ABELIAN DUALITY SPACES

Alex Suciu

Northeastern University

Joint work with Graham Denham (University of Western Ontario)

Special Session

Algebraic, Geometric, and Topological Methods in Combinatorics

AMS Spring Eastern Sectional Meeting

Northeastern University, Boston

April 21, 2018

ALEX SUCIU (NORTHEASTERN)

The following notion is due to Bieri and Eckmann (1978).

- Let X be a path-connected space with fundamental group $\pi = \pi_1(X)$.
- X is a *duality space* of dimension n if $H^i(X, \mathbb{Z}\pi) = 0$ for $i \neq n$ and $H^n(X, \mathbb{Z}\pi) \neq 0$ and torsion-free.
- Let $D = H^n(X, \mathbb{Z}\pi)$ be the dualizing $\mathbb{Z}\pi$ -module. Given any $\mathbb{Z}\pi$ -module A, we have $H^i(X, A) \cong H_{n-i}(X, D \otimes A)$.
- If $D = \mathbb{Z}$, with trivial $\mathbb{Z}\pi$ -action, then X is a Poincaré duality space.
- If $X = K(\pi, 1)$ is a duality space, then π is a *duality group*.

In (Denham–S.–Yuzvinsky, 2017) we introduce an analogous notion, by replacing $\pi \rightsquigarrow \pi_{ab}$.

ALEX SUCIU (NORTHEASTERN)

- X is an *abelian duality space* of dimension *n* if $H^i(X, \mathbb{Z}\pi_{ab}) = 0$ for $i \neq n$ and $H^n(X, \mathbb{Z}\pi_{ab}) \neq 0$ and torsion-free.
- Let $B = H^n(X, \mathbb{Z}\pi_{ab})$ be the dualizing $\mathbb{Z}\pi_{ab}$ -module. Given any $\mathbb{Z}\pi_{ab}$ -module A, we have $H^i(X, A) \cong H_{n-i}(X, B \otimes A)$.
- If $X = K(\pi, 1)$ is an abelian duality space, then π is an *abelian duality group*.
- Finitely generated free groups F_n are abelian duality groups.
- Surface groups π₁(Σ_g) with g ≥ 2 are (Poincaré) duality groups, but not abelian duality groups.
- Let $H = \langle x_1, \ldots, x_4 | x_1^{-2} x_2 x_1 x_2^{-1}, \ldots, x_4^{-2} x_1 x_4 x_1^{-1} \rangle$ be Higman's acyclic group, and let $G = \mathbb{Z}^2 * H$. Then *G* is an abelian duality group (of dimension 2), but not a duality group.

THEOREM (DSY)

Let X be an abelian duality space of dimension n. Then:

- $b_1(X) \ge n-1$.
- $b_i(X) \neq 0$, for $0 \leq i \leq n$ and $b_i(X) = 0$ for i > n.
- $(-1)^n \chi(X) \ge 0.$

THEOREM (DENHAM–S. 2017)

Let U be a connected, smooth, complex quasi-projective variety of dimension n. Suppose U has a smooth compactification Y for which

• Components of $Y \setminus U$ form an arrangement of hypersurfaces A;

For each submanifold X in the intersection poset L(A), the complement of the restriction of A to X is a Stein manifold.

Then U is both a duality space and an abelian duality space of dimension n.

ALEX SUCIU (NORTHEASTERN)

THEOREM (DS17)

Suppose that \mathcal{A} is one of the following:

- An affine-linear arrangement in Cⁿ, or a hyperplane arrangement in CPⁿ;
- A non-empty elliptic arrangement in Eⁿ;
- A toric arrangement in $(\mathbb{C}^*)^n$.

Then the complement M(A) is both a duality space and an abelian duality space of dimension n - r, n + r, and n, respectively, where r is the corank of the arrangement.

This theorem extends several previous results:

- Davis, Januszkiewicz, Leary, and Okun (2011);
- Levin and Varchenko (2012);
- Solution 2013), Esterov and Takeuchi (2014).

Liu, Maxim, and Wang (2017) proved that very affine varieties are abelian duality spaces.

ALEX SUCIU (NORTHEASTERN)

- Let X be a connected, finite-type CW-complex. Then $\pi = \pi_1(X)$ is a finitely presented group, with $\pi_{ab} \cong H_1(X, \mathbb{Z})$.
- The ring $R = \mathbb{C}[\pi_{ab}]$ is the coordinate ring of the character group, $\operatorname{Char}(X) = \operatorname{Hom}(\pi, \mathbb{C}^*) \cong (\mathbb{C}^*)^r \times \operatorname{Tors}(\pi_{ab})$, where $r = b_1(X)$.
- The characteristic varieties of X are the homology jump loci

$$\mathcal{V}^{i}_{s}(X) = \{ \rho \in \operatorname{Char}(X) \mid \dim H_{i}(X, \mathbb{C}_{\rho}) \geq s \}.$$

- These varieties are homotopy-type invariants of X, with $\mathcal{V}_s^1(X)$ depending only on $\pi = \pi_1(X)$.
- Set $\mathcal{V}_1(\pi) := \mathcal{V}_1^1(K(\pi, 1))$; then $\mathcal{V}_1(\pi) = \mathcal{V}_1(\pi/\pi'')$.

EXAMPLE

Let $f \in \mathbb{Z}[t_1^{\pm 1}, \ldots, t_n^{\pm 1}]$ be a Laurent polynomial, f(1) = 0. There is then a finitely presented group π with $\pi_{ab} = \mathbb{Z}^n$ such that $\mathcal{V}_1(\pi) = \mathbf{V}(f)$.

THEOREM (DSY)

Let X be an abelian duality space of dimension n. If $\rho \colon \pi_1(X) \to \mathbb{C}^*$ satisfies $H^i(X, \mathbb{C}_{\rho}) \neq 0$, then $H^j(X, \mathbb{C}_{\rho}) \neq 0$, for all $i \leq j \leq n$.

COROLLARY

Let *X* be an abelian duality space of dimension *n*. Then the characteristic varieties propagate, i.e., $\mathcal{V}_1^1(X) \subseteq \cdots \subseteq \mathcal{V}_1^n(X)$.

ALEX SUCIU (NORTHEASTERN)

- Let *L* be a simplicial complex on vertex set $V = \{v_1, \ldots, v_m\}$.
- Let T_L = Z_L(S¹, *) be the subcomplex of T^m obtained by deleting the cells corresponding to the missing simplices of L.
- T_L is a connected CW-complex, of dimension dim L + 1.
- $H^*(T_L, \Bbbk)$ is the exterior Stanley–Reisner ring

 $\Bbbk \langle L \rangle = \bigwedge V^* / (v_\sigma^* \mid \sigma \notin L),$

where $\mathbb{k} = \mathbb{Z}$ or a field, V is the free \mathbb{k} -module on V, and $V^* = \operatorname{Hom}_{\mathbb{k}}(V, \mathbb{k})$, while $v_{\sigma}^* = v_{i_1}^* \cdots v_{i_s}^*$ for $\sigma = \{i_1, \ldots, i_s\}$.

The group π_Γ := π₁(T_L, *) is the right-angled Artin group (RAAG) associated to the graph Γ := L⁽¹⁾ = (V, E),

$$\pi_{\Gamma} = \langle \mathbf{v} \in \mathbf{V} \mid [\mathbf{v}, \mathbf{w}] = 1 \text{ if } \{\mathbf{v}, \mathbf{w}\} \in \mathbf{E} \rangle.$$

• Moreover, $K(\pi_{\Gamma}, 1) = T_{\Delta_{\Gamma}}$, where Δ_{Γ} is the flag complex of Γ .

A simplicial complex *L* is *Cohen–Macaulay* if for each simplex $\sigma \in L$, the reduced cohomology of $lk(\sigma)$ is concentrated in degree dim $L - |\sigma|$ and is torsion-free.

THEOREM (N. BRADY-MEIER 2001, JENSEN-MEIER 2005)

A RAAG π_{Γ} is a duality group if and only if Δ_{Γ} is Cohen–Macaulay. Moreover, π_{Γ} is a Poincaré duality group if and only if Γ is a complete graph.

THEOREM (DSY17)

A toric complex T_L is an abelian duality space (of dimension dim L + 1) if and only if L is Cohen-Macaulay.

- The Bestvina–Brady group associated to a graph Γ is defined as
 N_Γ = ker(ν: π_Γ → ℤ), where ν(ν) = 1, for each ν ∈ V(Γ).
- A counterexample to either the Eilenberg–Ganea conjecture or the Whitehead conjecture can be constructed from these groups.
- The cohomology ring H^{*}(N_Γ, k) was computed by Papadima–S. (2007) and Leary–Saadetoğlu (2011).
- The jump loci $\mathcal{V}_1^1(N_{\Gamma}, \Bbbk)$ were computed in PS07.

THEOREM (DAVIS–OKUN 2012)

Suppose Δ_{Γ} is acyclic. Then N_{Γ} is a duality group if and only if Δ_{Γ} is Cohen–Macaulay.

THEOREM (DSY17)

A Bestvina–Brady group N_{Γ} is an abelian duality group if and only if Δ_{Γ} is acyclic and Cohen–Macaulay.

ALEX SUCIU (NORTHEASTERN)

REFERENCES

- [DS18] G. Denham and A.I. Suciu, *Local systems on arrangements of smooth, complex algebraic hypersurfaces*, Forum of Mathematics, Sigma (to appear), arxiv:1706.00956.
- [DSY17] G. Denham, A.I. Suciu, and S. Yuzvinsky, *Abelian duality and propagation of resonance*, Selecta Mathematica 23 (2017), no. 4, 2331–2367.
- [DSY16] G. Denham, A.I. Suciu, and S. Yuzvinsky, *Combinatorial covers and vanishing of cohomology*, Selecta Mathematica 22 (2016), no. 2, 561–594.