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DUALITY AND ABELIAN DUALITY SPACES DUALITY SPACES

The following notion is due to Bieri and Eckmann (1978).

Let X be a path-connected space with fundamental group
π “ π1pX q.

X is a duality space of dimension n if H ipX ,Zπq “ 0 for i ‰ n and
HnpX ,Zπq ‰ 0 and torsion-free.

Let D “ HnpX ,Zπq be the dualizing Zπ-module. Given any
Zπ-module A, we have H ipX ,Aq – Hn´ipX ,D b Aq.

If D “ Z, with trivial Zπ-action, then X is a Poincaré duality space.

If X “ K pπ,1q is a duality space, then π is a duality group.

In (Denham–S.–Yuzvinsky, 2017) we introduce an analogous notion,
by replacing π ; πab.
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DUALITY AND ABELIAN DUALITY SPACES ABELIAN DUALITY SPACES

X is an abelian duality space of dimension n if H ipX ,Zπabq “ 0 for
i ‰ n and HnpX ,Zπabq ‰ 0 and torsion-free.

Let B “ HnpX ,Zπabq be the dualizing Zπab-module. Given any
Zπab-module A, we have H ipX ,Aq – Hn´ipX ,B b Aq.

If X “ K pπ,1q is an abelian duality space, then π is an abelian
duality group.

Finitely generated free groups Fn are abelian duality groups.

Surface groups π1pΣgq with g ě 2 are (Poincaré) duality groups,
but not abelian duality groups.

Let H “ xx1, . . . , x4 | x´2
1 x2x1x´1

2 , . . . , x´2
4 x1x4x´1

1 y be Higman’s
acyclic group, and let G “ Z2 ˚ H. Then G is an abelian duality
group (of dimension 2), but not a duality group.
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DUALITY AND ABELIAN DUALITY SPACES ARRANGEMENTS OF SMOOTH HYPERSURFACES

THEOREM (DSY)

Let X be an abelian duality space of dimension n. Then:
b1pX q ě n ´ 1.
bipX q ‰ 0, for 0 ď i ď n and bipX q “ 0 for i ą n.
p´1qnχpX q ě 0.

THEOREM (DENHAM–S. 2017)

Let U be a connected, smooth, complex quasi-projective variety of
dimension n. Suppose U has a smooth compactification Y for which

1 Components of Y zU form an arrangement of hypersurfaces A;

2 For each submanifold X in the intersection poset LpAq, the
complement of the restriction of A to X is a Stein manifold.

Then U is both a duality space and an abelian duality space of
dimension n.
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DUALITY AND ABELIAN DUALITY SPACES LINEAR, ELLIPTIC, AND TORIC ARRANGEMENTS

THEOREM (DS17)

Suppose that A is one of the following:

An affine-linear arrangement in Cn, or a hyperplane arrangement
in CPn;

A non-empty elliptic arrangement in En;

A toric arrangement in pC˚qn.
Then the complement MpAq is both a duality space and an abelian
duality space of dimension n ´ r , n ` r , and n, respectively, where r is
the corank of the arrangement.

This theorem extends several previous results:
1 Davis, Januszkiewicz, Leary, and Okun (2011);
2 Levin and Varchenko (2012);
3 Davis and Settepanella (2013), Esterov and Takeuchi (2014).

Liu, Maxim, and Wang (2017) proved that very affine varieties are
abelian duality spaces.
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DUALITY AND ABELIAN DUALITY SPACES CHARACTERISTIC VARIETIES

Let X be a connected, finite-type CW-complex. Then π “ π1pX q is
a finitely presented group, with πab – H1pX ,Zq.

The ring R “ Crπabs is the coordinate ring of the character group,
CharpX q “ Hompπ,C˚q – pC˚qr ˆ Torspπabq, where r “ b1pX q.

The characteristic varieties of X are the homology jump loci

V i
spX q “ tρ P CharpX q | dim HipX ,Cρq ě su.

These varieties are homotopy-type invariants of X , with V1
s pX q

depending only on π “ π1pX q.

Set V1pπq :“ V1
1 pK pπ,1qq; then V1pπq “ V1pπ{π

2q.
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DUALITY AND ABELIAN DUALITY SPACES
ABELIAN DUALITY AND PROPAGATION OF CHARACTERISTIC

VARIETIES

EXAMPLE

Let f P Zrt˘1
1 , . . . , t˘1

n s be a Laurent polynomial, f p1q “ 0. There is then
a finitely presented group π with πab “ Zn such that V1pπq “ Vpf q.

THEOREM (DSY)

Let X be an abelian duality space of dimension n. If ρ : π1pX q Ñ C˚
satisfies H ipX ,Cρq ‰ 0, then H jpX ,Cρq ‰ 0, for all i ď j ď n.

COROLLARY

Let X be an abelian duality space of dimension n. Then the
characteristic varieties propagate, i.e., V1

1 pX q Ď ¨ ¨ ¨ Ď Vn
1 pX q.
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DUALITY AND ABELIAN DUALITY SPACES TORIC COMPLEXES

Let L be a simplicial complex on vertex set V “ tv1, . . . , vmu.

Let TL “ ZLpS1, ˚q be the subcomplex of T m obtained by deleting
the cells corresponding to the missing simplices of L.

TL is a connected CW-complex, of dimension dim L` 1.

H˚pTL, kq is the exterior Stanley–Reisner ring

kxLy “
Ź

V ˚{pv˚σ | σ R Lq,

where k “ Z or a field, V is the free k-module on V, and
V ˚ “ HomkpV ,kq, while v˚σ “ v˚i1 ¨ ¨ ¨ v

˚
is for σ “ ti1, . . . , isu.

The group πΓ :“ π1pTL, ˚q is the right-angled Artin group (RAAG)
associated to the graph Γ :“ Lp1q “ pV,Eq,

πΓ “ xv P V | rv ,ws “ 1 if tv ,wu P Ey.

Moreover, K pπΓ,1q “ T∆Γ
, where ∆Γ is the flag complex of Γ.

ALEX SUCIU (NORTHEASTERN) ABELIAN DUALITY SPACES BOSTON, APRIL 22, 2018 8 / 11



DUALITY AND ABELIAN DUALITY SPACES THE COHEN–MACAULAY PROPERTY

A simplicial complex L is Cohen–Macaulay if for each simplex σ P L,
the reduced cohomology of lkpσq is concentrated in degree dim L´ |σ|
and is torsion-free.

THEOREM (N. BRADY–MEIER 2001, JENSEN–MEIER 2005)

A RAAG πΓ is a duality group if and only if ∆Γ is Cohen–Macaulay.
Moreover, πΓ is a Poincaré duality group if and only if Γ is a complete
graph.

THEOREM (DSY17)

A toric complex TL is an abelian duality space (of dimension dim L` 1)
if and only if L is Cohen-Macaulay.
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DUALITY AND ABELIAN DUALITY SPACES BESTVINA–BRADY GROUPS

The Bestvina–Brady group associated to a graph Γ is defined as
NΓ “ kerpν : πΓ Ñ Zq, where νpvq “ 1, for each v P V pΓq.

A counterexample to either the Eilenberg–Ganea conjecture or
the Whitehead conjecture can be constructed from these groups.

The cohomology ring H˚pNΓ,kq was computed by Papadima–S.
(2007) and Leary–Saadetoğlu (2011).

The jump loci V1
1 pNΓ,kq were computed in PS07.

THEOREM (DAVIS–OKUN 2012)

Suppose ∆Γ is acyclic. Then NΓ is a duality group if and only if ∆Γ is
Cohen–Macaulay.

THEOREM (DSY17)

A Bestvina–Brady group NΓ is an abelian duality group if and only if ∆Γ

is acyclic and Cohen–Macaulay.
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