DUALITY AND RESONANCE

Alex Suciu

Northeastern University

Colloquium
University of Bremen
June 13, 2017

POINCARÉ DUALITY ALGEBRAS

- Let A be a graded, graded-commutative algebra over a field \mathbb{k}.
- $A=\oplus_{i \geqslant 0} A^{i}$, where A^{i} are \mathbb{k}-vector spaces.
- $\cdot A^{i} \otimes A^{j} \rightarrow A^{i+j}$.
- $a b=(-1)^{i j} b a$ for all $a \in A^{i}, b \in B^{j}$.
- We will assume that A is connected $\left(A^{0}=\mathbb{k} \cdot 1\right)$, and locally finite (all the Betti numbers $b_{i}(A):=\operatorname{dim}_{\mathbb{k}} A^{i}$ are finite).
- A is a Poincaré duality \mathbb{k}-algebra of dimension m if there is a \mathbb{k}-linear map $\varepsilon: A^{m} \rightarrow \mathbb{k}$ (called an orientation) such that all the bilinear forms $A^{i} \otimes_{\mathbb{k}} A^{m-i} \rightarrow \mathbb{k}, a \otimes b \mapsto \varepsilon(a b)$ are non-singular.
- Consequently,
- $b_{i}(A)=b_{m-i}(A)$, and $A^{i}=0$ for $i>m$.
- ε is an isomorphism.
- The maps PD: $A^{i} \rightarrow\left(A^{m-i}\right)^{*}, \operatorname{PD}(a)(b)=\varepsilon(a b)$ are isomorphisms.
- Each $a \in A^{i}$ has a Poincaré dual, $a^{\vee} \in A^{m-i}$, such that $\varepsilon\left(a a^{\vee}\right)=1$.
- The orientation class is defined as $\omega_{A}=1^{\vee}$, so that $\varepsilon\left(\omega_{A}\right)=1$.

THE ASSOCIATED ALTERNATING FORM

- Associated to $\mathfrak{a k}$ - PD_{m} algebra there is an alternating m-form,

$$
\mu_{A}: \bigwedge^{m} A^{1} \rightarrow \mathbb{k}, \quad \mu_{A}\left(a_{1} \wedge \cdots \wedge a_{m}\right)=\varepsilon\left(a_{1} \cdots a_{m}\right)
$$

- Assume now that $m=3$, and set $n=b_{1}(A)$. Fix a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ for A^{1}, and let $\left\{e_{1}^{\vee}, \ldots, e_{n}^{\vee}\right\}$ be the PD basis for A^{2}.
- The multiplication in A, then, is given on basis elements by

$$
e_{i} e_{j}=\sum_{k=1}^{n} \mu_{i j k} e_{k}^{\vee}, \quad e_{i} e_{j}^{\vee}=\delta_{i j} \omega,
$$

where $\mu_{i j k}=\mu\left(e_{i} \wedge e_{j} \wedge e_{k}\right)$.

- Alternatively, let $A_{i}=\left(A^{i}\right)^{*}$, and let $e^{i} \in A_{1}$ be the (Kronecker) dual of e_{i}. We may then view μ dually as a trivector,

$$
\mu=\sum \mu_{i j k} e^{i} \wedge e^{j} \wedge e^{k} \in \bigwedge^{3} A_{1}
$$

which encodes the algebra structure of A.

POINCARÉ DUALITY IN ORIENTABLE MANIFOLDS

- If M is a compact, connected, orientable, m-dimensional manifold, then the cohomology ring $A=H^{\cdot}(M, \mathbb{k})$ is a P_{m} algebra over \mathbb{k}.
- Sullivan (1975): for every finite-dimensional Q-vector space V and every alternating 3-form $\mu \in \bigwedge^{3} V^{*}$, there is a closed 3-manifold M with $H^{1}(M, \mathbb{Q})=V$ and cup-product form $\mu_{M}=\mu$.
- Such a 3-manifold can be constructed via "Borromean surgery."

- If M bounds an oriented 4-manifold W such that the cup-product pairing on $H^{2}(W, M)$ is non-degenerate (e.g., if M is the link of an isolated surface singularity), then $\mu_{M}=0$.

Resonance varieties of graded algebras

- Let A be a connected, finite-type cga over $\mathbb{k}=C$.
- For each $a \in A^{1}$, there is a cochain complex of \mathbb{k}-vector spaces,

$$
\left(A, \delta_{a}\right): A^{0} \xrightarrow{\delta_{a}^{0}} A^{1} \xrightarrow{\delta_{a}^{1}} A^{2} \xrightarrow{\delta_{a}^{2}} \cdots,
$$

with differentials $\delta_{a}(b)=a \cdot b$, for $b \in A^{i}$.

- The resonance varieties of A are the sets

$$
\mathcal{R}_{s}^{i}(A)=\left\{a \in A^{1} \mid \operatorname{dim}_{k} H^{i}\left(A, \delta_{\mathrm{a}}\right) \geqslant s\right\} .
$$

- An element $a \in A^{1}$ belongs to $\mathcal{R}_{s}^{i}(A)$ if and only if

$$
\operatorname{rank} \delta_{a}^{i+1}+\operatorname{rank} \delta_{a}^{i} \leqslant b_{i}(A)-s
$$

- Fix a \mathbb{k}-basis $\left\{e_{1}, \ldots, e_{n}\right\}$ for A^{1}, and let $\left\{x_{1}, \ldots, x_{n}\right\}$ be the dual basis for $A_{1}=\left(A^{1}\right)^{*}$.
- Identify $\operatorname{Sym}\left(A_{1}\right)$ with $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$, the coordinate ring of the affine space A^{1}.
- Define a cochain complex of free S-modules, $\mathbf{L}(A):=\left(A^{\bullet} \otimes S, \delta\right)$,

$$
\cdots \longrightarrow A^{i} \otimes S \xrightarrow{\delta^{i}} A^{i+1} \otimes S \xrightarrow{\delta^{i+1}} A^{i+2} \otimes S \longrightarrow \cdots
$$

where $\quad \delta^{i}(u \otimes s)=\sum_{j=1}^{n} e_{j} u \otimes s x_{j}$.

- The specialization of $(A \otimes S, \delta)$ at $a \in A^{1}$ coincides with $\left(A, \delta_{a}\right)$.
- Hence, $\mathcal{R}_{s}^{i}(A)$ is the zero-set of the ideal generated by all minors of size $b_{i}-s+1$ of the block-matrix $\delta^{i+1} \oplus \delta^{i}$.
- In particular, $\mathcal{R}_{s}^{1}(A)=V\left(I_{n-s}\left(\delta^{1}\right)\right)$, the zero-set of the ideal of codimension s minors of δ^{1}.

Example (Exterior algebra)

Let $E=\bigwedge V$, where $V=\mathbb{k}^{n}$, and $S=\operatorname{Sym}(V)$. Then $\mathrm{L}(E)$ is the Koszul complex on V. E.g., for $n=3$:

$$
S \xrightarrow{\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right)} S^{3} \xrightarrow{\left(\begin{array}{ccc}
-x_{2} & -x_{3} & 0 \\
x_{1} & 0 & -x_{3} \\
0 & x_{1} & x_{2}
\end{array}\right)} S^{3} \xrightarrow{\left(\begin{array}{c}
x_{3} \\
-x_{2} \\
x_{1}
\end{array}\right)} S .
$$

This chain complex provides a free resolution $\varepsilon: \mathbf{L}(E) \rightarrow \mathbb{k}$ of the trivial S-module \mathbb{k}. Hence,

$$
\mathcal{R}_{s}^{i}(E)= \begin{cases}\{0\} & \text { if } s \leqslant\binom{ n}{i} \\ \varnothing & \text { otherwise } .\end{cases}
$$

EXAMPLE (NON-ZERO RESONANCE)
Let $A=\bigwedge\left(e_{1}, e_{2}, e_{3}\right) /\left\langle e_{1} e_{2}\right\rangle$, and set $S=\mathbb{k}\left[x_{1}, x_{2}, x_{3}\right]$. Then

$$
\begin{array}{r}
\mathbf{L}(A): S \xrightarrow{\left(x_{1} x_{2} x_{3}\right)} S^{3} \xrightarrow{\left(\begin{array}{ll}
x_{3} & 0 \\
0 & x_{3} \\
-x_{1} & -x_{2}
\end{array}\right)} S^{2} . \\
\mathcal{R}_{s}^{1}(A)= \begin{cases}\left\{x_{3}=0\right\} & \text { if } s=1, \\
\{0\} & \text { if } s=2 \text { or } 3, \\
\varnothing & \text { if } s>3 .\end{cases}
\end{array}
$$

EXAMPLE (NON-LINEAR RESONANCE)
Let $A=\bigwedge\left(e_{1}, \ldots, e_{4}\right) /\left\langle e_{1} e_{3}, e_{2} e_{4}, e_{1} e_{2}+e_{3} e_{4}\right\rangle$. Then

$$
\begin{aligned}
\mathbf{L}(A): & \left.S \xrightarrow{\left(x_{1} x_{2} x_{3} x_{4}\right)} S^{4} \xrightarrow{\left(\begin{array}{ccc}
x_{4} & 0 & -x_{2} \\
0 & x_{3} & x_{1} \\
0 & -x_{1} & 0
\end{array} x_{4}\right.} \begin{array}{l}
-x_{3}
\end{array}\right) \\
& \mathcal{R}_{1}^{1}(A)=\left\{x_{1} x_{2}+x_{3} x_{4}=0\right\}
\end{aligned}
$$

Properties of resonance

- Product formula

$$
\mathcal{R}_{s}^{i}(B \otimes C)= \begin{cases}\mathcal{R}_{s}^{1}(B) \times\{0\} \cup\{0\} \times \mathcal{R}_{s}^{1}(C), & \text { if } i=1, \\ \bigcup_{k+\ell=i} \mathcal{R}_{1}^{k}(B) \times \mathcal{R}_{1}^{\ell}(C), & \text { if } i \geqslant 2 \text { and } s=1\end{cases}
$$

- Coproduct formula

$$
\mathcal{R}_{s}^{i}(B \vee C)= \begin{cases}\bigcup_{k+\ell=s-1}\left(\mathcal{R}_{k}^{1}(B) \backslash\{0\}\right) \times\left(\mathcal{R}_{\ell}^{1}(C) \backslash\{0\}\right) \cup \\ \left(\{0\} \times \mathcal{R}_{s-\operatorname{dim} B^{1}}^{1}(C)\right) \cup\left(\mathcal{R}_{s-\operatorname{dim} C^{1}}^{1}(B) \times\{0\}\right), & \text { if } i=1, \\ \bigcup_{k+\ell=s} \mathcal{R}_{k}^{i}(B) \times \mathcal{R}_{\ell}^{i}(C), & \text { if } i \geqslant 2 .\end{cases}
$$

- If $\varphi: A \rightarrow B$ is a cga morphism such that $\varphi_{1}: A^{1} \rightarrow B^{1}$ is injective, then $\varphi_{1}\left(\mathcal{R}_{s}^{1}(A)\right) \subseteq \mathcal{R}_{s}^{1}(B)$, for all $s \geqslant 0$.
- In general, $\varphi_{1}\left(\mathcal{R}_{s}^{i}(A)\right) \nsubseteq \mathcal{R}_{s}^{i}(B)$, even if φ is injective.

Resonance varieties of PD-ALGebras

- Let A be a PD_{m} algebra.
- For all $0 \leqslant i \leqslant m$ and all $a \in A^{1}$, the square

$$
\begin{array}{cc}
\left(A^{m-i}\right)^{*} \xrightarrow{\left(\delta_{a}^{m-i-1}\right)^{*}}\left(A^{m-i-1}\right)^{*} \\
\mathrm{PD} \uparrow \cong & \mathrm{PD} \uparrow \cong \\
\boldsymbol{A}^{i} \xrightarrow{\delta_{a}^{i}} & A^{i+1}
\end{array}
$$

commutes up to a sign of $(-1)^{i}$.

- Consequently,

$$
\left(H^{i}\left(A, \delta_{a}\right)\right)^{*} \cong H^{m-i}\left(A, \delta_{-a}\right)
$$

- Hence, for all i and s,

$$
\mathcal{R}_{s}^{i}(A)=\mathcal{R}_{s}^{m-i}(A)
$$

- In particular, $\mathcal{R}_{1}^{m}(A)=\{0\}$.

DEGREE 1 MAPS

- Let A and B be two PD_{m} algebras. A morphism $\varphi: A \rightarrow B$ of cga's has degree 1 if the linear map $\varphi_{m}: A^{m} \rightarrow B^{m}$ is non-zero.
- We may then pick orientation classes such that $\varphi_{m}\left(\omega_{A}\right)=\omega_{B}$.

Proposition

Let $\varphi: A \rightarrow B$ be a degree 1 map between two PD_{m} algebras. Then:

- $\varphi\left(a^{\vee}\right)=\varphi(a)^{\vee}$, for all homogeneous elements $a \in A$.
- The map φ is injective.
- For all $a \in A^{1}$, the map φ induces a homomorphism

$$
\varphi^{*}: H^{*}\left(A, \delta_{a}\right) \rightarrow H^{*}\left(B, \delta_{\varphi_{1}(a)}\right) .
$$

- The map $\varphi_{1}: A^{1} \hookrightarrow B^{1}$ restricts to inclusions $\mathcal{R}_{s}^{i}(A) \hookrightarrow \mathcal{R}_{s}^{i}(B)$.

3-DIMENSIONAL Poincaré DUALITY ALGEBRAS

- Let A be a PD_{3}-algebra with $b_{1}(A)=n>0$. Then
- $\mathcal{R}_{1}^{3}(A)=\mathcal{R}_{1}^{0}(A)=\{0\}$.
- $\mathcal{R}_{s}^{2}(A)=\mathcal{R}_{s}^{1}(A)$ for $1 \leqslant s \leqslant n$.
- $\mathcal{R}_{S}^{i}(A)=\varnothing$, otherwise.
- Write $\mathcal{R}_{s}(A)=\mathcal{R}_{s}^{1}(A)$. Work of Buchsbaum and Eisenbud on Pfaffians of skew-symmetric matrices implies that
- $\mathcal{R}_{2 k}(A)=\mathcal{R}_{2 k+1}(A)$ if n is even.
- $\mathcal{R}_{2 k-1}(A)=\mathcal{R}_{2 k}(A)$ if n is odd.
- If μ_{A} has rank $n \geqslant 3$, then $\mathcal{R}_{n-2}(A)=\mathcal{R}_{n-1}(A)=\mathcal{R}_{n}(A)=\{0\}$.
- Here, the rank of a form $\mu: \bigwedge^{3} V \rightarrow \mathbb{k}$ is the minimum dimension of a linear subspace $W \subset V$ such that μ factors through $\bigwedge^{3} W$.
- The nullity of μ is the maximum dimension of a subspace $U \subset V$ such that $\mu(a \wedge b \wedge c)=0$ for all $a, b \in U$ and $c \in V$.
- If $n \geqslant 4$, then $\operatorname{dim} \mathcal{R}_{1}(A) \geqslant \operatorname{null}\left(\mu_{A}\right) \geqslant 2$.
- If n is even, then $\mathcal{R}_{1}(A)=\mathcal{R}_{0}(A)=A^{1}$.
- If $n=2 g+1>1$, then $\mathcal{R}_{1}(A) \neq A^{1}$ if and only if μ_{A} is 'generic' in the sense of Berceanu and Papadima (1994).
- That is, $\exists c \in A^{1}$ such that the 2 -form $\gamma_{c} \in \bigwedge^{2} A_{1}$ given by $\gamma_{c}(a \wedge b)=\mu_{A}(a \wedge b \wedge c)$ has rank $2 g$, i.e., $\gamma_{c}^{g} \neq 0$ in $\wedge^{2 g} A_{1}$.
- In that case, $\mathcal{R}_{1}(A)$ is the hypersurface $\operatorname{Pf}\left(\mu_{A}\right)=0$, where $\operatorname{pf}\left(\delta^{1}(i ; i)\right)=(-1)^{i+1} x_{i} \operatorname{Pf}\left(\mu_{A}\right)$.

ExAMPLE

Let $M=S^{1} \times \Sigma_{g}$, where $g \geqslant 2$. Then $\mu_{M}=\sum_{i=1}^{g} a_{i} b_{i} c$ is generic, and $\operatorname{Pf}\left(\mu_{M}\right)=x_{2 g+1}^{g-1}$. Hence, $\mathcal{R}_{1}=\cdots=\mathcal{R}_{2 g-2}=\left\{x_{2 g+1}=0\right\}$ and $\mathcal{R}_{2 g-1}=\mathcal{R}_{2 g}=\mathcal{R}_{2 g+1}=\{0\}$.

Resonance varieties of 3-FORMS of LOW RANK

n	μ	\mathcal{R}_{1}					
3	123	0	\quad	n	μ	$\mathcal{R}_{1}=\mathcal{R}_{2}$	\mathcal{R}_{3}
:---:	:---:	:---:	:---:				
5	$125+345 \otimes$	$\left\{x_{5}=0\right\}$	0				

n	μ	\mathcal{R}_{1}	$\mathcal{R}_{2}=\mathcal{R}_{3}$	\mathcal{R}_{4}
6	$123+456^{\#}$	\mathbb{C}^{6}	$\left\{x_{1}=x_{2}=x_{3}=0\right\} \cup\left\{x_{4}=x_{5}=x_{6}=0\right\}$	0
	$123+236+456$	\mathbb{C}^{6}	$\left\{x_{3}=x_{5}=x_{6}=0\right\}$	0

n	μ	$\mathcal{R}_{1}=\mathcal{R}_{2}$	$\mathcal{R}_{3}=\mathcal{R}_{4}$	\mathcal{R}_{5}
7	$147+257+367 \otimes$	$\left\{x_{7}=0\right\}$	$\left\{x_{7}=0\right\}$	0
	$456+147+257+367$	$\left\{x_{7}=0\right\}$	$\left\{x_{4}=x_{5}=x_{6}=x_{7}=0\right\}$	0
	$123+456+147$	$\left\{x_{1}=0\right\} \cup\left\{x_{4}=0\right\}$	$\left\{x_{1}=x_{2}=x_{3}=x_{4}=0\right\} \cup\left\{x_{1}=x_{4}=x_{5}=x_{6}=0\right\}$	0
	$123+456+147+257$	$\left\{x_{1} x_{4}+x_{2} x_{5}=0\right\}$	$\left\{x_{1}=x_{2}=x_{4}=x_{5}=x_{7}^{2}-x_{3} x_{6}=0\right\}$	0
	$123+456+147+257+367$	$\left\{x_{1} x_{4}+x_{2} x_{5}+x_{3} x_{6}=x_{7}^{2}\right\}$	0	0

n	μ	\mathcal{R}_{1}	$\mathcal{R}_{2}=\mathcal{R}_{3}$	$\mathcal{R}_{4}=\mathcal{R}_{5}$
8	147+257+367+358	C^{8}	$\left\{x_{7}=0\right\}$	$\left\{x_{3}=x_{5}=x_{7}=x_{8}=0\right\} \cup\left\{x_{1}=x_{3}=x_{4}=x_{5}=x_{7}=0\right\}$
	456+147+257+367+358	C^{8}	$\left\{x_{5}=x_{7}=0\right\}$	$\left\{x_{3}=x_{4}=x_{5}=x_{7}=x_{1} x_{8}+x_{6}^{2}=0\right\}$
	$123+456+147+358$	C^{8}	$\left\{x_{1}=x_{5}=0\right\} \cup\left\{x_{3}=x_{4}=0\right\}$	$\left\{x_{1}=x_{3}=x_{4}=x_{5}=x_{2} x_{6}+x_{7} x_{8}=0\right\}$
	$123+456+147+257+358$	C^{8}	$\left\{x_{1}=x_{5}=0\right\} \cup\left\{x_{3}=x_{4}=x_{5}=0\right\}$	$\left\{x_{1}=x_{2}=x_{3}=x_{4}=x_{5}=x_{7}=0\right\}$
	$123+456+147+257+367+358$	C^{8}	$\left\{x_{3}=x_{5}=x_{1} x_{4}-x_{7}^{2}=0\right\}$	$\left\{x_{1}=x_{2}=x_{3}=x_{4}=x_{5}=x_{6}=x_{7}=0\right\}$
	147+268+358\#	C^{8}	$\left\{x_{1}=x_{4}=x_{7}=0\right\} \cup\left\{x_{8}=0\right\}$	$\left\{x_{1}=x_{4}=x_{7}=x_{8}=0\right\} \cup\left\{x_{2}=x_{3}=x_{5}=x_{6}=x_{8}=0\right\}$
	147+257+268+358	C^{8}	$L_{1} \cup L_{2} \cup L_{3}$	$L_{1} \cup L_{2}$
	456+147+257+268+358	C^{8}	$C_{1} \cup C_{2}$	$L_{1} \cup L_{2}$
	147+257+367+268+358	C^{8}	$L_{1} \cup L_{2} \cup L_{3} \cup L_{4}$	$L_{1}^{\prime} \cup L_{2}^{\prime} \cup L_{3}^{\prime}$
	$456+147+257+367+268+358$	C^{8}	$C_{1} \cup C_{2} \cup C_{3}$	$L_{1} \cup L_{2} \cup L_{3}$
	$123+456+147+268+358$	C^{8}	$C_{1} \cup C_{2}$	L
	$123+456+147+257+268+358$	C^{8}	$\left\{f_{1}=\cdots=f_{20}=0\right\}$	0
	123+456+147+257+367+268+358	C^{8}	$\left\{g_{1}=\cdots=g_{20}=0\right\}$	0

ALEX SUCIU (NORTHEASTERN)
DUALITY AND RESONANCE
Bremen Colloquium

CHARACTERISTIC VARIETIES

- Let X be a connected, finite-type CW-complex.
- The fundamental group $\pi=\pi_{1}\left(X, x_{0}\right)$ is a finitely presented group, with abelianization $\pi_{\mathrm{ab}} \cong H_{1}(X, \mathbb{Z})$.
- The group-algebra $R=\mathbb{C}\left[\pi_{\mathrm{ab}}\right]$ is the coordinate ring of the character group, $\operatorname{Char}(X)=\operatorname{Hom}\left(\pi, \mathbb{C}^{\times}\right) \cong\left(\mathbb{C}^{\times}\right)^{n} \times \operatorname{Tors}\left(\pi_{\mathrm{ab}}\right)$, where $n=b_{1}(X)$.
- The characteristic varieties of X are the homology jump loci

$$
\mathcal{V}_{s}^{i}(X)=\left\{\rho \in \operatorname{Char}(X) \mid \operatorname{dim}_{\mathbb{C}} H_{i}\left(X, \mathbb{C}_{\rho}\right) \geqslant s\right\} .
$$

- Away from 1, we have that $\mathcal{V}_{s}^{1}(X)=V\left(E_{s}\left(A_{\pi}\right)\right)$, the zero-set of the ideal of codimension s minors of the Alexander matrix of abelianized Fox derivatives of the relators of π.

The Alexander polynomial

- The group-algebra $\mathbb{C}\left[\pi_{\mathrm{ab}} / \operatorname{Tors}\left(\pi_{\mathrm{ab}}\right)\right]$ is isomorphic to $\Lambda=\mathbb{C}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$, the coordinate ring of $\operatorname{Char}^{0}(X) \cong\left(\mathbb{C}^{\times}\right)^{n}$.
- The Alexander polynomial Δ_{X} is the gcd of $E_{1}\left(A_{\pi} \otimes_{R} \Lambda\right)$.
- Dimca-Papadima-S. (2011): The zero-set $V\left(\Delta_{X}\right)$ coincides (away from 1) with the union of all codimension 1 irreducible components of $\mathcal{V}_{1}^{1}(X) \cap \operatorname{Char}^{0}(X)$.

EXAMPLE

Let K be a knot in S^{3}. Its complement, X, is a homology circle. The Alexander polynomial, $\Delta=\Delta_{X}$, satisfies $\Delta(1)= \pm 1$, and so $1 \notin V(\Delta)$. On the other hand, $\mathcal{V}_{1}^{1}(X)=V(\Delta) \cup\{1\}$.

TANGENT CONES AND EXPONENTIAL MAPS

- The map exp: $\mathbb{C}^{n} \rightarrow\left(\mathbb{C}^{\times}\right)^{n},\left(z_{1}, \ldots, z_{n}\right) \mapsto\left(e^{z_{1}}, \ldots, e^{z_{n}}\right)$ is a homomorphism taking 0 to 1 .
- For a Zariski-closed subset $W=V(I)$ inside $\left(\mathbb{C}^{\times}\right)^{n}$, define:
- The tangent cone at 1 to W as $\mathrm{TC}_{1}(W)=V(\mathrm{in}(I))$.
- The exponential tangent cone at 1 to W as

$$
\tau_{1}(W)=\left\{z \in \mathbb{C}^{n} \mid \exp (\lambda z) \in W, \forall \lambda \in \mathbb{C}\right\}
$$

- These sets are homogeneous subvarieties of \mathbb{C}^{n}, which depend only on the analytic germ of W at 1 .
- Both commute with finite unions and arbitrary intersections.
- $\tau_{1}(W) \subseteq \mathrm{TC}_{1}(W)$.
- = if all irred components of W are subtori.
- \neq in general.
- $\tau_{1}(W)$ is a finite union of rationally defined subspaces.

The TANGENT CONE THEOREM

- The resonance varieties of a space X are the jump loci $\mathcal{R}_{d}^{i}(X) \subset H^{1}(X, \mathbb{C})=\mathbb{C}^{n}$ associated to the algebra $A=H^{*}(X, \mathbb{C})$.
- We also have the characteristic varieties $\mathcal{V}_{s}^{i}(X) \subset \operatorname{Char}(X)$. Let $\mathcal{W}_{s}^{i}(X):=\mathcal{V}_{s}^{i}(X) \cap \operatorname{Char}^{0}(X)=\left(\mathbb{C}^{\times}\right)^{n}$.
- (Libgober 2002)

$$
\mathrm{TC}_{1}\left(\mathcal{W}_{s}^{i}(X)\right) \subseteq \mathcal{R}_{s}^{i}(X)
$$

- Thus,

$$
\tau_{1}\left(\mathcal{W}_{s}^{i}(X)\right) \subseteq \mathrm{TC}_{1}\left(\mathcal{W}_{s}^{i}(X)\right) \subseteq \mathcal{R}_{s}^{i}(X)
$$

- (DPS 2009/DP 2014) If X is formal, then

$$
\tau_{1}\left(\mathcal{W}_{s}^{i}(X)\right)=\mathrm{TC}_{1}\left(\mathcal{W}_{s}^{i}(X)\right)=\mathcal{R}_{s}^{i}(X)
$$

A TANGENT CONE THEOREM FOR 3-MANIFOLDS

- Let M be a closed, orientable, 3-dimensional manifold.
- C. McMullen (2000): Let / be the augmentation ideal of Λ. Then

$$
E_{1}(M)= \begin{cases}\left(\Delta_{M}\right) & \text { if } b_{1}(M) \leqslant 1, \\ L^{2} \cdot\left(\Delta_{M}\right) & \text { if } b_{1}(M) \geqslant 2 .\end{cases}
$$

- It follows that $\mathcal{W}_{1}^{1}(M)=V\left(\Delta_{M}\right)$, at least away from 1 .
- Using the previous discussion, as well as work of Turaev (2002), we obtain:

Theorem

Suppose $b_{1}(M)$ is odd and μ_{M} is generic. Then

$$
\mathrm{TC}_{1}\left(\mathcal{W}_{1}^{1}(M)\right)=\mathcal{R}_{1}^{1}(M) .
$$

- If $b_{1}(M)$ is even, the conclusion of the theorem may or may not hold:
- Let $M=S^{1} \times S^{2} \# S^{1} \times S^{2}$; then $\mathcal{V}_{1}^{1}(M)=\operatorname{Char}(M)=\left(\mathbb{C}^{\times}\right)^{2}$, and so $\mathrm{TC}_{1}\left(\mathcal{V}_{1}^{1}(M)\right)=\mathcal{R}_{1}^{1}(M)=\mathbb{C}^{2}$.
- Let M be the Heisenberg nilmanifold; then $\operatorname{TC}_{1}\left(\mathcal{V}_{1}^{1}(M)\right)=\{0\}$, whereas $\mathcal{R}_{1}^{1}(M)=\mathbb{C}^{2}$.
- If M is not formal, the first half of the Tangent Cone theorem may fail to hold, i.e., $\tau_{1}\left(\mathcal{V}_{1}^{1}(M)\right) \nsubseteq \mathrm{TC}_{1}\left(\mathcal{V}_{1}^{1}(M)\right)$.
- Let M be a closed, orientable 3-manifold with $b_{1}=7$ and $\mu=e_{1} e_{3} e_{5}+e_{1} e_{4} e_{7}+e_{2} e_{5} e_{7}+e_{3} e_{6} e_{7}+e_{4} e_{5} e_{6}$. Then μ is generic and $\operatorname{Pf}(\mu)=\left(x_{5}^{2}+x_{7}^{2}\right)^{2}$. Hence, $\mathcal{R}_{1}^{1}(M)=\left\{x_{5}^{2}+x_{7}^{2}=0\right\}$ splits as a union of two hyperplanes over \mathbb{C}, but not over \mathbb{Q}.

DUALITY AND ABELIAN DUALITY SPACES

- Let X be a path-connected space, having the homotopy type of a finite-type CW-complex. Set $\pi=\pi_{1}(X)$.
- Bieri and Eckmann (1978): X is a duality space of dimension n if $H^{i}(X, \mathbb{Z} \pi)=0$ for $i \neq n$ and $D:=H^{n}(X, \mathbb{Z} \pi)$ is non-zero and torsion-free.
- Then $H^{i}(X, A) \cong H_{n-i}(X, D \otimes A)$, for any $\mathbb{Z} \pi$-module A.
- If $D=\mathbb{Z}$, with trivial $\mathbb{Z} \pi$-action, then X is a PD space.
- Denham-S.-Yuzvinsky (2016): X is an abelian duality space of dimension n if $H^{i}\left(X, \mathbb{Z} \pi_{\mathrm{ab}}\right)=0$ for $i \neq n$ and $H^{n}\left(X, \mathbb{Z} \pi_{\mathrm{ab}}\right) \neq 0$ and torsion-free.
- Let $B=H^{n}\left(X, \mathbb{Z} \pi_{\mathrm{ab}}\right)$ be the dualizing $\mathbb{Z} \pi_{\mathrm{ab}}$-module. Given any $\mathbb{Z} \pi_{\mathrm{ab}}$-module A, we have $H^{i}(X, A) \cong H_{n-i}(X, B \otimes A)$.

Propagation of Jump Loci

THEOREM (DSY 2016/2017)

Let X be an abelian duality space of dimension n. Then:

- If $H^{i}\left(X, \mathbb{C}_{\rho}\right) \neq 0$, then $H^{j}\left(X, \mathbb{C}_{\rho}\right) \neq 0$, for all $i \leqslant j \leqslant n$.
- The characteristic varieties propagate: $\mathcal{V}_{1}^{1}(X) \subseteq \cdots \subseteq \mathcal{V}_{1}^{n}(X)$.
- $b_{1}(X) \geqslant n-1$.
- If $n \geqslant 2$, then $b_{i}(X) \neq 0$, for all $0 \leqslant i \leqslant n$.
- If, moreover, X is formal, then the resonance varieties propagate: $\mathcal{R}_{1}^{1}(X) \subseteq \cdots \subseteq \mathcal{R}_{1}^{n}(X)$.
- Let M be a compact, connected, orientable smooth manifold of dimension n. By Poincaré duality, $\mathcal{R}_{1}^{n}(M)=\{0\}$.
- On the other hand, if $n=3$ and $b_{1}(M)$ is even and non-zero, then $\mathcal{R}_{1}^{1}(M)=H^{1}(M, \mathbb{C})$.
- Hence, such a 3-manifold M is not an abelian duality space.

Arrangements of Smooth hypersurfaces

THEOREM (DENHAM-S. 2017)

Let U be a connected, smooth, complex quasi-projective variety of dimension n. Suppose U has a smooth compactification Y for which

- Components of the boundary $D=Y \backslash \cup$ form an arrangement of smooth hypersurfaces \mathcal{A};
- For each submanifold X in the intersection poset $L(\mathcal{A})$, the complement of the restriction of \mathcal{A} to X is a Stein manifold.

Then U is both a duality space and an abelian duality space of dimension n.

Consequently, the characteristic varieties of such "recursively Stein" hypersurface complements propagate.

THEOREM (DSY / DS)

Suppose that \mathcal{A} is one of the following:

- An affine-linear arrangement in \mathbb{C}^{n}, or a hyperplane arrangement in $\mathbb{C P}^{n}$;
- A non-empty elliptic arrangement in E^{n};
- A toric arrangement in $\left(\mathbb{C}^{*}\right)^{n}$.

Then the complement $M(\mathcal{A})$ is both a duality space and an abelian duality space of dimension $n-r, n+r$, and n, respectively, where r is the corank of the arrangement.

As a consequence, the characteristic varieties propagate for all linear, elliptic and toric arrangements. The formality of linear and toric arrangement complements implies that their resonance varieties propagate, as well.

