(\mathcal{A})$ is a Riemann surface of genus $\binom{n-1}{2}$, with n punctures.

• Let \mathcal{B}_n be the Boolean arrangement, with $Q_m(\mathcal{B}_n) = z_1^{m_1} \cdots z_n^{m_n}$. Then $M(\mathcal{B}_n) = (\mathbb{C}^*)^n$ and

$$F_m(\mathcal{B}_n) = \text{ker}(\mathbb{Q}_m) \cong (\mathbb{C}^*)^{n-1} \times \mathbb{Z}_{\text{gcd}(m)}$$

• Let $A = \{H_1, ..., H_n\}$ be an essential arrangement. The inclusion $\iota_A : M(A) \to M(B_n)$ restricts to a bundle map

$$F_{m}(\mathcal{A}) \longrightarrow M(\mathcal{A}) \xrightarrow{Q_{m}(\mathcal{A})} \mathbb{C}^{*}$$

$$\downarrow \qquad \qquad \downarrow^{\iota_{\mathcal{A}}} \qquad \qquad \parallel$$

$$F_{m}(\mathcal{B}_{n}) \longrightarrow M(\mathcal{B}_{n}) \xrightarrow{Q_{m}(\mathcal{B}_{n})} \mathbb{C}^{*}$$

Thus,

$$F_m(\mathcal{A}) = M(\mathcal{A}) \cap F_m(\mathcal{B}_n)$$

• The tropicalization of $F_m(A)$ is a fan in \mathbb{R}^{n-1} . Question: Is this fan determined by L(A) (and the multiplicity vector m)?

THE HOMOLOGY OF THE MILNOR FIBER

Two basic questions about the topology of the Milnor fibration(s):

- (Q1) Are the homology groups $H_q(F(\mathcal{A}), \mathbb{C})$ determined by $L(\mathcal{A})$? If so, is the characteristic polynomial of the algebraic monodromy, $h_* \colon H_q(F(\mathcal{A}), \mathbb{C}) \to H_q(F(\mathcal{A}), \mathbb{C})$, also determined by $L(\mathcal{A})$?
- (Q2) Are the homology groups $H_q(F(A), \mathbb{Z})$ torsion-free? If so, does F(A) admit a minimal cell structure?

In this talk, I will indicate some recent progress on these questions:

- A partial, positive answer to (Q1): joint work with Stefan Papadima (in progress).
- A negative answer to (Q2): joint work with Graham Denham (to appear in PLMS).

ALGEBRAIC MONODROMY

- Recall: the monodromy $h: F(A) \to F(A)$ has order n = |A|.
- Thus, the characteristic polynomial of h_* acting on $H_1(F(\mathcal{A}), \mathbb{C})$ is

$$\Delta(t) = \prod_{d|n} \Phi_d(t)^{e_d(\mathcal{A})},$$

where $\Phi_1 = t - 1$, $\Phi_2 = t + 1$, $\Phi_3 = t^2 + t + 1$, ... are the cyclotomic polynomials, and $e_d(A) \in \mathbb{Z}_{\geq 0}$.

• Easy to see: $e_1(A) = n - 1$. Thus, for q = 1, question (Q1) is equivalent to: are the integers $e_d(A)$ determined by $L_{\leq 2}(A)$?

THEOREM (PAPADIMA-S. 2013)

Suppose $L_2(\mathcal{A})$ has no flats of multiplicity 3r, for some r>1. Then $e_3(\mathcal{A})\leqslant 2$ and $e_3(\mathcal{A})$ is combinatorially determined.

A similar result holds for $e_2(A)$.

- Let $A^* = H^*(M(A), k)$, where k is a field of characteristic p > 0.
- Let $\sigma = \sum_{H \in \mathcal{A}} e_H \in A^1$ be the "diagonal" vector, and consider the \mathbb{R} -vector space $Z(\sigma) = \{ \tau \in A^1 \mid \sigma \cup \tau = 0 \in A^2 \}$.
- Define the $\operatorname{mod-}p$ Aomoto-Betti number of $\mathcal A$ as

$$\beta_{\mathcal{P}}(\mathcal{A}) = \dim_{\mathbb{k}} \mathbf{Z}(\sigma) - 1.$$

• $\beta_p(A)$ depends only on L(A) and p, and $0 \le \beta_p(A) \le |A| - 2$.

THEOREM (COHEN-ORLIK 2000, PAPADIMA-S. 2010)

$$e_{p^s}(A) \leqslant \beta_p(A)$$
, for all $s \geqslant 1$.

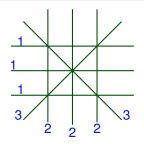
THEOREM (PAPADIMA-S. 2013)

Suppose $L_2(A)$ has no flats of multiplicity 3r, for some r > 1. Then $\beta_3(A) \leq 2$ and $e_3(A) = \beta_3(A)$.

TORSION IN HOMOLOGY

THEOREM (COHEN-DENHAM-S. 2003)

For every prime $p \ge 2$, there is a multi-arrangement (A, m) such that $H_1(F_m(A), \mathbb{Z})$ has non-zero p-torsion.



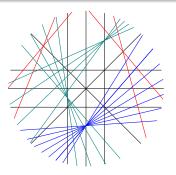
Simplest example: the arrangement of 8 hyperplanes in C³ with

$$Q_m(A) = x^2 y (x^2 - y^2)^3 (x^2 - z^2)^2 (y^2 - z^2)$$

Then $H_1(F_m(\mathcal{A}), \mathbb{Z}) = \mathbb{Z}^7 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$.

THEOREM (DENHAM-S. 2013)

For every prime $p \ge 2$, there is an arrangement \mathcal{A} such that $H_q(F(\mathcal{A}), \mathbb{Z})$ has non-zero p-torsion, for some q > 1.



Simplest example: the arrangement of 27 hyperplanes in C⁸ with

$$\begin{split} Q(\mathcal{A}) &= xy(x^2-y^2)(x^2-z^2)(y^2-z^2)w_1\,w_2\,w_3\,w_4\,w_5(x^2-w_1^2)(x^2-2w_1^2)(x^2-3w_1^2)(x-4w_1) \cdot \\ & ((x-y)^2-w_2^2)((x+y)^2-w_3^2)((x-z)^2-w_4^2)((x-z)^2-2w_4^2) \cdot ((x+z)^2-w_5^2)((x+z)^2-2w_5^2). \end{split}$$

Then $H_6(F(A), \mathbb{Z})$ has 2-torsion (of rank 108).

MULTINETS

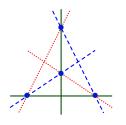
- Let A be an arrangement of planes in \mathbb{C}^3 . Its projectivization, \bar{A} , is an arrangement of lines in \mathbb{CP}^2 .
- $L_1(A) \longleftrightarrow$ lines of \bar{A} , $L_2(A) \longleftrightarrow$ intersection points of \bar{A} , poset structure of $L_{\leq 2}(A) \longleftrightarrow$ incidence structure of \bar{A} .
- A flat $X \in L_2(A)$ has multiplicity q if the point \bar{X} has exactly q lines from \bar{A} passing through it.

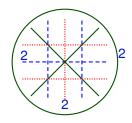
DEFINITION (FALK AND YUZVINSKY)

A *multinet* on \mathcal{A} is a partition of the set \mathcal{A} into $k \geq 3$ subsets $\mathcal{A}_1, \ldots, \mathcal{A}_k$, together with an assignment of multiplicities, $m: \mathcal{A} \to \mathbb{N}$, and a subset $\mathcal{X} \subseteq L_2(\mathcal{A})$, called the base locus, such that:

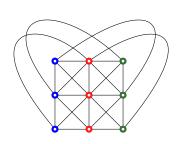
- ① There is an integer d such that $\sum_{H \in A_n} m_H = d$, for all $\alpha \in [k]$.
- ② If H and H' are in different classes, then $H \cap H' \in \mathcal{X}$.
- ③ For each X ∈ X, the sum $n_X = \sum_{H ∈ A_\alpha: H ⊃ X} m_H$ is independent of α .
- **④** Each $(\bigcup_{H \in A_n} H) \setminus \mathcal{X}$ is connected.

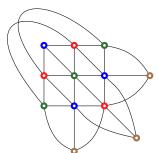
- A multinet as above is also called a (k, d)-multinet, or a k-multinet.
- If $m_H = 1$, for all $H \in \mathcal{A}$, the multinet is *reduced*.
- If, furthermore, $n_X = 1$, for all $X \in \mathcal{X}$, this is a *net*. In this case, $|\mathcal{A}_{\alpha}| = |\mathcal{A}|/k = d$, for all α , and $|\bar{\mathcal{X}}| = d^2$.
- If \mathcal{A} admits a (3, d)-net, then the d^2 multi-colored triple points define a Latin square.
- More generally, the base locus of a (k, d)-net is encoded by a (k-2)-tuple of orthogonal Latin squares.





A (3, 2)-net on the $\rm A_3$ arrangement. A (3, 4)-multinet on the $\rm B_3$ arrangement.





A (3, 3)-net on the Ceva matroid.

A (4, 3)-net on the Hessian matroid.

• If A has no flats of multiplicity kr, for some r > 1, then every reduced k-multiplet is a k-net.

• (Yuzvinsky and Pereira–Yuzvinsky): If \mathcal{A} supports a k-multinet with $|\mathcal{X}| > 1$, then k = 3 or 4; moreover, if the multinet is not reduced, then k = 3.

Conjecture (Yuz): The only 4-multinet is the Hessian (4,3)-net.

MULTINETS AND $H_1(F(A), \mathbb{C})$

Recall that

$$H_1(F(\mathcal{A}), \mathbb{C}) = \mathbb{C}^{n-1} \oplus \bigoplus_{1 < d \mid n} (\mathbb{C}[t]/\Phi_d(t))^{e_d(\mathcal{A})}.$$

(as a module over $\mathbb{C}[\mathbb{Z}_n]$, where $n = |\mathcal{A}|$), and so

$$b_1(F(\mathcal{A})) = n - 1 + \sum_{1 < d \mid n} \varphi(d) e_d(\mathcal{A}).$$

Using the theory of cohomology jumping loci, which is well understood for complements of hyperplane arrangements (at least in degree 1), one can prove the following.

PROPOSITION

If A admits a reduced k-multinet, then $e_k(A) \ge k - 2$.

LEMMA (PS)

If A supports a 3-net with parts A_{α} , then:

- ① $1 \leq \beta_3(\mathcal{A}) \leq \beta_3(\mathcal{A}_{\alpha}) + 1$, for all α .
- ② If $\beta_3(\mathcal{A}_{\alpha}) = 0$, for some α , then $\beta_3(\mathcal{A}) = 1$.
- ③ If $\beta_3(A_\alpha) = 1$, for some α , then $\beta_3(A) = 1$ or 2.

All possibilities do occur:

- Braid arrangement: has a (3,2)-net from the Latin square of \mathbb{Z}_2 . $\beta_3(\mathcal{A}_{\alpha}) = 0 \ (\forall \alpha)$ and $\beta_3(\mathcal{A}) = 1$.
- Pappus arrangement: has a (3,3)-net from the Latin square of \mathbb{Z}_3 . $\beta_3(A_1) = \beta_3(A_2) = 0$, $\beta_3(A_3) = 1$ and $\beta_3(A) = 1$.
- Ceva arrangement: has a (3,3)-net from the Latin square of \mathbb{Z}_3 . $\beta_3(\mathcal{A}_{\alpha})=1$ $(\forall \alpha)$ and $\beta_3(\mathcal{A})=2$.

THEOREM (PS)

Suppose $L_2(\mathcal{A})$ has no flats of multiplicity 3r, for some r > 1. Then $\beta_3(\mathcal{A}) \leq 2$. Moreover, the following conditions are equivalent:

- A admits a reduced 3-multinet.
- ② A admits a 3-net.

REMARK

- One may define $\beta_p(\mathcal{M})$ for any matroid \mathcal{M} .
- For each $n \in \mathbb{N}$, there exists a matroid \mathcal{M}_n supporting a $(3, 3^n)$ -net corresponding to \mathbb{Z}_3^n , such that $\beta_3(\mathcal{M}_n) = n + 1$.
- By the above, such a matroid is realizable by an arrangement in \mathbb{C}^3 if and only if n = 1.

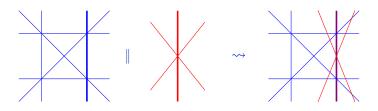
MULTINETS AND TORSION IN $H_*(F(A), \mathbb{Z})$

A *pointed multinet* on an arrangement \mathcal{A} is a multinet structure, together with a distinguished hyperplane $H \in \mathcal{A}$ for which $m_H > 1$ and $m_H \mid n_X$ for each $X \in \mathcal{X}$ such that $X \subset H$.

THEOREM (DS)

Suppose \mathcal{A} admits a pointed multinet, with distinguished hyperplane H and multiplicity m. Let p be a prime dividing m_H . There is then a choice of multiplicities m' on the deletion $\mathcal{A}' = \mathcal{A} \setminus \{H\}$ such that $H_1(F_{m'}(\mathcal{A}'), \mathbb{Z})$ has non-zero p-torsion.

- This torsion is explained by the fact that the geometry of the cohomology jumping loci of $M(\mathcal{A}')$ varies with the characteristic of the ground field.
- To produce *p*-torsion in the homology of the usual Milnor fiber, we use a "polarization" construction, based on the "parallel connection" construction of Falk and Proudfoot (2002).



 $(\mathcal{A}, m) \rightsquigarrow \mathcal{A} \parallel m$, an arrangement of $N = \sum_{H \in \mathcal{A}} m_H$ hyperplanes, of rank equal to rank $\mathcal{A} + |\{H \in \mathcal{A} : m_H \geqslant 2\}|$.

THEOREM (DS)

Suppose \mathcal{A} admits a pointed multinet, with distinguished hyperplane \mathcal{H} and multiplicity m. Let p be a prime dividing $m_{\mathcal{H}}$.

There is then a choice of multiplicities m' on the deletion $\mathcal{A}' = \mathcal{A} \setminus \{H\}$ such that $H_q(F(\mathcal{B}), \mathbb{Z})$ has p-torsion, where $\mathcal{B} = \mathcal{A}' \| m'$ and $q = 1 + |\{K \in \mathcal{A}' : m'_K \geqslant 3\}|$.

REFERENCES

- Graham Denham and Alex Suciu, *Multinets, parallel connections, and Milnor fibrations of arrangements*, arxiv:1209.3414, to appear in Proc. London Math. Soc.
- Alex Suciu, *Hyperplane arrangements and Milnor fibrations*, arxiv:1301.4851, to appear in Ann. Fac. Sci. Toulouse Math.
- Stefan Papadima and Alex Suciu, *The Milnor fibration of a hyperplane arrangement: from modular resonance to algebraic monodromy*, arxiv:1401.0868.