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POINCARÉ DUALITY POINCARÉ DUALITY ALGEBRAS

POINCARÉ DUALITY ALGEBRAS

Let A be a graded, graded-commutative algebra over a field k.
A =

À

iě0 Ai , where Ai are k-vector spaces.
¨ : Ai bAj Ñ Ai+j .
ab = (´1)ijba for all a P Ai , b P Bj .

We will assume that A is connected (A0 = k ¨ 1), and locally finite
(all the Betti numbers bi(A) := dimk Ai are finite).

A is a Poincaré duality k-algebra of dimension m if there is a
k-linear map ε : Am Ñ k (called an orientation) such that all the
bilinear forms Ai bk Am´i Ñ k, ab b ÞÑ ε(ab) are non-singular.

Consequently,
bi (A) = bm´i (A), and Ai = 0 for i ą m.
ε is an isomorphism.
The maps PD : Ai Ñ (Am´i )˚, PD(a)(b) = ε(ab) are isomorphisms.
Each a P Ai has a Poincaré dual, a_ P Am´i , such that ε(aa_) = 1.
The orientation class is defined as ωA = 1_, so that ε(ωA) = 1.
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POINCARÉ DUALITY THE ASSOCIATED ALTERNATING FORM

THE ASSOCIATED ALTERNATING FORM

Associated to a k-PDm algebra there is an alternating m-form,

µA :
ŹmA1 Ñ k, µA(a1 ^ ¨ ¨ ¨ ^ am) = ε(a1 ¨ ¨ ¨ am).

Assume now that m = 3, and set n = b1(A). Fix a basis
te1, . . . ,enu for A1, and let te_1 , . . . ,e_n u be the PD basis for A2.

The multiplication in A, then, is given on basis elements by

eiej =
n

ÿ

k=1

µijk e_k , eie_j = δij ω,

where µijk = µ(ei ^ ej ^ ek ).

Alternatively, let Ai = (Ai)˚, and let ei P A1 be the (Kronecker)
dual of ei . We may then view µ dually as a trivector,

µ =
ÿ

µijk ei ^ ej ^ ek P
Ź3A1,

which encodes the algebra structure of A.
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POINCARÉ DUALITY POINCARÉ DUALITY IN ORIENTABLE MANIFOLDS

POINCARÉ DUALITY IN ORIENTABLE MANIFOLDS

If M is a compact, connected, orientable, m-dimensional manifold,
then the cohomology ring A = H.(M,k) is a PDm algebra over k.

Sullivan (1975): for every finite-dimensional Q-vector space V and
every alternating 3-form µ P

Ź3V ˚, there is a closed 3-manifold M
with H1(M,Q) = V and cup-product form µM = µ.

Such a 3-manifold can be constructed via “Borromean surgery."

If M bounds an oriented 4-manifold W such that the cup-product
pairing on H2(W ,M) is non-degenerate (e.g., if M is the link of an
isolated surface singularity), then µM = 0.
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RESONANCE VARIETIES RESONANCE VARIETIES OF GRADED ALGEBRAS

RESONANCE VARIETIES OF GRADED ALGEBRAS

Let A be a connected, finite-type cga over k = C.

For each a P A1, there is a cochain complex of k-vector spaces,

(A, δa) : A0 δ0
a // A1 δ1

a // A2 δ2
a // ¨ ¨ ¨ ,

with differentials δa(b) = a ¨ b, for b P Ai .

The resonance varieties of A are the sets

Ri
s(A) = ta P A1 | dimk H i(A, δa) ě su.

An element a P A1 belongs to Ri
s(A) if and only if

rank δi+1
a + rank δi

a ď bi(A)´ s.
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RESONANCE VARIETIES RESONANCE VARIETIES OF GRADED ALGEBRAS

Fix a k-basis te1, . . . ,enu for A1, and let tx1, . . . , xnu be the dual
basis for A1 = (A1)˚.

Identify Sym(A1) with S = k[x1, . . . , xn], the coordinate ring of the
affine space A1.

Define a cochain complex of free S-modules, L(A) := (A‚ bS, δ),

¨ ¨ ¨ // Ai bS δi
// Ai+1 bS δi+1

// Ai+2 bS // ¨ ¨ ¨ ,

where δi(u b s) =
řn

j=1 eju b sxj .

The specialization of (AbS, δ) at a P A1 coincides with (A, δa).

Hence, Ri
s(A) is the zero-set of the ideal generated by all minors

of size bi ´ s + 1 of the block-matrix δi+1 ‘ δi .

In particular, R1
s(A) = V (In´s(δ1)), the zero-set of the ideal of

codimension s minors of δ1.
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RESONANCE VARIETIES RESONANCE VARIETIES OF GRADED ALGEBRAS

EXAMPLE (EXTERIOR ALGEBRA)

Let E =
Ź

V , where V = kn, and S = Sym(V ). Then L(E) is the
Koszul complex on V . E.g., for n = 3:

S
( x1 x2 x3 )// S3

(
´x2 ´x3 0
x1 0 ´x3
0 x1 x2

)
// S3

( x3
´x2
x1

)
// S .

This chain complex provides a free resolution ε : L(E)Ñ k of the trivial
S-module k. Hence,

Ri
s(E) =

#

t0u if s ď (n
i ),

H otherwise.
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RESONANCE VARIETIES RESONANCE VARIETIES OF GRADED ALGEBRAS

EXAMPLE (NON-ZERO RESONANCE)

Let A =
Ź

(e1,e2,e3)/xe1e2y, and set S = k[x1, x2, x3]. Then

L(A) : S
( x1 x2 x3 )// S3

(
x3 0
0 x3
´x1 ´x2

)
// S2 .

R1
s(A) =

$

&

%

tx3 = 0u if s = 1,
t0u if s = 2 or 3,
H if s ą 3.

EXAMPLE (NON-LINEAR RESONANCE)

Let A =
Ź

(e1, . . . ,e4)/xe1e3,e2e4,e1e2 + e3e4y. Then

L(A) : S
( x1 x2 x3 x4 ) // S4

 x4 0 ´x2
0 x3 x1
0 ´x2 x4
´x1 0 ´x3


// S3 .

R1
1(A) = tx1x2 + x3x4 = 0u
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RESONANCE VARIETIES RESONANCE VARIETIES OF GRADED ALGEBRAS

PROPERTIES OF RESONANCE

Product formula

Ri
s(B bC) =

$

&

%

R1
s(B)ˆ t0u Y t0u ˆR1

s(C), if i = 1,
Ť

k+`=i
Rk

1(B)ˆR`
1(C), if i ě 2 and s = 1.

Coproduct formula

Ri
s(B_C) =

$

’

’

’

’

&

’

’

’

’

%

Ť

k+`=s´1
(R1

k (B)zt0u)ˆ (R1
` (C)zt0u)Y(

t0u ˆR1
s´dimB1(C)

)
Y
(
R1

s´dimC1(B)ˆ t0u
)
, if i = 1,

Ť

k+`=s
Ri

k (B)ˆRi
`(C), if i ě 2.

If ϕ : A Ñ B is a cga morphism such that ϕ1 : A1 Ñ B1 is injective,
then ϕ1(R1

s(A)) Ď R1
s(B), for all s ě 0.

In general, ϕ1(Ri
s(A)) Ę Ri

s(B), even if ϕ is injective.
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RESONANCE VARIETIES RESONANCE VARIETIES OF GRADED ALGEBRAS

RESONANCE VARIETIES OF PD-ALGEBRAS

Let A be a PDm algebra.

For all 0 ď i ď m and all a P A1, the square

(Am´i)˚
(δm´i´1

a )˚// (Am´i´1)˚

Ai δi
a //

PD –

OO

Ai+1

PD –

OO

commutes up to a sign of (´1)i .

Consequently, (
H i(A, δa)

)˚
– Hm´i(A, δ´a).

Hence, for all i and s,
Ri

s(A) = Rm´i
s (A).

In particular, Rm
1 (A) = t0u.
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RESONANCE VARIETIES DEGREE 1 MAPS

DEGREE 1 MAPS

Let A and B be two PDm algebras. A morphism ϕ : A Ñ B of cga’s
has degree 1 if the linear map ϕm : Am Ñ Bm is non-zero.

We may then pick orientation classes such that ϕm(ωA) = ωB.

PROPOSITION

Let ϕ : A Ñ B be a degree 1 map between two PDm algebras. Then:
ϕ(a_) = ϕ(a)_, for all homogeneous elements a P A.

The map ϕ is injective.

For all a P A1, the map ϕ induces a homomorphism

ϕ˚ : H˚(A, δa)Ñ H˚(B, δϕ1(a)).

The map ϕ1 : A1 ãÑ B1 restricts to inclusions Ri
s(A) ãÑ Ri

s(B).
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RESONANCE VARIETIES 3-DIMENSIONAL POINCARÉ DUALITY ALGEBRAS

3-DIMENSIONAL POINCARÉ DUALITY ALGEBRAS

Let A be a PD3-algebra with b1(A) = n ą 0. Then

R3
1(A) = R0

1(A) = t0u.

R2
s(A) = R1

s(A) for 1 ď s ď n.

Ri
s(A) = H, otherwise.

Write Rs(A) = R1
s(A). Work of Buchsbaum and Eisenbud on

Pfaffians of skew-symmetric matrices implies that

R2k (A) = R2k+1(A) if n is even.

R2k´1(A) = R2k (A) if n is odd.

If µA has rank n ě 3, then Rn´2(A) = Rn´1(A) = Rn(A) = t0u.

Here, the rank of a form µ :
Ź3 V Ñ k is the minimum dimension of

a linear subspace W Ă V such that µ factors through
Ź3 W .

The nullity of µ is the maximum dimension of a subspace U Ă V
such that µ(a^ b^ c) = 0 for all a,b P U and c P V .

ALEX SUCIU (NORTHEASTERN) DUALITY AND RESONANCE BREMEN COLLOQUIUM 12 / 24



RESONANCE VARIETIES 3-DIMENSIONAL POINCARÉ DUALITY ALGEBRAS

If n ě 4, then dimR1(A) ě null(µA) ě 2.

If n is even, then R1(A) = R0(A) = A1.

If n = 2g + 1 ą 1, then R1(A) ‰ A1 if and only if µA is ‘generic’ in
the sense of Berceanu and Papadima (1994).

That is, D c P A1 such that the 2-form γc P
Ź2 A1 given by

γc(a^ b) = µA(a^ b^ c) has rank 2g, i.e., γ
g
c ‰ 0 in

Ź2g A1.

In that case, R1(A) is the hypersurface Pf(µA) = 0, where
pf(δ1(i ; i)) = (´1)i+1xi Pf(µA).

EXAMPLE

Let M = S1 ˆΣg , where g ě 2. Then µM =
řg

i=1 aibic is generic, and
Pf(µM) = xg´1

2g+1. Hence, R1 = ¨ ¨ ¨ = R2g´2 = tx2g+1 = 0u and
R2g´1 = R2g = R2g+1 = t0u.
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RESONANCE VARIETIES RESONANCE VARIETIES OF 3-FORMS OF LOW RANK

RESONANCE VARIETIES OF 3-FORMS OF LOW RANK

n µ R1
3 123 0

n µ R1 = R2 R3
5 125+345b tx5 = 0u 0

n µ R1 R2 = R3 R4
6 123+456# C6 tx1 = x2 = x3 = 0uY tx4 = x5 = x6 = 0u 0

123+236+456 C6 tx3 = x5 = x6 = 0u 0

n µ R1 = R2 R3 = R4 R5
7 147+257+367b tx7 = 0u tx7 = 0u 0

456+147+257+367 tx7 = 0u tx4 = x5 = x6 = x7 = 0u 0
123+456+147 tx1 = 0uY tx4 = 0u tx1 = x2 = x3 = x4 = 0uY tx1 = x4 = x5 = x6 = 0u 0

123+456+147+257 tx1x4 + x2x5 = 0u tx1 = x2 = x4 = x5 = x2
7 ´ x3x6 = 0u 0

123+456+147+257+367 tx1x4 + x2x5 + x3x6 = x2
7 u 0 0

n µ R1 R2 = R3 R4 = R5 R6
8 147+257+367+358 C8 tx7 = 0u tx3 =x5 =x7 =x8 =0uYtx1 =x3 =x4 =x5 =x7 =0u 0

456+147+257+367+358 C8 tx5 = x7 = 0u tx3 = x4 = x5 = x7 = x1x8 + x2
6 = 0u 0

123+456+147+358 C8 tx1 = x5 = 0uY tx3 = x4 = 0u tx1 = x3 = x4 = x5 = x2x6 + x7x8 = 0u 0
123+456+147+257+358 C8 tx1 = x5 = 0uY tx3 = x4 = x5 = 0u tx1 = x2 = x3 = x4 = x5 = x7 = 0u 0

123+456+147+257+367+358 C8 tx3 = x5 = x1x4´ x2
7 = 0u tx1 = x2 = x3 = x4 = x5 = x6 = x7 = 0u 0

147+268+358# C8 tx1 = x4 = x7 = 0uY tx8 = 0u tx1 =x4 =x7 =x8 =0uYtx2 =x3 =x5 =x6 =x8 =0u 0
147+257+268+358 C8 L1Y L2Y L3 L1Y L2 0

456+147+257+268+358 C8 C1YC2 L1Y L2 0
147+257+367+268+358 C8 L1Y L2Y L3Y L4 L1

1Y L1
2Y L1

3 0
456+147+257+367+268+358 C8 C1YC2YC3 L1Y L2Y L3 0

123+456+147+268+358 C8 C1YC2 L 0
123+456+147+257+268+358 C8 tf1 = ¨ ¨ ¨ = f20 = 0u 0 0

123+456+147+257+367+268+358 C8 tg1 = ¨ ¨ ¨ = g20 = 0u 0 0
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CHARACTERISTIC VARIETIES CHARACTERISTIC VARIETIES

CHARACTERISTIC VARIETIES

Let X be a connected, finite-type CW-complex.

The fundamental group π = π1(X , x0) is a finitely presented
group, with abelianization πab – H1(X ,Z).

The group-algebra R = C[πab] is the coordinate ring of the
character group, Char(X ) = Hom(π,Cˆ) – (Cˆ)n ˆTors(πab),
where n = b1(X ).

The characteristic varieties of X are the homology jump loci

V i
s(X ) = tρ P Char(X ) | dimC Hi(X ,Cρ) ě su.

Away from 1, we have that V1
s (X ) = V (Es(Aπ)), the zero-set of

the ideal of codimension s minors of the Alexander matrix of
abelianized Fox derivatives of the relators of π.
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CHARACTERISTIC VARIETIES THE ALEXANDER POLYNOMIAL

THE ALEXANDER POLYNOMIAL

The group-algebra C[πab/Tors(πab)] is isomorphic to
Λ = C[t˘1

1 , . . . , t˘1
n ], the coordinate ring of Char0(X ) – (Cˆ)n.

The Alexander polynomial ∆X is the gcd of E1(Aπ bR Λ).

Dimca–Papadima–S. (2011): The zero-set V (∆X ) coincides (away
from 1) with the union of all codimension 1 irreducible components
of V1

1 (X )X Char0(X ).

EXAMPLE

Let K be a knot in S3. Its complement, X , is a homology circle. The
Alexander polynomial, ∆ = ∆X , satisfies ∆(1) = ˘1, and so 1 R V (∆).
On the other hand, V1

1 (X ) = V (∆)Y t1u.
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CHARACTERISTIC VARIETIES TANGENT CONES AND EXPONENTIAL MAPS

TANGENT CONES AND EXPONENTIAL MAPS

The map exp : Cn Ñ (Cˆ)n, (z1, . . . , zn) ÞÑ (ez1 , . . . ,ezn) is a
homomorphism taking 0 to 1.

For a Zariski-closed subset W = V (I) inside (Cˆ)n, define:
The tangent cone at 1 to W as TC1(W ) = V (in(I)).

The exponential tangent cone at 1 to W as

τ1(W ) = tz P Cn | exp(λz) P W , @λ P Cu

These sets are homogeneous subvarieties of Cn, which depend
only on the analytic germ of W at 1.

Both commute with finite unions and arbitrary intersections.

τ1(W ) Ď TC1(W ).
= if all irred components of W are subtori.
‰ in general.

τ1(W ) is a finite union of rationally defined subspaces.
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CHARACTERISTIC VARIETIES THE TANGENT CONE THEOREM

THE TANGENT CONE THEOREM

The resonance varieties of a space X are the jump loci
Ri

d (X ) Ă H1(X ,C) = Cn associated to the algebra A = H˚(X ,C).

We also have the characteristic varieties V i
s(X ) Ă Char(X ). Let

W i
s(X ) := V i

s(X )X Char0(X ) = (Cˆ)n.

(Libgober 2002)
TC1(W i

s(X )) Ď Ri
s(X ).

Thus,
τ1(W i

s(X )) Ď TC1(W i
s(X )) Ď Ri

s(X ).

(DPS 2009/DP 2014) If X is formal, then

τ1(W i
s(X )) = TC1(W i

s(X )) = Ri
s(X ).
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CHARACTERISTIC VARIETIES A TANGENT CONE THEOREM FOR 3-MANIFOLDS

A TANGENT CONE THEOREM FOR 3-MANIFOLDS

Let M be a closed, orientable, 3-dimensional manifold.

C. McMullen (2000): Let I be the augmentation ideal of Λ. Then

E1(M) =

#

(∆M) if b1(M) ď 1,

I2 ¨ (∆M) if b1(M) ě 2.

It follows that W1
1 (M) = V (∆M), at least away from 1.

Using the previous discussion, as well as work of Turaev (2002),
we obtain:

THEOREM

Suppose b1(M) is odd and µM is generic. Then

TC1(W1
1 (M)) = R1

1(M).
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CHARACTERISTIC VARIETIES A TANGENT CONE THEOREM FOR 3-MANIFOLDS

If b1(M) is even, the conclusion of the theorem may or may not
hold:

Let M = S1 ˆS2#S1 ˆS2; then V1
1 (M) = Char(M) = (Cˆ)2, and

so TC1(V1
1 (M)) = R1

1(M) = C2.

Let M be the Heisenberg nilmanifold; then TC1(V1
1 (M)) = t0u,

whereas R1
1(M) = C2.

If M is not formal, the first half of the Tangent Cone theorem may
fail to hold, i.e., τ1(V1

1 (M)) Ę TC1(V1
1 (M)).

Let M be a closed, orientable 3-manifold with b1 = 7 and
µ = e1e3e5 + e1e4e7 + e2e5e7 + e3e6e7 + e4e5e6. Then µ is
generic and Pf(µ) = (x2

5 + x2
7 )

2. Hence, R1
1(M) = tx2

5 + x2
7 = 0u

splits as a union of two hyperplanes over C, but not over Q.
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ABELIAN DUALITY AND PROPAGATION OF CJLS DUALITY AND ABELIAN DUALITY SPACES

DUALITY AND ABELIAN DUALITY SPACES

Let X be a path-connected space, having the homotopy type of a
finite-type CW-complex. Set π = π1(X ).

Bieri and Eckmann (1978): X is a duality space of dimension n if
H i(X ,Zπ) = 0 for i ‰ n and D := Hn(X ,Zπ) is non-zero and
torsion-free.

Then H i(X ,A) – Hn´i(X ,D bA), for any Zπ-module A.

If D = Z, with trivial Zπ-action, then X is a PD space.

Denham–S.–Yuzvinsky (2016): X is an abelian duality space of
dimension n if H i(X ,Zπab) = 0 for i ‰ n and Hn(X ,Zπab) ‰ 0
and torsion-free.

Let B = Hn(X ,Zπab) be the dualizing Zπab-module. Given any
Zπab-module A, we have H i(X ,A) – Hn´i(X ,B bA).
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ABELIAN DUALITY AND PROPAGATION OF CJLS PROPAGATION OF JUMP LOCI

PROPAGATION OF JUMP LOCI

THEOREM (DSY 2016/2017)

Let X be an abelian duality space of dimension n. Then:
If H i(X ,Cρ) ‰ 0, then H j(X ,Cρ) ‰ 0, for all i ď j ď n.
The characteristic varieties propagate: V1

1 (X ) Ď ¨ ¨ ¨ Ď Vn
1 (X ).

b1(X ) ě n´ 1.
If n ě 2, then bi(X ) ‰ 0, for all 0 ď i ď n.
If, moreover, X is formal, then the resonance varieties propagate:
R1

1(X ) Ď ¨ ¨ ¨ Ď Rn
1(X ).

Let M be a compact, connected, orientable smooth manifold of
dimension n. By Poincaré duality, Rn

1(M) = t0u.
On the other hand, if n = 3 and b1(M) is even and non-zero, then
R1

1(M) = H1(M,C).
Hence, such a 3-manifold M is not an abelian duality space.

ALEX SUCIU (NORTHEASTERN) DUALITY AND RESONANCE BREMEN COLLOQUIUM 22 / 24



ABELIAN DUALITY AND PROPAGATION OF CJLS ARRANGEMENTS OF SMOOTH HYPERSURFACES

ARRANGEMENTS OF SMOOTH HYPERSURFACES

THEOREM (DENHAM–S. 2017)

Let U be a connected, smooth, complex quasi-projective variety of
dimension n. Suppose U has a smooth compactification Y for which

Components of the boundary D = Y zU form an arrangement of
smooth hypersurfaces A;
For each submanifold X in the intersection poset L(A), the
complement of the restriction of A to X is a Stein manifold.

Then U is both a duality space and an abelian duality space of
dimension n.

Consequently, the characteristic varieties of such “recursively Stein”
hypersurface complements propagate.
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ABELIAN DUALITY AND PROPAGATION OF CJLS ARRANGEMENTS OF SMOOTH HYPERSURFACES

THEOREM (DSY/DS)

Suppose that A is one of the following:
An affine-linear arrangement in Cn, or a hyperplane arrangement
in CPn;
A non-empty elliptic arrangement in En;
A toric arrangement in (C˚)n.

Then the complement M(A) is both a duality space and an abelian
duality space of dimension n´ r , n + r , and n, respectively, where r is
the corank of the arrangement.

As a consequence, the characteristic varieties propagate for all linear,
elliptic and toric arrangements. The formality of linear and toric
arrangement complements implies that their resonance varieties
propagate, as well.
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