FUNDAMENTAL GROUPS IN COMPLEX GEOMETRY AND 3-DIMENSIONAL TOPOLOGY

Alex Suciu

Northeastern University

Topology Seminar Brandeis University March 29, 2016

FUNDAMENTAL GROUPS OF MANIFOLDS

- Every finitely presented group π can be realized as π = π₁(M), for some smooth, compact, connected manifold Mⁿ of dim n ≥ 4.
- *Mⁿ* can be chosen to be orientable.
- If *n* even, $n \ge 4$, then M^n can be chosen to be symplectic (Gompf).
- If *n* even, $n \ge 6$, then M^n can be chosen to be complex (Taubes).
- Requiring that n = 3 puts severe restrictions on the (closed) 3-manifold group $\pi = \pi_1(M^3)$.

Kähler groups & 3-manifold groups

- A Kähler manifold is a compact, connected, complex manifold, with a Hermitian metric h such that ω = im(h) is a closed 2-form.
- Examples: smooth, complex projective varieties.
- If *M* is a Kähler manifold, $\pi = \pi_1(M)$ is called a *Kähler group*.
- This also puts strong restrictions on π, e.g.:
 - **b**₁(π) is even (Hodge theory)
 - π is 1-formal: Malcev Lie algebra $\mathfrak{m}(\pi)$ is quadratic (DGMS 1975)
 - π cannot split non-trivially as a free product (Gromov 1989)
- π finite $\Rightarrow \pi$ projective group (Serre 1958).

QUESTION (DONALDSON-GOLDMAN 1989)

Which 3-manifold groups are Kähler groups?

Reznikov (2002) gave a partial solution.

ALEX SUCIU (NORTHEASTERN) FUNDAMENTAL GROUPS IN GEOMETRY AND 1 BRANDEIS, MARCH 2016 3 / 29

THEOREM (DIMCA–S. 2009)

Let π be the fundamental group of a closed 3-manifold. Then π is a Kähler group $\iff \pi$ is a finite subgroup of O(4), acting freely on S³.

Alternative proofs have since been given by Kotschick (2012) and by Biswas, Mj and Seshadri (2012).

THEOREM (FRIEDL-S. 2014)

Let N be a 3-manifold with non-empty, toroidal boundary. If $\pi_1(N)$ is a Kähler group, then $N \cong S^1 \times S^1 \times I$.

Since then, Kotschick has generalized this result, by dropping the toroidal boundary assumption: If $\pi_1(N)$ is an infinite Kähler group, then $\pi_1(N)$ is a surface group.

QUASI-PROJECTIVE GROUPS & 3-MANIFOLD GROUPS

- A group π is called a *quasi-projective group* if $\pi = \pi_1(M \setminus D)$, where *M* is a smooth, projective variety and *D* is a divisor.
- Qp groups are finitely presented. The class of qp groups is closed under direct products and passing to finite-index subgroups.
- For a qp group π ,
 - $b_1(\pi)$ can be arbitrary (e.g., the free groups F_n).
 - π may be non-1-formal (e.g., the Heisenberg group).
 - π can split as a non-trivial free product.
- Subclass: fundamental groups of complements of hypersurfaces in CPⁿ, or, equivalently, fundamental groups of complements of plane algebraic curves.
- Such groups are 1-formal.

QUESTION (DIMCA–S. 2009) Which 3-manifold groups are quasi-projective groups?

THEOREM (DIMCA–PAPADIMA–S. 2011)

Let π be the fundamental group of a closed, orientable 3-manifold. Assume π is 1-formal. Then the following are equivalent:

(1) $\mathfrak{m}(\pi) \cong \mathfrak{m}(\pi_1(X))$, for some quasi-projective manifold *X*.

2 $\mathfrak{m}(\pi) \cong \mathfrak{m}(\pi_1(N))$, where N is either S^3 , $\#^n S^1 \times S^2$, or $S^1 \times \Sigma_g$.

Joint work with Stefan Friedl (2014)

THEOREM

Let N be a 3-mfd with empty or toroidal boundary. If $\pi_1(N)$ is a quasiprojective group, then all prime components of N are graph manifolds.

In particular, the fundamental group of a hyperbolic 3-manifold with empty or toroidal boundary is never a qp-group.

ALEXANDER POLYNOMIALS

- Let *H* be a finitely generated, free abelian group.
- Let *M* be a finitely generated module over $\Lambda = \mathbb{Z}[H]$. Pick a presentation $\Lambda^{p} \xrightarrow{\alpha} \Lambda^{s} \longrightarrow M \longrightarrow 0$ with $p \ge s$.
- Let E_i(M) be the ideal of minors of size s − i of α, and set ordⁱ(M) := gcd(E_i(M)) ∈ Λ

(well-defined up to units in Λ).

• Write $r = \operatorname{rank}(M)$, and set

$$\Delta_M^k := \begin{cases} \operatorname{ord}^{k-r}(\operatorname{Tors} M) & \text{if } k \ge r \\ 0 & \text{if } k < r \end{cases}$$

Define the thickness of M as

 $\mathsf{th}(M) = \mathsf{dim}\,\mathsf{Newt}(\Delta_M^r).$

- Let X be a finite, conn. CW-complex. Write $H := H_1(X; \mathbb{Z}) / \text{Tors.}$
 - Alexander invariant: $A_X = H_1(X; \mathbb{Z}[H])$.
 - Alexander polynomials: $\Delta_X^k = \operatorname{ord}^k(A_X)$; usual one: $\Delta = \Delta^0$.
 - Set $\operatorname{th}(X) := \operatorname{th}(A_X)$. Note: $\operatorname{th}(X) = \operatorname{th}(\pi_1(X))$.

• Let $\hat{H} = \text{Hom}(H, \mathbb{C}^*)$ be the character torus. Define hypersurfaces

$$V(\Delta_X^k) = \{ \rho \in \widehat{H} \mid \Delta_X^k(\rho) = \mathbf{0} \}.$$

- If X = S³\K, then Δ_X is the classical Alexander polynomial of K, and V(Δ^k_X) ⊂ C* is the set of roots of Δ_X, of multiplicity at least k.
- Also define the (degree 1) characteristic varieties of X as

 $\mathcal{V}_k(X) = \{ \rho \in \widehat{H} \mid \dim H_1(X, \mathbb{C}_{\rho}) \ge k \},$

where $\mathbb{C}_{\rho} = \mathbb{C}$, viewed as a module over $\mathbb{Z}H$, via $g \cdot x = \rho(g)x$. • We then have: $\mathcal{V}_k(X) \setminus \{1\} = V(E_{k-1}(A_X)) \setminus \{1\}$. Let $\check{\mathcal{V}}_k(X)$ be the union of all codim 1 irreducible components of $\mathcal{V}_k(X)$.

LEMMA (DPS08 FOR k = 1, FS14 FOR k > 1)

(1) $\Delta_X^{k-1} = 0$ if and only if $\mathcal{V}_k(X) = \hat{H}$, in which case $\check{\mathcal{V}}_k(X) = \emptyset$.

② Suppose $b_1(X) \ge 1$ and $\Delta_X^{k-1} \ne 0$. Then at least away from 1,

 $\check{\mathcal{V}}_k(X) = V(\Delta_X^{k-1}).$

THEOREM (DPS, FS)

Suppose $b_1(X) \ge 2$. Then $\Delta_X^{k-1} \doteq \text{const}$ if and only if $\check{\mathcal{V}}_k(X) = \emptyset$. Otherwise, the following are equivalent:

- **(1)** The Newton polytope of Δ_X^{k-1} is a line segment.
- 2 All irreducible components of $\check{\mathcal{V}}_k(X)$ are parallel, codim 1 subtori of \widehat{H} .

The next theorem is due to Arapura (1997), with improvements by DPS (2008, 2009) and Artal-Bartolo, Cogolludo, Matei (2013).

THEOREM

Let π be a quasi-projective group. Then, for each $k \ge 1$,

- The irreducible components of V_k(π) are (possibly torsion-translated) subtori of the character torus H.
- Any two distinct components of $\mathcal{V}_k(\pi)$ meet in a finite set.

Using this theorem, we prove

THEOREM (DPS08 FOR k = 0, FS14 FOR k > 0)

Let π be a quasi-projective group, and assume $b_1(\pi) \neq 2$. Then, for each $k \ge 0$, the polynomial Δ_{π}^k is either zero, or the Newton polytope of Δ_{π}^k is a point or a line segment. In particular, $th(\pi) \le 1$.

THURSTON NORM AND ALEXANDER NORM

- Let N be a 3-manifold with either empty or toroidal boundary.
- A class $\phi \in H^1(N; \mathbb{Z}) = \text{Hom}(\pi_1(N), \mathbb{Z})$ is *fibered* if there exists a fibration $p: N \to S^1$ such that $p_*: \pi_1(N) \to \mathbb{Z}$ coincides with ϕ .
- Given a surface Σ with connected components $\Sigma_1, \ldots, \Sigma_s$, put $\chi_{-}(\Sigma) = \sum_{i=1}^s \max\{-\chi(\Sigma_i), 0\}.$
- *Thurston norm*: $\|\phi\|_{\mathcal{T}} = \min \{\chi_{-}(\Sigma)\}$, where Σ runs through all the properly embedded surfaces dual to ϕ .
- $\|-\|_{\mathcal{T}}$ defines a (semi)norm on $H^1(N; \mathbb{Z})$, which can be extended to a (semi)norm $\|-\|_{\mathcal{T}}$ on $H^1(N; \mathbb{Q})$.
- The unit norm ball, $B_T = \{\phi \in H^1(N; \mathbb{Q}) \mid \|\phi\|_T \leq 1\}$, is a rational polyhedron with finitely many sides, symmetric in the origin.

- The set of fibered classes form a cone on certain open, top-dimensional faces of B_T, called the *fibered faces* of B_T.
- Two faces *F* and *G* are *equivalent* if $F = \pm G$. Clearly, *F* is fibered if and only if -F is fibered.

We say $\phi \in H^1(N; \mathbb{Q})$ is *quasi-fibered* if it lies on the boundary of a fibered face of B_T . Results of Stallings (1962) and Gabai (1983) imply

COROLLARY (FS14)

Let $p: N' \rightarrow N$ be a finite cover. Then:

- **(1)** $\phi \in H^1(N; \mathbb{Q})$ quasi-fibered $\Rightarrow p^*(\phi) \in H^1(N'; \mathbb{Q})$ quasi-fibered.
- 2 Pull-backs of inequivalent faces of the Thurston norm ball of N lie on inequivalent faces of the Thurston norm ball of N'.

- Let $\Delta_N = \sum_{h \in H} a_h h \in \mathbb{Z}[H]$ be the Alexander polynomial of *N*.
- Define a (semi)norm $\|-\|_A$ on $H^1(N; \mathbb{Q})$ by

 $\|\phi\|_{\mathcal{A}} := \max \left\{ \phi(a_h) - \phi(a_g) \mid g, h \in \mathcal{H} \text{ with } a_g \neq 0 \text{ and } a_h \neq 0 \right\}.$

THEOREM (MCMULLEN 2002)

Let N be a 3-manifold with empty or toroidal boundary and such that $b_1(N) \ge 2$. Then $\|\phi\|_A \le \|\phi\|_T$, for any $\phi \in H^1(N; \mathbb{Q})$. Furthermore, equality holds for any quasi-fibered class.

COROLLARY (FS14)

Let N be a 3-manifold with empty or toroidal boundary.

• If there is a fibration $F \to N \to S^1$ with $\chi(F) < 0$, then th $(N) \ge 1$.

• If N has at least two non-equivalent fibered faces, then $th(N) \ge 2$.

THE RFRS PROPERTY

DEFINITION (AGOL 2008)

A group π is called *residually finite rationally solvable (RFRS)* if there is a filtration $\pi = \pi_0 \ge \pi_1 \ge \pi_2 \ge \cdots$ such that $\bigcap_i \pi_i = \{1\}$, and

• Each group π_i is a normal, finite-index subgroup of π .

• Each map $\pi_i \to \pi_i / \pi_{i+1}$ factors through $\pi_i \to H_1(\pi_i; \mathbb{Z}) / \text{Tors.}$

E.g., free groups and surface groups are RFRS.

THEOREM (AGOL 2008)

Let N be an irreducible 3-manifold such that $\pi_1(N)$ is virtually RFRS. Let $\phi \in H^1(N; \mathbb{Q})$ be a non-fibered class. There exists then a finite cover $p: N' \to N$ such that $p^*(\phi) \in H^1(N'; \mathbb{Q})$ is quasi-fibered. Assume N is an irreducible 3-manifold with empty or toroidal boundary.

THEOREM (AGOL, WISE, PRZYTYCKI– WISE, ...)

If N is not a closed graph manifold, then $\pi_1(N)$ is virtually RFRS.

COROLLARY

If N is not a closed graph manifold, then N is virtually fibered.

THEOREM (AGOL, WISE, ...)

Suppose N is neither $S^1 \times D^2$, nor $T^2 \times I$, nor finitely cover by a torus bundle. Then, $\forall k \in \mathbb{N}$, there is a finite cover $N' \to N$ s.t. $b_1(N') \ge k$.

THEOREM

Suppose N is not a graph manifold. Given any $k \in \mathbb{N}$, there exists a finite cover $N' \to N$ such that the Thurston norm ball of N' has at least k non-equivalent fibered faces.

QUASI-PROJECTIVE 3-MANIFOLD GROUPS

THEOREM (FS14)

Suppose N is not a graph manifold. There exists then a finite cover $N' \rightarrow N$ with th $(N') \ge 2$ and $b_1(N') \ge 3$.

PROOF.

- Since *N* is not a graph manifold, it admits finite covers with arbitrarily large first Betti numbers.
- We can thus assume that $b_1(N) \ge 3$.
- There exists a finite cover N' → N such that the Thurston norm ball of N' has at least 2 non-equivalent fibered faces.
- A transfer argument shows that $b_1(N') \ge b_1(N) \ge 3$.
- Hence, $th(N') \ge 2$.

We can now prove our theorem in the case when N is irreducible.

THEOREM (FS14)

Let N be an irreducible 3-manifold with empty or toroidal boundary. If N is not a graph manifold, then $\pi_1(N)$ is not a quasi-projective group.

PROOF.

- Suppose $\pi_1(N)$ is a qp group.
- We know there is a finite cover $N' \rightarrow N$ with $th(N') \ge 2$ and $b_1(N') \ge 3$.
- On the other hand, $\pi_1(N')$ is also a qp group.
- Hence, either $b_1(N') = 2$, or $th(N') \leq 1$.
- This is a contradiction.

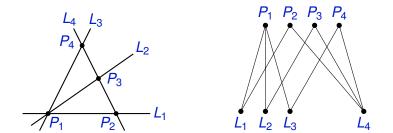
The case when N has several prime factors is more complicated, but can be handled with similar techniques.

PLANE ALGEBRAIC CURVES

- Let C ⊂ CP² be a plane algebraic curve, defined by a homogeneous polynomial f ∈ C[z₁, z₂, z₃].
- Zariski commissioned Van Kampen to find a presentation for the fundamental group of the complement, U(C) = CP²\C.
- Zariski noticed that π = π₁(U) is *not* fully determined by the combinatorics of C, but depends on the position of its singularities.
- He asked whether π is *residually finite*, i.e., whether the map to its profinite completion, $\pi \to \hat{\pi} =: \pi^{\text{alg}}$, is injective.

LINE ARRANGEMENTS

- Let \mathcal{A} be an *arrangement of lines* in \mathbb{CP}^2 , defined by a polynomial $f = \prod_{L \in \mathcal{A}} f_L$, with f_L linear forms so that $L = \mathbb{P}(\ker(f_L))$.
- The combinatorics of \mathcal{A} is encoded in the *intersection poset*, $\mathcal{L}(\mathcal{A})$, with $\mathcal{L}_1(\mathcal{A}) = \{\text{lines}\}$ and $\mathcal{L}_2(\mathcal{A}) = \{\text{intersection points}\}.$



- The group $\pi = \pi_1(U(A))$ has a finite presentation with
 - Meridional generators x_1, \ldots, x_n , where $n = |\mathcal{A}|$, and $\prod x_i = 1$.
 - Commutator relators $x_i \alpha_j(x_i)^{-1}$, where $\alpha_1, \ldots \alpha_s \in P_n \subset Aut(F_n)$, and $s = |\mathcal{L}_2(\mathcal{A})|$.

- Let $\pi/\gamma_k(\pi)$ be the $(k-1)^{\text{th}}$ nilpotent quotient of π . Then:
 - $\pi_{ab} = \pi / \gamma_2$ equals \mathbb{Z}^{n-1} .
 - π/γ_3 is determined by $L(\mathcal{A})$.
 - π/γ_4 (and thus, π) is *not* determined by L(A). (Rybnikov).

THEOREM (S. 2011)

Let \mathcal{A} be an arrangement of lines in \mathbb{CP}^2 , with group $\pi = \pi_1(U(\mathcal{A}))$. The following are equivalent:

- (1) π is a Kähler group.
- (2) π is a free abelian group of even rank.
- ③ A consists of an odd number of lines in general position.

THEOREM (DPS 2009)

Let Γ be a finite simple graph, and A_{Γ} the corresponding RAAG. Then:

- **①** A_{Γ} is a quasi-projective group if and only if Γ is a complete multipartite graph $K_{n_1,...,n_r} = \overline{K}_{n_1} * \cdots * \overline{K}_{n_r}$, in which case $A_{\Gamma} = F_{n_1} \times \cdots \times F_{n_r}$.
- ② A_{Γ} is a Kähler group if and only if Γ is a complete graph K_{2m} , in which case $G_{\Gamma} = \mathbb{Z}^{2m}$.

THEOREM (S. 2011)

Let $\pi = \pi_1(U(\mathcal{A}))$. The following are equivalent:

- 1) π is a RAAG.
- (2) π is a finite direct product of finitely generated free groups.
- (3) $\mathcal{G}(\mathcal{A})$ is a forest.

Here $\mathcal{G}(\mathcal{A})$ is the 'multiplicity' graph, with

- vertices: points $P \in \mathcal{L}_2(\mathcal{A})$ with multiplicity at least 3;
- edges: $\{P, Q\}$ if $P, Q \in L$, for some $L \in A$.

THE RFRp PROPERTY

Joint work with Thomas Koberda (2016)

Let G be a finitely generated group and let p be a prime.

We say that *G* is *residually finite rationally p* if there exists a sequence of subgroups $G = G_0 > \cdots > G_i > G_{i+1} > \cdots$ such that

- 3 G_i/G_{i+1} is an elementary abelian *p*-group.

Remarks:

- We may assume each $G_i \lhd G$.
- Compare with Agol's RFRS property, where he only assumes G_i/G_{i+1} is finite.

- **G** RFR $p \Rightarrow$ residually $p \Rightarrow$ residually finite and residually nilpotent.
- **G** RFR $p \Rightarrow$ **G** RFRS \Rightarrow torsion-free.
- The class of RFRp groups is closed under the following operations:
 - Taking subgroups.
 - Finite direct products.
 - Finite free products.
- The following groups are RFRp, for all p:
 - Finitely generated free groups.
 - Closed, orientable surface groups.
 - Right-angled Artin groups.

A COMBINATION THEOREM

THEOREM (KS16)

Fix a prime *p*. Let $X = X_{\Gamma}$ be a finite graph of connected, finite *CW*-complexes with vertex spaces $\{X_{\nu}\}_{\nu \in V(\Gamma)}$ and edge spaces $\{X_{e}\}_{e \in E(\Gamma)}$ satisfying the following conditions:

- **(1)** For each $v \in V(\Gamma)$, the group $\pi_1(X_v)$ is RFRp.
- ② For each $v \in V(\Gamma)$, the RFRp topology on $\pi_1(X)$ induces the RFRp topology on $\pi_1(X_v)$ by restriction.
- ③ For each *e* ∈ *E*(Γ) and each *v* ∈ *e*, the subgroup $\phi_{e,v}(\pi_1(X_e))$ of $\pi_1(X_v)$ is closed in the RFRp topology on $\pi_1(X_v)$.

Then $\pi_1(X)$ is RFRp.

BOUNDARY MANIFOLDS

- Let A be an arrangement of lines in CP², and let N be a regular neighborhood of U_{L∈A} L.
- The *boundary manifold* of A is $M = \partial N$, a compact, orientable, smooth manifold of dimension 3.

EXAMPLE

```
Let \mathcal{A} be a pencil of n lines in \mathbb{CP}^2, defined by f = z_1^n - z_2^n.
If n = 1, then M = S^3. If n > 1, then M = \sharp^{n-1}S^1 \times S^2.
```

EXAMPLE

Let \mathcal{A} be a near-pencil of n lines in \mathbb{CP}^2 , defined by $f = z_1(z_2^{n-1} - z_3^{n-1})$. Then $M = S^1 \times \Sigma_{n-2}$, where $\Sigma_g = \sharp^g S^1 \times S^1$.

- *M* is a graph-manifold M_{Γ} , where Γ is the incidence graph of \mathcal{A} , with $V(\Gamma) = L_1(\mathcal{A}) \cup L_2(\mathcal{A})$ and $E(\Gamma) = \{(L, P) \mid P \in L\}$.
- For each $v \in V(\Gamma)$, there is a vertex manifold $M_v = S^1 \times S_v$, with $S_v = S^2 \setminus \bigcup_{\{v,w\} \in E(\Gamma)} D^2_{v,w}$.
- Vertex manifolds are glued along edge manifolds M_e = S¹ × S¹ via flips.
- The boundary manifold of a line arrangement in \mathbb{C}^2 is defined as $M = \partial N \cap D^4$, for some sufficiently large 4-ball D^4 .

THEOREM (KS16)

If *M* is the boundary manifold of a line arrangement in \mathbb{C}^2 , then $\pi_1(M)$ is RFRp, for all primes p.

CONJECTURE (KS)

Arrangement groups are RFR*p*, for all primes *p*.

REFERENCES

- S. Friedl, A. Suciu, *Kähler groups, quasi-projective groups, and* 3*-manifold groups,* J. London Math. Soc. **89** (2014), no. 1, 151–168.
- T. Koberda, A. Suciu, *Residually finite rationally p groups*, arXiv:1604.02010.
- A. Dimca, S. Papadima, A. Suciu, *Alexander polynomials: Essential variables and multiplicities*, Int. Math. Res. Notices **2008**, no. 3, Art. ID rnm119, 36 pp.
- A. Dimca, S. Papadima, A. Suciu, *Topology and geometry of cohomology jump loci*, Duke Math. Journal **148** (2009), no. 3, 405–457.
- A. Dimca, S. Papadima, A. Suciu, *Quasi-Kähler groups*, 3-manifold groups, and formality, Math. Zeit. **268** (2011), no. 1-2, 169–186.

- A. Dimca, A. Suciu, *Which* <u>3</u>*-manifold groups are Kähler groups?*, J. European Math. Soc. <u>11</u> (2009), no. 3, 521–528.
- A. Suciu, Fundamental groups, Alexander invariants, and cohomology jumping loci, 179–223, Contemp. Math., vol. 538, Amer. Math. Soc., Providence, RI, 2011.