DUALITY AND RESONANCE

Alex Suciu

Northeastern University

Colloquium University of Bremen June 13, 2017

ALEX SUCIU (NORTHEASTERN)

DUALITY AND RESONANCE

BREMEN COLLOQUIUM 1 / 24

POINCARÉ DUALITY ALGEBRAS

- Let *A* be a graded, graded-commutative algebra over a field k.
 - $A = \bigoplus_{i \ge 0} A^i$, where A^i are k-vector spaces.
 - $: A^i \otimes A^j \to A^{i+j}$.
 - $ab = (-1)^{ij}ba$ for all $a \in A^i$, $b \in B^j$.
- We will assume that A is connected (A⁰ = k ⋅ 1), and locally finite (all the Betti numbers b_i(A) := dim_k Aⁱ are finite).
- *A* is a *Poincaré duality* \Bbbk -*algebra* of dimension *m* if there is a \Bbbk -linear map ε : $A^m \to \Bbbk$ (called an *orientation*) such that all the bilinear forms $A^i \otimes_{\Bbbk} A^{m-i} \to \Bbbk$, $a \otimes b \mapsto \varepsilon(ab)$ are non-singular.
- Consequently,
 - $b_i(A) = b_{m-i}(A)$, and $A^i = 0$ for i > m.
 - ε is an isomorphism.
 - The maps PD: $A^i \to (A^{m-i})^*$, PD $(a)(b) = \varepsilon(ab)$ are isomorphisms.
 - Each $a \in A^i$ has a *Poincaré dual*, $a^{\vee} \in A^{m-i}$, such that $\varepsilon(aa^{\vee}) = 1$.
 - The orientation class is defined as $\omega_A = 1^{\vee}$, so that $\varepsilon(\omega_A) = 1$.

THE ASSOCIATED ALTERNATING FORM

- Associated to a \Bbbk -PD_m algebra there is an alternating *m*-form, $\mu_A: \bigwedge^m A^1 \to \Bbbk, \quad \mu_A(a_1 \land \cdots \land a_m) = \varepsilon(a_1 \cdots a_m).$
- Assume now that m = 3, and set $n = b_1(A)$. Fix a basis $\{e_1, \ldots, e_n\}$ for A^1 , and let $\{e_1^{\vee}, \ldots, e_n^{\vee}\}$ be the PD basis for A^2 .
- The multiplication in *A*, then, is given on basis elements by $e_i e_j = \sum_{k=1}^n \mu_{ijk} e_k^{\vee}, \quad e_i e_j^{\vee} = \delta_{ij} \omega,$

where $\mu_{ijk} = \mu(\boldsymbol{e}_i \wedge \boldsymbol{e}_j \wedge \boldsymbol{e}_k)$.

Alternatively, let A_i = (Aⁱ)*, and let eⁱ ∈ A₁ be the (Kronecker) dual of e_i. We may then view μ dually as a trivector,

$$\mu = \sum \mu_{ijk} e^i \wedge e^j \wedge e^k \in \bigwedge{}^3A_1$$
,

which encodes the algebra structure of A.

ALEX SUCIU (NORTHEASTERN)

POINCARÉ DUALITY IN ORIENTABLE MANIFOLDS

- If *M* is a compact, connected, orientable, *m*-dimensional manifold, then the cohomology ring *A* = *H*[•](*M*, k) is a PD_m algebra over k.
- Sullivan (1975): for every finite-dimensional Q-vector space V and every alternating 3-form $\mu \in \bigwedge^3 V^*$, there is a closed 3-manifold M with $H^1(M, \mathbb{Q}) = V$ and cup-product form $\mu_M = \mu$.
- Such a 3-manifold can be constructed via "Borromean surgery."

• If *M* bounds an oriented 4-manifold *W* such that the cup-product pairing on $H^2(W, M)$ is non-degenerate (e.g., if *M* is the link of an isolated surface singularity), then $\mu_M = 0$.

ALEX SUCIU (NORTHEASTERN)

RESONANCE VARIETIES OF GRADED ALGEBRAS

- Let *A* be a connected, finite-type cga over $\mathbb{k} = \mathbb{C}$.
- For each $a \in A^1$, there is a cochain complex of k-vector spaces,

$$(A, \delta_a): A^0 \xrightarrow{\delta_a^0} A^1 \xrightarrow{\delta_a^1} A^2 \xrightarrow{\delta_a^2} \cdots,$$

with differentials $\delta_a(b) = a \cdot b$, for $b \in A^i$.

• The *resonance varieties* of *A* are the sets

 $\mathcal{R}^{i}_{s}(\mathbf{A}) = \{ \mathbf{a} \in \mathbf{A}^{1} \mid \dim_{\Bbbk} \mathbf{H}^{i}(\mathbf{A}, \delta_{\mathbf{a}}) \geq \mathbf{s} \}.$

• An element $a \in A^1$ belongs to $\mathcal{R}^i_s(A)$ if and only if rank $\delta^{i+1}_a + \operatorname{rank} \delta^i_a \leq b_i(A) - s$.

- Fix a k-basis {*e*₁,..., *e_n*} for *A*¹, and let {*x*₁,..., *x_n*} be the dual basis for *A*₁ = (*A*¹)*.
- Identify $\text{Sym}(A_1)$ with $S = \Bbbk[x_1, \dots, x_n]$, the coordinate ring of the affine space A^1 .
- Define a cochain complex of free *S*-modules, $L(A) := (A^{\bullet} \otimes S, \delta)$,

$$\cdots \longrightarrow A^{i} \otimes S \xrightarrow{\delta^{i}} A^{i+1} \otimes S \xrightarrow{\delta^{i+1}} A^{i+2} \otimes S \longrightarrow \cdots,$$

where $\delta^i(u \otimes s) = \sum_{j=1}^n e_j u \otimes sx_j$.

- The specialization of $(A \otimes S, \delta)$ at $a \in A^1$ coincides with (A, δ_a) .
- Hence, *R*ⁱ_s(*A*) is the zero-set of the ideal generated by all minors of size *b_i* − *s* + 1 of the block-matrix δⁱ⁺¹ ⊕ δⁱ.
- In particular, R¹_s(A) = V(I_{n-s}(δ¹)), the zero-set of the ideal of codimension s minors of δ¹.

EXAMPLE (EXTERIOR ALGEBRA)

Let $E = \bigwedge V$, where $V = \Bbbk^n$, and S = Sym(V). Then L(E) is the Koszul complex on V. E.g., for n = 3:

$$S \xrightarrow{(x_1 \ x_2 \ x_3)} S^3 \xrightarrow{\begin{pmatrix} -x_2 \ -x_3 \ 0 \\ x_1 \ 0 \ -x_3 \\ 0 \ x_1 \ x_2 \end{pmatrix}} S^3 \xrightarrow{\begin{pmatrix} x_3 \\ -x_2 \\ x_1 \end{pmatrix}} S^3$$

This chain complex provides a free resolution ε : $L(E) \rightarrow \Bbbk$ of the trivial *S*-module \Bbbk . Hence,

$$\mathcal{R}_{s}^{i}(E) = \begin{cases} \{0\} & \text{if } s \leqslant \binom{n}{i}, \\ \varnothing & \text{otherwise.} \end{cases}$$

ALEX SUCIU (NORTHEASTERN)

DUALITY AND RESONANCE

EXAMPLE (NON-ZERO RESONANCE)

Let $A = \bigwedge (e_1, e_2, e_3) / \langle e_1 e_2 \rangle$, and set $S = \Bbbk [x_1, x_2, x_3]$. Then

$$\mathcal{A}(A): S \xrightarrow{(x_1 \ x_2 \ x_3)} S^3 \xrightarrow{\begin{pmatrix} x_3 & 0 \\ 0 & x_3 \\ -x_1 & -x_2 \end{pmatrix}} S^2$$
$$\mathcal{R}^1_s(A) = \begin{cases} \{x_3 = 0\} & \text{if } s = 1, \\ \{0\} & \text{if } s = 2 \text{ or } 3, \\ \emptyset & \text{if } s > 3. \end{cases}$$

EXAMPLE (NON-LINEAR RESONANCE)

Let $A = \bigwedge (e_1, \dots, e_4) / \langle e_1 e_3, e_2 e_4, e_1 e_2 + e_3 e_4 \rangle$. Then

$$\mathbf{L}(\mathbf{A}): \ S \xrightarrow{(x_1 \ x_2 \ x_3 \ x_4)} S^4 \xrightarrow{\begin{pmatrix} x_4 \ 0 \ -x_2 \\ 0 \ x_3 \ x_1 \\ 0 \ -x_2 \ x_4 \\ -x_1 \ 0 \ -x_3 \end{pmatrix}} S^3$$

$$\mathcal{R}_1^1(A) = \{x_1x_2 + x_3x_4 = 0\}$$

ALEX SUCIU (NORTHEASTERN)

DUALITY AND RESONANCE

PROPERTIES OF RESONANCE

Product formula

$$\mathcal{R}_{s}^{i}(B \otimes C) = \begin{cases} \mathcal{R}_{s}^{1}(B) \times \{0\} \cup \{0\} \times \mathcal{R}_{s}^{1}(C), & \text{if } i = 1, \\ \bigcup_{k+\ell=i} \mathcal{R}_{1}^{k}(B) \times \mathcal{R}_{1}^{\ell}(C), & \text{if } i \ge 2 \text{ and } s = 1. \end{cases}$$

Coproduct formula

$$\mathcal{R}_{s}^{i}(B \lor C) = \begin{cases} \bigcup_{k+\ell=s-1} (\mathcal{R}_{k}^{1}(B) \setminus \{0\}) \times (\mathcal{R}_{\ell}^{1}(C) \setminus \{0\}) \cup \\ (\{0\} \times \mathcal{R}_{s-\dim B^{1}}^{1}(C)) \cup (\mathcal{R}_{s-\dim C^{1}}^{1}(B) \times \{0\}), & \text{if } i = 1, \\ \bigcup_{k+\ell=s} \mathcal{R}_{k}^{i}(B) \times \mathcal{R}_{\ell}^{i}(C), & \text{if } i \geq 2. \end{cases}$$

- If φ: A → B is a cga morphism such that φ₁: A¹ → B¹ is injective, then φ₁(R¹_s(A)) ⊆ R¹_s(B), for all s ≥ 0.
- In general, $\varphi_1(\mathcal{R}^i_s(A)) \notin \mathcal{R}^i_s(B)$, even if φ is injective.

RESONANCE VARIETIES OF PD-ALGEBRAS

- Let A be a PD_m algebra.
- For all $0 \le i \le m$ and all $a \in A^1$, the square

$$(A^{m-i})^* \xrightarrow{(\delta_a^{m-i-1})^*} (A^{m-i-1})^*$$

$$PD \stackrel{\cong}{\longrightarrow} PD \stackrel{\cong}{\longrightarrow} A^i \xrightarrow{\delta_a^i} A^{i+1}$$

commutes up to a sign of $(-1)^i$.

Consequently,

$$\left(H^{i}(\boldsymbol{A},\delta_{\boldsymbol{a}})\right)^{*}\cong H^{m-i}(\boldsymbol{A},\delta_{-\boldsymbol{a}}).$$

• Hence, for all *i* and *s*,

$$\mathcal{R}^i_{\boldsymbol{s}}(\boldsymbol{A}) = \mathcal{R}^{m-i}_{\boldsymbol{s}}(\boldsymbol{A}).$$

• In particular, $\mathcal{R}_1^m(A) = \{0\}$.

DEGREE **1** MAPS

- Let *A* and *B* be two PD_m algebras. A morphism $\varphi: A \to B$ of cga's has *degree* 1 if the linear map $\varphi_m: A^m \to B^m$ is non-zero.
- We may then pick orientation classes such that $\varphi_m(\omega_A) = \omega_B$.

PROPOSITION

Let $\varphi \colon A \to B$ be a degree 1 map between two PD_m algebras. Then:

- $\varphi(\mathbf{a}^{\vee}) = \varphi(\mathbf{a})^{\vee}$, for all homogeneous elements $\mathbf{a} \in \mathbf{A}$.
- The map φ is injective.
- For all $a \in A^1$, the map φ induces a homomorphism

 $\varphi^* \colon H^*(A, \delta_a) \to H^*(B, \delta_{\varphi_1(a)}).$

• The map $\varphi_1 \colon A^1 \hookrightarrow B^1$ restricts to inclusions $\mathcal{R}^i_s(A) \hookrightarrow \mathcal{R}^i_s(B)$.

3-DIMENSIONAL POINCARÉ DUALITY ALGEBRAS

- Let *A* be a PD₃-algebra with $b_1(A) = n > 0$. Then
 - $\mathcal{R}_1^3(A) = \mathcal{R}_1^0(A) = \{0\}.$
 - $\mathcal{R}^2_s(A) = \mathcal{R}^1_s(A)$ for $1 \leq s \leq n$.
 - $\mathcal{R}_{s}^{i}(A) = \emptyset$, otherwise.
- Write $\mathcal{R}_s(A) = \mathcal{R}_s^1(A)$. Work of Buchsbaum and Eisenbud on Pfaffians of skew-symmetric matrices implies that
 - $\mathcal{R}_{2k}(A) = \mathcal{R}_{2k+1}(A)$ if *n* is even.
 - $\mathcal{R}_{2k-1}(A) = \mathcal{R}_{2k}(A)$ if *n* is odd.
- If μ_A has rank $n \ge 3$, then $\mathcal{R}_{n-2}(A) = \mathcal{R}_{n-1}(A) = \mathcal{R}_n(A) = \{0\}$.
 - Here, the *rank* of a form $\mu: \bigwedge^{3} V \to \Bbbk$ is the minimum dimension of a linear subspace $W \subset V$ such that μ factors through $\bigwedge^{3} W$.
 - The *nullity* of µ is the maximum dimension of a subspace U ⊂ V such that µ(a ∧ b ∧ c) = 0 for all a, b ∈ U and c ∈ V.

ALEX SUCIU (NORTHEASTERN)

DUALITY AND RESONANCE

- If $n \ge 4$, then dim $\mathcal{R}_1(A) \ge \operatorname{null}(\mu_A) \ge 2$.
- If *n* is even, then $\mathcal{R}_1(A) = \mathcal{R}_0(A) = A^1$.
- If n = 2g + 1 > 1, then $\mathcal{R}_1(A) \neq A^1$ if and only if μ_A is 'generic' in the sense of Berceanu and Papadima (1994).
- That is, $\exists c \in A^1$ such that the 2-form $\gamma_c \in \bigwedge^2 A_1$ given by $\gamma_c(a \land b) = \mu_A(a \land b \land c)$ has rank 2*g*, i.e., $\gamma_c^g \neq 0$ in $\bigwedge^{2g} A_1$.
- In that case, $\mathcal{R}_1(A)$ is the hypersurface $Pf(\mu_A) = 0$, where $pf(\delta^1(i; i)) = (-1)^{i+1} x_i Pf(\mu_A)$.

EXAMPLE

Let $M = S^1 \times \Sigma_g$, where $g \ge 2$. Then $\mu_M = \sum_{i=1}^g a_i b_i c$ is generic, and $Pf(\mu_M) = x_{2g+1}^{g-1}$. Hence, $\mathcal{R}_1 = \cdots = \mathcal{R}_{2g-2} = \{x_{2g+1} = 0\}$ and $\mathcal{R}_{2g-1} = \mathcal{R}_{2g} = \mathcal{R}_{2g+1} = \{0\}.$

RESONANCE VARIETIES OF **3**-FORMS OF LOW RANK

n	μ	\mathcal{R}_1] [n	μ	$\mathcal{R}_1 = \mathcal{R}_2$	\mathcal{R}_3
3	123	0] [5	125+345⊗	$\{x_5 = 0\}$	0

n	μ	\mathcal{R}_1	$\mathcal{R}_2 = \mathcal{R}_3$	\mathcal{R}_4
6	123+456 [#]	C ⁶	$\{x_1 = x_2 = x_3 = 0\} \cup \{x_4 = x_5 = x_6 = 0\}$	0
	123+236+456	C ⁶	$\{x_3 = x_5 = x_6 = 0\}$	0

n	μ	$\mathcal{R}_1 = \mathcal{R}_2$	$\mathcal{R}_3 = \mathcal{R}_4$	\mathcal{R}_5
7	147+257+367⊗	$\{x_7 = 0\}$	$\{x_7 = 0\}$	0
	456+147+257+367	$\{x_7 = 0\}$	$\{x_4 = x_5 = x_6 = x_7 = 0\}$	0
	123+456+147	$\{x_1 = 0\} \cup \{x_4 = 0\}$	$\{x_1 = x_2 = x_3 = x_4 = 0\} \cup \{x_1 = x_4 = x_5 = x_6 = 0\}$	0
	123+456+147+257	$\{x_1x_4 + x_2x_5 = 0\}$	$\{x_1 = x_2 = x_4 = x_5 = x_7^2 - x_3 x_6 = 0\}$	0
	123+456+147+257+367	$\{x_1x_4 + x_2x_5 + x_3x_6 = x_7^2\}$	0	0

n	μ	\mathcal{R}_1	$\mathcal{R}_2 = \mathcal{R}_3$	$\mathcal{R}_4 = \mathcal{R}_5$
8	147+257+367+358	C ⁸	$\{x_7 = 0\}$	$\{x_3 = x_5 = x_7 = x_8 = 0\} \cup \{x_1 = x_3 = x_4 = x_5 = x_7 = 0\}$
	456+147+257+367+358	C8	$\{x_5 = x_7 = 0\}$	$\{x_3 = x_4 = x_5 = x_7 = x_1x_8 + x_6^2 = 0\}$
	123+456+147+358	C8	$\{x_1 = x_5 = 0\} \cup \{x_3 = x_4 = 0\}$	$\{x_1 = x_3 = x_4 = x_5 = x_2x_6 + x_7x_8 = 0\}$
	123+456+147+257+358	C ⁸	$\{x_1 = x_5 = 0\} \cup \{x_3 = x_4 = x_5 = 0\}$	$\{x_1 = x_2 = x_3 = x_4 = x_5 = x_7 = 0\}$
	123+456+147+257+367+358	C8	$\{x_3 = x_5 = x_1x_4 - x_7^2 = 0\}$	$\{x_1 = x_2 = x_3 = x_4 = x_5 = x_6 = x_7 = 0\}$
	147+268+358 [#]	C ⁸	$\{x_1 = x_4 = x_7 = 0\} \cup \{x_8 = 0\}$	$\{x_1 = x_4 = x_7 = x_8 = 0\} \cup \{x_2 = x_3 = x_5 = x_6 = x_8 = 0\}$
	147+257+268+358	C8	$L_1 \cup L_2 \cup L_3$	$L_1 \cup L_2$
	456+147+257+268+358	C8	$C_1 \cup C_2$	$L_1 \cup L_2$
	147+257+367+268+358	C8	$L_1 \cup L_2 \cup L_3 \cup L_4$	$L'_1 \cup L'_2 \cup L'_3$
	456+147+257+367+268+358	C8	$C_1 \cup C_2 \cup C_3$	$L_1 \cup L_2 \cup L_3$
	123+456+147+268+358	C ⁸	$C_1 \cup C_2$	L
	123+456+147+257+268+358	C8	$\{f_1 = \cdots = f_{20} = 0\}$	0
	123+456+147+257+367+268+358	C ⁸	$\{g_1 = \cdots = g_{20} = 0\}$	0
	Alex Suciu (Northeastern)		DUALITY AND RESONANCE	BREMEN COLLOQUIUM 14 / 24

CHARACTERISTIC VARIETIES

- Let *X* be a connected, finite-type CW-complex.
- The fundamental group $\pi = \pi_1(X, x_0)$ is a finitely presented group, with abelianization $\pi_{ab} \cong H_1(X, \mathbb{Z})$.
- The group-algebra $R = \mathbb{C}[\pi_{ab}]$ is the coordinate ring of the character group, $\operatorname{Char}(X) = \operatorname{Hom}(\pi, \mathbb{C}^{\times}) \cong (\mathbb{C}^{\times})^n \times \operatorname{Tors}(\pi_{ab})$, where $n = b_1(X)$.
- The characteristic varieties of X are the homology jump loci

 $\mathcal{V}_{\boldsymbol{s}}^{i}(\boldsymbol{X}) = \{ \rho \in \operatorname{Char}(\boldsymbol{X}) \mid \dim_{\mathbb{C}} H_{i}(\boldsymbol{X}, \mathbb{C}_{\rho}) \geq \boldsymbol{s} \}.$

• Away from 1, we have that $\mathcal{V}_s^1(X) = V(E_s(A_{\pi}))$, the zero-set of the ideal of codimension *s* minors of the Alexander matrix of abelianized Fox derivatives of the relators of π .

ALEX SUCIU (NORTHEASTERN)

THE ALEXANDER POLYNOMIAL

- The group-algebra $\mathbb{C}[\pi_{ab}/\operatorname{Tors}(\pi_{ab})]$ is isomorphic to $\Lambda = \mathbb{C}[t_1^{\pm 1}, \ldots, t_n^{\pm 1}]$, the coordinate ring of $\operatorname{Char}^0(X) \cong (\mathbb{C}^{\times})^n$.
- The Alexander polynomial Δ_X is the gcd of $E_1(A_\pi \otimes_R \Lambda)$.
- Dimca–Papadima–S. (2011): The zero-set $V(\Delta_X)$ coincides (away from 1) with the union of all codimension 1 irreducible components of $\mathcal{V}_1^1(X) \cap \operatorname{Char}^0(X)$.

EXAMPLE

Let *K* be a knot in *S*³. Its complement, *X*, is a homology circle. The Alexander polynomial, $\Delta = \Delta_X$, satisfies $\Delta(1) = \pm 1$, and so $1 \notin V(\Delta)$. On the other hand, $\mathcal{V}_1^1(X) = V(\Delta) \cup \{1\}$.

TANGENT CONES AND EXPONENTIAL MAPS

- The map $\exp: \mathbb{C}^n \to (\mathbb{C}^{\times})^n$, $(z_1, \ldots, z_n) \mapsto (e^{z_1}, \ldots, e^{z_n})$ is a homomorphism taking 0 to 1.
- For a Zariski-closed subset W = V(I) inside $(\mathbb{C}^{\times})^n$, define:
 - The tangent cone at 1 to W as $TC_1(W) = V(in(I))$.
 - The exponential tangent cone at 1 to W as

 $\tau_1(W) = \{ z \in \mathbb{C}^n \mid \exp(\lambda z) \in W, \ \forall \lambda \in \mathbb{C} \}$

- These sets are homogeneous subvarieties of Cⁿ, which depend only on the analytic germ of W at 1.
- Both commute with finite unions and arbitrary intersections.
- $\tau_1(W) \subseteq \mathsf{TC}_1(W)$.
 - = if all irred components of *W* are subtori.
 - \neq in general.
- $\tau_1(W)$ is a finite union of rationally defined subspaces.

ALEX SUCIU (NORTHEASTERN)

DUALITY AND RESONANCE

THE TANGENT CONE THEOREM

- The resonance varieties of a space X are the jump loci $\mathcal{R}^i_d(X) \subset H^1(X, \mathbb{C}) = \mathbb{C}^n$ associated to the algebra $A = H^*(X, \mathbb{C})$.
- We also have the characteristic varieties $\mathcal{V}_{s}^{i}(X) \subset \operatorname{Char}(X)$. Let $\mathcal{W}_{s}^{i}(X) := \mathcal{V}_{s}^{i}(X) \cap \operatorname{Char}^{0}(X) = (\mathbb{C}^{\times})^{n}$.
- (Libgober 2002)

 $\mathsf{TC}_1(\mathcal{W}^i_s(X)) \subseteq \mathcal{R}^i_s(X).$

Thus,

$$\tau_1(\mathcal{W}^i_{\boldsymbol{s}}(\boldsymbol{X})) \subseteq \mathsf{TC}_1(\mathcal{W}^i_{\boldsymbol{s}}(\boldsymbol{X})) \subseteq \mathcal{R}^i_{\boldsymbol{s}}(\boldsymbol{X}).$$

• (DPS 2009/DP 2014) If X is formal, then

$$\tau_1(\mathcal{W}^i_{\boldsymbol{s}}(\boldsymbol{X})) = \mathsf{TC}_1(\mathcal{W}^i_{\boldsymbol{s}}(\boldsymbol{X})) = \mathcal{R}^i_{\boldsymbol{s}}(\boldsymbol{X}).$$

A TANGENT CONE THEOREM FOR **3**-MANIFOLDS

- Let *M* be a closed, orientable, 3-dimensional manifold.
- C. McMullen (2000): Let / be the augmentation ideal of $\Lambda.$ Then

$$E_1(M) = \begin{cases} (\Delta_M) & \text{if } b_1(M) \leq 1, \\ l^2 \cdot (\Delta_M) & \text{if } b_1(M) \geq 2. \end{cases}$$

- It follows that $W_1^1(M) = V(\Delta_M)$, at least away from 1.
- Using the previous discussion, as well as work of Turaev (2002), we obtain:

THEOREM

Suppose $b_1(M)$ is odd and μ_M is generic. Then

$$\mathsf{TC}_1(\mathcal{W}_1^1(M)) = \mathcal{R}_1^1(M).$$

ALEX SUCIU (NORTHEASTERN)

- If b₁(M) is even, the conclusion of the theorem may or may not hold:
 - Let $M = S^1 \times S^2 \# S^1 \times S^2$; then $\mathcal{V}_1^1(M) = \operatorname{Char}(M) = (\mathbb{C}^{\times})^2$, and so $\operatorname{TC}_1(\mathcal{V}_1^1(M)) = \mathcal{R}_1^1(M) = \mathbb{C}^2$.
 - Let *M* be the Heisenberg nilmanifold; then $TC_1(\mathcal{V}_1^1(M)) = \{0\}$, whereas $\mathcal{R}_1^1(M) = \mathbb{C}^2$.
- If *M* is not formal, the first half of the Tangent Cone theorem may fail to hold, i.e., $\tau_1(\mathcal{V}_1^1(M)) \notin \mathsf{TC}_1(\mathcal{V}_1^1(M))$.
 - Let *M* be a closed, orientable 3-manifold with $b_1 = 7$ and $\mu = e_1e_3e_5 + e_1e_4e_7 + e_2e_5e_7 + e_3e_6e_7 + e_4e_5e_6$. Then μ is generic and $Pf(\mu) = (x_5^2 + x_7^2)^2$. Hence, $\mathcal{R}_1^1(M) = \{x_5^2 + x_7^2 = 0\}$ splits as a union of two hyperplanes over \mathbb{C} , but not over \mathbb{Q} .

DUALITY AND ABELIAN DUALITY SPACES

- Let X be a path-connected space, having the homotopy type of a finite-type CW-complex. Set $\pi = \pi_1(X)$.
- Bieri and Eckmann (1978): X is a *duality space* of dimension *n* if $H^i(X, \mathbb{Z}\pi) = 0$ for $i \neq n$ and $D := H^n(X, \mathbb{Z}\pi)$ is non-zero and torsion-free.
- Then $H^i(X, A) \cong H_{n-i}(X, D \otimes A)$, for any $\mathbb{Z}\pi$ -module A.
- If $D = \mathbb{Z}$, with trivial $\mathbb{Z}\pi$ -action, then X is a PD space.
- Denham–S.–Yuzvinsky (2016): X is an *abelian duality space* of dimension *n* if $H^i(X, \mathbb{Z}\pi_{ab}) = 0$ for $i \neq n$ and $H^n(X, \mathbb{Z}\pi_{ab}) \neq 0$ and torsion-free.
- Let $B = H^n(X, \mathbb{Z}\pi_{ab})$ be the dualizing $\mathbb{Z}\pi_{ab}$ -module. Given any $\mathbb{Z}\pi_{ab}$ -module A, we have $H^i(X, A) \cong H_{n-i}(X, B \otimes A)$.

PROPAGATION OF JUMP LOCI

THEOREM (DSY 2016/2017)

Let X be an abelian duality space of dimension n. Then:

- If $H^{i}(X, \mathbb{C}_{\rho}) \neq 0$, then $H^{j}(X, \mathbb{C}_{\rho}) \neq 0$, for all $i \leq j \leq n$.
- The characteristic varieties propagate: $\mathcal{V}_1^1(X) \subseteq \cdots \subseteq \mathcal{V}_1^n(X)$.
- $b_1(X) \ge n-1$.
- If $n \ge 2$, then $b_i(X) \ne 0$, for all $0 \le i \le n$.
- If, moreover, X is formal, then the resonance varieties propagate: $\mathcal{R}_1^1(X) \subseteq \cdots \subseteq \mathcal{R}_1^n(X)$.
- Let *M* be a compact, connected, orientable smooth manifold of dimension *n*. By Poincaré duality, Rⁿ₁(*M*) = {0}.
- On the other hand, if n = 3 and $b_1(M)$ is even and non-zero, then $\mathcal{R}_1^1(M) = H^1(M, \mathbb{C})$.
- Hence, such a 3-manifold *M* is *not* an abelian duality space.

ARRANGEMENTS OF SMOOTH HYPERSURFACES

THEOREM (DENHAM-S. 2017)

Let U be a connected, smooth, complex quasi-projective variety of dimension n. Suppose U has a smooth compactification Y for which

- Components of the boundary D = Y \ U form an arrangement of smooth hypersurfaces A;
- For each submanifold X in the intersection poset L(A), the complement of the restriction of A to X is a Stein manifold.

Then U is both a duality space and an abelian duality space of dimension n.

Consequently, the characteristic varieties of such "recursively Stein" hypersurface complements propagate.

THEOREM (DSY/DS)

Suppose that A is one of the following:

- An affine-linear arrangement in Cⁿ, or a hyperplane arrangement in CPⁿ;
- A non-empty elliptic arrangement in *Eⁿ*;
- A toric arrangement in $(\mathbb{C}^*)^n$.

Then the complement M(A) is both a duality space and an abelian duality space of dimension n - r, n + r, and n, respectively, where r is the corank of the arrangement.

As a consequence, the characteristic varieties propagate for all linear, elliptic and toric arrangements. The formality of linear and toric arrangement complements implies that their resonance varieties propagate, as well.