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FUNDAMENTAL GROUPS IN ALGEBRAIC GEOMETRY FUNDAMENTAL GROUPS OF MANIFOLDS

FUNDAMENTAL GROUPS OF MANIFOLDS

Every finitely presented group π can be realized as π = π1(M),
for some smooth, compact, connected manifold Mn of dim n ě 4.

Mn can be chosen to be orientable.

If n even, n ě 4, then Mn can be chosen to be symplectic (Gompf).

If n even, n ě 6, then Mn can be chosen to be complex (Taubes).

Requiring that n = 3 puts severe restrictions on the (closed)
3-manifold group π = π1(M3).
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FUNDAMENTAL GROUPS IN ALGEBRAIC GEOMETRY KÄHLER GROUPS & 3-MANIFOLD GROUPS

KÄHLER GROUPS & 3-MANIFOLD GROUPS

A Kähler manifold is a compact, connected, complex manifold,
with a Hermitian metric h such that ω = im(h) is a closed 2-form.
Examples: smooth, complex projective varieties.
If M is a Kähler manifold, π = π1(M) is called a Kähler group.
This also puts strong restrictions on π, e.g.:

b1(π) is even (Hodge theory)

π is 1-formal: Malcev Lie algebra m(π) is quadratic (DGMS 1975)

π cannot split non-trivially as a free product (Gromov 1989)

π finite ñ π projective group (Serre 1958).

QUESTION (DONALDSON–GOLDMAN 1989)

Which 3-manifold groups are Kähler groups?

Reznikov (2002) gave a partial solution.
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FUNDAMENTAL GROUPS IN ALGEBRAIC GEOMETRY KÄHLER GROUPS & 3-MANIFOLD GROUPS

THEOREM (DIMCA–S. 2009)

Let π be the fundamental group of a closed 3-manifold. Then π is a
Kähler group ðñ π is a finite subgroup of O(4), acting freely on S3.

Alternative proofs have since been given by Kotschick (2012) and by
Biswas, Mj and Seshadri (2012).

THEOREM (FRIEDL–S. 2014)

Let N be a 3-manifold with non-empty, toroidal boundary. If π1(N) is a
Kähler group, then N – S1 ˆS1 ˆ I.

Since then, Kotschick has generalized this result, by dropping the
toroidal boundary assumption: If π1(N) is an infinite Kähler group,
then π1(N) is a surface group.
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QUASI-PROJECTIVE GROUPS & 3-MANIFOLD GROUPS

A group π is called a quasi-projective group if π = π1(MzD),
where M is a smooth, projective variety and D is a divisor.

Qp groups are finitely presented. The class of qp groups is closed
under direct products and passing to finite-index subgroups.

For a qp group π,
b1(π) can be arbitrary (e.g., the free groups Fn).
π may be non-1-formal (e.g., the Heisenberg group).
π can split as a non-trivial free product.

Subclass: fundamental groups of complements of hypersurfaces
in CPn, or, equivalently, fundamental groups of complements of
plane algebraic curves.

Such groups are 1-formal.
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FUNDAMENTAL GROUPS IN ALGEBRAIC GEOMETRY QUASI-PROJECTIVE GROUPS & 3-MANIFOLD GROUPS

QUESTION (DIMCA–S. 2009)

Which 3-manifold groups are quasi-projective groups?

THEOREM (DIMCA–PAPADIMA–S. 2011)

Let π be the fundamental group of a closed, orientable 3-manifold.
Assume π is 1-formal. Then the following are equivalent:

1 m(π) – m(π1(X )), for some quasi-projective manifold X.

2 m(π) – m(π1(N)), where N is either S3, #nS1 ˆS2, or S1 ˆ Σg .
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Joint work with Stefan Friedl (2014)

THEOREM

Let N be a 3-mfd with empty or toroidal boundary. If π1(N) is a quasi-
projective group, then all prime components of N are graph manifolds.

In particular, the fundamental group of a hyperbolic 3-manifold with
empty or toroidal boundary is never a qp-group.
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ALEXANDER POLYNOMIALS

Let H be a finitely generated, free abelian group.

Let M be a finitely generated module over Λ = Z[H ]. Pick a
presentation Λp α // Λs // M // 0 with p ě s.

Let Ei(M) be the ideal of minors of size s´ i of α, and set

ordi(M) := gcd(Ei(M)) P Λ

(well-defined up to units in Λ).

Write r = rank(M), and set

∆k
M :=

#

ordk´r (Tors M) if k ě r
0 if k ă r

Define the thickness of M as

th(M) = dim Newt(∆r
M).
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FUNDAMENTAL GROUPS IN ALGEBRAIC GEOMETRY ALEXANDER POLYNOMIALS

Let X be a finite, conn. CW-complex. Write H := H1(X ;Z)/ Tors.

Alexander invariant: AX = H1(X ;Z[H ]).
Alexander polynomials: ∆k

X = ordk (AX ); usual one: ∆ = ∆0.
Set th(X ) := th(AX ). Note: th(X ) = th(π1(X )).

Let pH = Hom(H,C˚) be the character torus. Define hypersurfaces

V (∆k
X ) = tρ P

pH | ∆k
X (ρ) = 0u.

If X = S3zK , then ∆X is the classical Alexander polynomial of K ,
and V (∆k

X ) Ă C˚ is the set of roots of ∆X , of multiplicity at least k .

Also define the (degree 1) characteristic varieties of X as

Vk (X ) = tρ P pH | dim H1(X ,Cρ) ě ku,

where Cρ = C, viewed as a module over ZH, via g ¨ x = ρ(g)x .

We then have: Vk (X )zt1u = V (Ek´1(AX ))zt1u.

ALEX SUCIU (NORTHEASTERN) FUNDAMENTAL GROUPS IN GEOMETRY AND TOPOLOGYBRANDEIS, MARCH 2016 9 / 29



FUNDAMENTAL GROUPS IN ALGEBRAIC GEOMETRY ALEXANDER POLYNOMIALS

Let V̌k (X ) be the union of all codim 1 irreducible components of Vk (X ).

LEMMA (DPS08 FOR k = 1, FS14 FOR k ą 1)

1 ∆k´1
X = 0 if and only if Vk (X ) = pH, in which case V̌k (X ) = H.

2 Suppose b1(X ) ě 1 and ∆k´1
X ‰ 0. Then at least away from 1,

V̌k (X ) = V (∆k´1
X ).

THEOREM (DPS, FS)

Suppose b1(X ) ě 2. Then ∆k´1
X

.
= const if and only if V̌k (X ) = H.

Otherwise, the following are equivalent:

1 The Newton polytope of ∆k´1
X is a line segment.

2 All irreducible components of V̌k (X ) are parallel, codim 1 subtori
of pH.
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FUNDAMENTAL GROUPS IN ALGEBRAIC GEOMETRY ALEXANDER POLYNOMIALS

The next theorem is due to Arapura (1997), with improvements by DPS
(2008, 2009) and Artal-Bartolo, Cogolludo, Matei (2013).

THEOREM

Let π be a quasi-projective group. Then, for each k ě 1,
The irreducible components of Vk (π) are (possibly
torsion-translated) subtori of the character torus pH.
Any two distinct components of Vk (π) meet in a finite set.

Using this theorem, we prove

THEOREM (DPS08 FOR k = 0, FS14 FOR k ą 0)

Let π be a quasi-projective group, and assume b1(π) ‰ 2. Then, for
each k ě 0, the polynomial ∆k

π is either zero, or the Newton polytope of
∆k

π is a point or a line segment. In particular, th(π) ď 1.
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3-MANIFOLD GROUPS THURSTON NORM AND ALEXANDER NORM

THURSTON NORM AND ALEXANDER NORM

Let N be a 3-manifold with either empty or toroidal boundary.

A class φ P H1(N;Z) = Hom(π1(N),Z) is fibered if there exists a
fibration p : N Ñ S1 such that p˚ : π1(N)Ñ Z coincides with φ.

Given a surface Σ with connected components Σ1, . . . ,Σs, put
χ´(Σ) =

řs
i=1 maxt´χ(Σi),0u.

Thurston norm: }φ}T = min
 

χ´(Σ)u, where Σ runs through all the
properly embedded surfaces dual to φ.

} ´ }T defines a (semi)norm on H1(N;Z), which can be extended
to a (semi)norm } ´ }T on H1(N;Q).

The unit norm ball, BT = tφ P H1(N;Q) | }φ}T ď 1u, is a rational
polyhedron with finitely many sides, symmetric in the origin.
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3-MANIFOLD GROUPS THURSTON NORM AND ALEXANDER NORM

The set of fibered classes form a cone on certain open,
top-dimensional faces of BT , called the fibered faces of BT .

Two faces F and G are equivalent if F = ˘G. Clearly, F is fibered
if and only if ´F is fibered.

We say φ P H1(N;Q) is quasi-fibered if it lies on the boundary of a
fibered face of BT . Results of Stallings (1962) and Gabai (1983) imply

COROLLARY (FS14)

Let p : N 1 Ñ N be a finite cover. Then:

1 φ P H1(N;Q) quasi-fibered ñ p˚(φ) P H1(N 1;Q) quasi-fibered.

2 Pull-backs of inequivalent faces of the Thurston norm ball of N lie
on inequivalent faces of the Thurston norm ball of N 1.
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3-MANIFOLD GROUPS THURSTON NORM AND ALEXANDER NORM

Let ∆N =
ř

hPH ahh P Z[H ] be the Alexander polynomial of N.

Define a (semi)norm } ´ }A on H1(N;Q) by

}φ}A := max tφ(ah)´ φ(ag) | g,h P H with ag ‰ 0 and ah ‰ 0u.

THEOREM (MCMULLEN 2002)

Let N be a 3-manifold with empty or toroidal boundary and such that
b1(N) ě 2. Then }φ}A ď }φ}T , for any φ P H1(N;Q). Furthermore,
equality holds for any quasi-fibered class.

COROLLARY (FS14)

Let N be a 3-manifold with empty or toroidal boundary.

If there is a fibration F Ñ N Ñ S1 with χ(F ) ă 0, then th(N) ě 1.

If N has at least two non-equivalent fibered faces, then th(N) ě 2.
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3-MANIFOLD GROUPS THE RFRS PROPERTY

THE RFRS PROPERTY

DEFINITION (AGOL 2008)

A group π is called residually finite rationally solvable (RFRS) if there
is a filtration π = π0 ě π1 ě π2 ě ¨ ¨ ¨ such that

Ş

i πi = t1u, and
Each group πi is a normal, finite-index subgroup of π.
Each map πi Ñ πi /πi+1 factors through πi Ñ H1(πi ;Z)/ Tors.

E.g., free groups and surface groups are RFRS.

THEOREM (AGOL 2008)

Let N be an irreducible 3-manifold such that π1(N) is virtually RFRS.
Let φ P H1(N;Q) be a non-fibered class. There exists then a finite
cover p : N 1 Ñ N such that p˚(φ) P H1(N 1;Q) is quasi-fibered.
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3-MANIFOLD GROUPS THE RFRS PROPERTY

Assume N is an irreducible 3-manifold with empty or toroidal boundary.

THEOREM (AGOL, WISE, PRZYTYCKI– WISE, . . . )

If N is not a closed graph manifold, then π1(N) is virtually RFRS.

COROLLARY

If N is not a closed graph manifold, then N is virtually fibered.

THEOREM (AGOL, WISE, . . . )

Suppose N is neither S1 ˆD2, nor T 2 ˆ I, nor finitely cover by a torus
bundle. Then, @k P N, there is a finite cover N 1 Ñ N s.t. b1(N 1) ě k.

THEOREM

Suppose N is not a graph manifold. Given any k P N, there exists a
finite cover N 1 Ñ N such that the Thurston norm ball of N 1 has at least
k non-equivalent fibered faces.

Next, we upgrade the statement about the Thurston unit ball to a
statement about the thickness of the Alexander ball.
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QUASI-PROJECTIVE 3-MANIFOLD GROUPS

THEOREM (FS14)

Suppose N is not a graph manifold. There exists then a finite cover
N 1 Ñ N with th(N 1) ě 2 and b1(N 1) ě 3.

PROOF.
Since N is not a graph manifold, it admits finite covers with
arbitrarily large first Betti numbers.
We can thus assume that b1(N) ě 3.
There exists a finite cover N 1 Ñ N such that the Thurston norm
ball of N 1 has at least 2 non-equivalent fibered faces.
A transfer argument shows that b1(N 1) ě b1(N) ě 3.
Hence, th(N 1) ě 2.
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3-MANIFOLD GROUPS QUASI-PROJECTIVE 3-MANIFOLD GROUPS

We can now prove our theorem in the case when N is irreducible.

THEOREM (FS14)

Let N be an irreducible 3-manifold with empty or toroidal boundary. If
N is not a graph manifold, then π1(N) is not a quasi-projective group.

PROOF.
Suppose π1(N) is a qp group.
We know there is a finite cover N 1 Ñ N with th(N 1) ě 2 and
b1(N 1) ě 3.
On the other hand, π1(N 1) is also a qp group.
Hence, either b1(N 1) = 2, or th(N 1) ď 1.
This is a contradiction.

The case when N has several prime factors is more complicated, but
can be handled with similar techniques.
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PLANE ALGEBRAIC CURVES

Let C Ă CP2 be a plane algebraic curve, defined by a
homogeneous polynomial f P C[z1, z2, z3].

Zariski commissioned Van Kampen to find a presentation for the
fundamental group of the complement, U(C) = CP2

zC.

Zariski noticed that π = π1(U) is not fully determined by the
combinatorics of C, but depends on the position of its singularities.

He asked whether π is residually finite, i.e., whether the map to its
profinite completion, π Ñ pπ =: πalg, is injective.
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3-MANIFOLD GROUPS LINE ARRANGEMENTS

LINE ARRANGEMENTS

Let A be an arrangement of lines in CP2, defined by a polynomial
f =

ś

LPA fL, with fL linear forms so that L = P(ker(fL)).

The combinatorics of A is encoded in the intersection poset,
L(A), with L1(A) = tlinesu and L2(A) = tintersection pointsu.

L1

L2

L3L4

P1 P2

P3

P4

L1 L2 L3 L4

P1 P2 P3 P4
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3-MANIFOLD GROUPS LINE ARRANGEMENTS

The group π = π1(U(A)) has a finite presentation with

Meridional generators x1, . . . , xn, where n = |A|, and
ś

xi = 1.

Commutator relators xi αj (xi )
´1, where α1, . . . αs P Pn Ă Aut(Fn),

and s = |L2(A)|.

Let π/γk (π) be the (k ´ 1)th nilpotent quotient of π. Then:

πab = π/γ2 equals Zn´1.

π/γ3 is determined by L(A).

π/γ4 (and thus, π) is not determined by L(A). (Rybnikov).
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3-MANIFOLD GROUPS LINE ARRANGEMENTS

THEOREM (S. 2011)

Let A be an arrangement of lines in CP2, with group π = π1(U(A)).
The following are equivalent:

1 π is a Kähler group.

2 π is a free abelian group of even rank.

3 A consists of an odd number of lines in general position.

THEOREM (DPS 2009)

Let Γ be a finite simple graph, and AΓ the corresponding RAAG. Then:

1 AΓ is a quasi-projective group if and only if Γ is a complete
multipartite graph Kn1,...,nr = K n1 ˚ ¨ ¨ ¨ ˚K nr , in which case
AΓ = Fn1 ˆ ¨ ¨ ¨ ˆ Fnr .

2 AΓ is a Kähler group if and only if Γ is a complete graph K2m, in
which case GΓ = Z2m.
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3-MANIFOLD GROUPS LINE ARRANGEMENTS

THEOREM (S. 2011)

Let π = π1(U(A)). The following are equivalent:

1 π is a RAAG.
2 π is a finite direct product of finitely generated free groups.

3 G(A) is a forest.

Here G(A) is the ‘multiplicity’ graph, with
vertices: points P P L2(A) with multiplicity at least 3;
edges: tP,Qu if P,Q P L, for some L P A.
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THE RFRp PROPERTY

Joint work with Thomas Koberda (2016)

Let G be a finitely generated group and let p be a prime.

We say that G is residually finite rationally p if there exists a sequence
of subgroups G = G0 ą ¨ ¨ ¨ ą Gi ą Gi+1 ą ¨ ¨ ¨ such that

1 Gi+1 ŸGi .
2

Ş

iě0 Gi = t1u.

3 Gi /Gi+1 is an elementary abelian p-group.
4 ker(Gi Ñ H1(Gi ,Q)) ă Gi+1.

Remarks:
We may assume each Gi ŸG.
Compare with Agol’s RFRS property, where he only assumes
Gi /Gi+1 is finite.
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RESIDUAL PROPERTIES THE RFRp PROPERTY

G RFRp ñ residually p ñ residually finite and residually nilpotent.

G RFRp ñ G RFRS ñ torsion-free.

The class of RFRp groups is closed under the following
operations:

Taking subgroups.

Finite direct products.

Finite free products.

The following groups are RFRp, for all p:

Finitely generated free groups.

Closed, orientable surface groups.

Right-angled Artin groups.
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A COMBINATION THEOREM

THEOREM (KS16)

Fix a prime p. Let X = XΓ be a finite graph of connected, finite
CW-complexes with vertex spaces tXvuvPV (Γ) and edge spaces
tXeuePE(Γ) satisfying the following conditions:

1 For each v P V (Γ), the group π1(Xv ) is RFRp.
2 For each v P V (Γ), the RFRp topology on π1(X ) induces the

RFRp topology on π1(Xv ) by restriction.
3 For each e P E(Γ) and each v P e, the subgroup φe,v (π1(Xe)) of

π1(Xv ) is closed in the RFRp topology on π1(Xv ).
Then π1(X ) is RFRp.
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BOUNDARY MANIFOLDS

Let A be an arrangement of lines in CP2, and let N be a regular
neighborhood of

Ť

LPA L.

The boundary manifold of A is M = BN, a compact, orientable,
smooth manifold of dimension 3.

EXAMPLE

Let A be a pencil of n lines in CP2, defined by f = zn
1 ´ zn

2 .
If n = 1, then M = S3. If n ą 1, then M = 7n´1S1 ˆS2.

EXAMPLE

Let A be a near-pencil of n lines in CP2, defined by
f = z1(zn´1

2 ´ zn´1
3 ). Then M = S1 ˆ Σn´2, where Σg = 7gS1 ˆS1.
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RESIDUAL PROPERTIES BOUNDARY MANIFOLDS

M is a graph-manifold MΓ, where Γ is the incidence graph of A,
with V (Γ) = L1(A)Y L2(A) and E(Γ) = t(L,P) | P P Lu.

For each v P V (Γ), there is a vertex manifold Mv = S1 ˆSv , with
Sv = S2z

Ť

tv ,wuPE(Γ) D2
v ,w .

Vertex manifolds are glued along edge manifolds Me = S1 ˆS1

via flips.

The boundary manifold of a line arrangement in C2 is defined as
M = BN XD4, for some sufficiently large 4-ball D4.

THEOREM (KS16)

If M is the boundary manifold of a line arrangement in C2, then π1(M)
is RFRp, for all primes p.

CONJECTURE (KS)

Arrangement groups are RFRp, for all primes p.
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