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1. History

The Borsuk-Ulam theorem is one of the most applied theorems in topol-
ogy. It was conjectured by Ulam at the Scottish Café in Lvov. Applications
range from combinatorics to differential equations and even economics. The
theorem proven in one form by Borsuk in 1933 has many equivalent for-
mulations. One of these was first proven by Lyusternik and Shnirel’man in
1930.

2. Borsuk-Ulam

Theorem 2.1. For n > 0 the following are equivalent:
(i) For every continuous mapping f : Sn → Rn there exists a point

x ∈ Sn such that f(x) = f(−x).
(ii) For every antipode-preserving map f : Sn → Rn there is a point

x ∈ Sn satisfying f(x) = 0.
(iii) There is no antipode-preserving map f : Sn → Sn−1.
(iv) There is no continuous mapping f : Bn → Sn−1 that is antipode-

preserving on the boundary.
(v) Let A1, . . . , Ad be a covering of Sd by closed sets Ai. Then there

exists i such that Ai ∩ (−Ai) 6= ∅.

Proof.
(i ⇒ ii) Let f : Sn → Rn be an antipode-preserving map. By (i) there is a
point x ∈ Sn such that f(x) = f(−x). Since f is antipode-preserving we
know f(−x) = −f(x) = f(x), thus 2f(x) = 0 and f(x) = 0.
(ii ⇒ i) Let f : Sn → Rn be a continuous map. Define a map g : Sn → Rn

by g(x) = f(x) − f(−x). We see that g(−x) = −g(x), hence g is antipode
preserving. By (ii) there is a point x ∈ Sn such that g(x) = 0 and thus
f(x)− f(−x) = 0.
(ii ⇒ iii) Let f : Sn → Sn−1 be an antipode-preserving map. We may
compose f with the inclusion i : Sn−1 ↪→ Rn. By (ii) there is x ∈ Sn such
that f(x) = 0. This is a contradiction since we assumed that f(Sn) ⊂ Sn−1.
(iii ⇒ ii) Let f : Sn → Rn be an antipode-preserving map. Assume that
f(x) 6= 0 for all x ∈ Sn. We may then define a map g : Sn → Sn−1 by
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g(x) = f(x)
‖f(x)‖ . We see that g is an antipode-preserving map from Sn → Sn−1,

which contradicts (iii).
(iv ⇒ iii) The map π(x1, . . . , xn, xn+1) = (x1, . . . , xn) is a homeomor-
phism from the upper hemisphere of Sn to Bn. An antipode-preserving
map f : Sn → Sn−1 would yield a map g : Bn → Sn−1 by g(x) = f(π−1(x))
which is antipode-preserving on the boundary.
(iii ⇒ iv) Assume g : Bn → Sn−1 is antipode-preserving on the boundary.
Then we can define a map f : Sn → Sn−1 by f(x) = g(π(x)) for x in the
upper hemisphere and f(−x) = −g(π(x)). We see that f is antipode-
preserving which is a contradiction.
(i ⇒ v) For a closed cover F1, . . . , Fn+1 of Sn we define a function f : Sn →
Rn by f(x) = (dist(x, F1), . . . ,dist(x, Fn)). By (i) there is a point x ∈ Sn

such that f(x) = f(−x) = y. If the ith coordinate of f(x) is non-zero then
x ∈ Fi. If all coordinates are non-zero then x ∈ Fn+1.
(v ⇒ iii) We first note that there exists a covering of Sn−1 by closed sets
F1, . . . , Fn+1 such that Fi∩ (−Fi) = ∅ for all i. To find such a cover consider
the n−simplex in Rn centered at 0. Then project the faces of the n−simplex
to the sphere. With this result in hand we see that if a continuous antipode-
preserving map f : Sn → Sn−1 existed, the sets f−1(F1), . . . , f−1(Fn+1)
would be a cover of Sn such that f−1(Fi) ∩ (−f−1(Fi)) = ∅. This con-
tradicts (v), thus no such map can exist. �

Even though we have shown the equivalence of the above statements we
have not shown that one of them is true in its own right. We will do that
in the following

Theorem 2.2. There is no antipode-preserving map f : Sn → Sn−1.

Proof. Let f : Sn → Sn−1 be an antipode-preserving map. Since f commutes
with the map ik : Sk → Sk given by ik(x) = −x we may descend to the
quotient space. The quotient of Sk under i is the space RPk. Thus we
obtain a commutative diagram of spaces

Sn
f //

pn

��

Sn−1

pn−1

��
RPn

f // RPn−1

where f is the map induced on the quotients. So we find that an antipode-
preserving map from Sn → Sn−1 gives rise to a map f : RPn → RPn−1.

The existence of an antipode-preserving map f gives rise to a map in
cohomology

f
∗ : H∗(RPn−1; Z2) → H∗(RPn; Z2).

To make use of this map we need to recall the following

H∗(RPk; Z2) ∼= Z2[x]/(xk+1), deg(x) = 1,
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where Z2 are the integers mod 2. Which when combined with the result
above results in a ring homomorphism

f
∗ : Z2[x]/(xn) → Z2[y]/(yn+1).

We now claim that
f
∗(x) = y,

this will be proven later. Assuming the claim we find that

0 = f
∗(xn) = yn 6= 0,

which is a contradiction.
To complete the proof we need to show that f

∗(x) = y. As a first approx-
imation we want to find f∗ : π1(RPn) → π1(RPn−1). Using the path lifting
criterion for the covering pn : Sn → RPn we can show that this is the identity
map. Applying the Poincaré-Hurewicz theorem we find f∗ : H1(RPn; Z) →
H1(RPn−1; Z) is the identity map. Finally by the Universal Coefficient theo-
rem for cohomology we find f

∗ : H1(RPn−1; Z2) → H1(RPn; Z2) is the iden-
tity map. �

3. The Z2 Index

Definition 3.1. A Z2-space is a pair (X, ν) with X a topological space and
ν a homeomorphism ν : X → X such that ν ◦ν = idX . We say the Z2-action
is free if ν has no fixed points.

Definition 3.2. A Z2-equivariant map is a function f from a Z2-space (X, ν)
to a Z2-space (Y, µ) such that the following diagram commutes

X
f //

ν

��

Y

µ

��
X

f // Y

For brevity by Z2-map we mean a Z2-equivariant map.

Example 3.3. Let (Sn, αn) be a Z2-space where αn(x) = −x is the antipode
map. Then the Borsuk-Ulam theorem says that there is no Z2-equivariant
map f : (Sn, αn) → (Sm, αm) if m < n. When we have m ≥ n there do exist
Z2-equivariant maps given by inclusion.

The existence or non-existence of a Z2-map allows us to define a quasi-
ordering on Z2-spaces motivated by the following

Definition 3.4. Let (X, ν) and (Y, µ) be Z2-spaces. If there exists a Z2-map
f : X → Y we write

X≤Z2Y.

Simply stating that this is a quasi-ordering is not enough we need to check
the properties.
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Lemma 3.5. The relation ≤Z2 defined above is a quasi-ordering. That is,
the ordering is reflexive and transitive.

Proof. To see that ≤Z2 is reflexive we use the identity map idX : X → X.
We see that this map commutes with any Z2-action. For transitivity let
f : X → Y and g : Y → Z be Z2-maps. We then have the commutative
diagram

X
f //

ν

��

Y
g //

µ

��

Z

η

��
X

f // Y
g // Z

�

Using this quasi-ordering we are now in a position to define two numerical
invariants associated to a Z2-space.

Definition 3.6. We define the Z2-index of a Z2-space (X, ν) by

indZ2(X, ν) = min{n | X≤Z2S
n}.

Dual to the index is the Z2-coindex defined by

coindZ2(X, ν) = max{n | Sn≤Z2X}.
Where in both cases the Z2-action on Sn is given by the antipode map.

Proposition 3.7. The Z2-index and coindex satisfy the following properties
(i) (X, ν)≤Z2(Y, µ) ⇒ indZ2(X, ν) ≤ indZ2(Y, µ)
(ii) (X, ν)≤Z2(Y, µ) ⇒ coindZ2(X, ν) ≤ coindZ2(Y, µ),
(iii) coindZ2(Sn, αn) = indZ2(Sn, αn) = n,
(iv) for all Z2-spaces (X, ν) we have coindZ2(X, ν) ≤ indZ2(X, ν).

Proof.
(i), (ii) Assume (X, ν)≤Z2(Y, µ). This means there is a Z2-map f : X → Y .
Let g : Y → Sn be a Z2-map. If we consider the composition we obtain a
map g ◦ f : X → Sn. Thus we see that indZ2(X, ν) ≤ indZ2(Y, µ). Similarly
for the coindex.
(iii) By Borsuk-Ulam we know that if f : (Sn, αn) → (Sm, αm) then we must
have n ≤ m. Combining this with the definitions of the index and coindex
we obtain our result.
(iv) Assume that coindZ2(X, ν) = n and indZ2(X, ν) = m. We then have a
composition of Z2-maps

Sn → X → Sm,

and (iii) implies that n ≤ m. �

From the proof we see that (iii) is a reformulation of the Borsuk-Ulam
theorem.

We cannot always expect coindZ2(X) = indZ2(X) and in general this is
not true. In the cases when they are equal though we have the following
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Lemma 3.8. If coindZ2(X, ν) = indZ2(X, ν) then

πn(X) // // Z .

Example 3.9. By a theorem of Stolz [4] we know

indZ2(RP3, ι) = 2,

where the Z2-action ι is induced from multiplication by i on S3 ⊂ C2. Now
since π2(RP3) = 0 we know that coindZ2(RP3, ι) < 2.

Exercise 1. Show coindZ2(RP3, ι) = 1.

4. Ham Sandwiches

Of the many theorems that follow from the Borsuk-Ulam theorem, the
Ham Sandwich theorem has some of the best applications to combinatorics.
Like the Borsuk-Ulam theorem the Ham Sandwich theorem has many dif-
ferent formulations, though not all are equivalent.

Definition 4.1. A finite Borel measure µ on Rd is a measure such that all
open subsets of Rd are measurable and 0 < µ(Rd) < ∞.

Theorem 4.2 (Ham Sandwich for measures). Let µ1, . . . , µd be finite Borel
measures on Rd such that every affine hyperplane has measure zero. Then
there exists a hyperplane h such that

µi(h+) =
1
2
µi(Rd) ∀i = 1, . . . , d,

where h+ is one of the half spaces defined by h.

Proof. Let u = (u0, . . . , ud) ∈ Sd. If at least one of u1, . . . , ud is not zero, we
assign to u the half space

h+(u) = {(x1, . . . , xd) ∈ Rd | u1x1 + · · ·+ udxd ≤ u0}.
Further we set h+((1, 0, . . . , 0)) = Rd and h+((−1, 0, . . . , 0)) = ∅. We see
that h+ assigns opposite half spaces to antipodal points. We define a func-
tion f : Sd → Rd by setting the ith coordinate to be

fi(u) = µi(h+(u)).

If we assume for the moment that f is a continuous function, the Borsuk-
Ulam theorem tells us there is a point u0 such that f(u0) = f(−u0). Thus
∂h+(u0) is our desired hyperplane.

To complete the proof we need to show that f is a continuous function.
Let (un)∞n=1 be a sequence of points of Sd converging to u. To show that f
is continuous it is enough to show that it is continuous along the projections
πi : Rd → R. So we want to show

lim
n→∞

µi(h+(ui)) = µi(h+(u)).

Let x be a point not on the boundary of h+(u). Then for n sufficiently
large we know x ∈ h+(un) if and only if x ∈ h+(u). So if g denotes the
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characteristic function of h+(u) and gn the characteristic function of h+(un),
we have gn(x) → g(x) for all x 3 ∂h+(u). Since ∂h+(un) have measure
zero we know that the gn converge to g almost everywhere. By Lebesgue’s
dominated convergence theorem, we thus have µi(h+(un)) =

∫
gndµi →∫

gdµi = µi(h+(u)). �

For our applications we will need a discrete version of the Ham sandwich
theorem. We present that now.

Theorem 4.3. Let A1, . . . , Ad ⊂ Rd be finite point sets. Then there exists
a hyperplane h that simultaneously bisects A1, . . . , Ad.

By “h simultaneously bisects Ai we mean that each open half space de-
fined by h contains at most b1

2 |Ai|c points.

Proof. We will prove the theorem by considering three cases, each more
general than the previous. To begin we assume that the points are in general
position in Rd and each Ai contains an odd number of points. At each point
we center an ε-ball. We then choose ε > 0 so that no hyperplane intersects
more that d of the ε-balls from one set Ai. Now by the Ham sandwich
theorem we know there is a hyperplane which simultaneously bisects each
set. Additionally since there are an odd number of points the hyperplane
must intersect exactly one ball from each set, and this cut contains the
center.

We now assume that each Ai contains an odd number of points but the
points need not be in general position. For every η > 0 we define new
sets Ai,η by moving the points of Ai by at most η so that the points of
A1,η ∪ · · · ∪ Ad,η are in general position. By the previous argument there
exists a hyperplane hη which simultaneously bisects each Ai,η. We write
hη = {x ∈ Rd | 〈x,aη〉 = bη} where aη is a unit vector. The points bη lie in a
bounded interval thus by compactness there is a cluster point (a, b) ∈ Rd+1

of the pairs (aη, bη). Let h be the hyperplane defined by (a, b). Let η1 >
η2 > · · · be a sequence of points converging to η. Now if x lies at distance
2δ from h then for i sufficiently large x lies distance δ from hηi . Thus if the
open half space defined by h contains k points, there is j such that i > j
implies that the open half space defined by hηi contains k points.

Finally if some sets Aj contain an even number of points we simply delete
one. We then apply the above argument to the remaining points. Then we
return the point, noticing that this does not change the result due to the
definition of bisection. �

Corollary 4.4 (Ham sandwich for general position sets). Let A1, . . . , Ad be
finite point sets in Rd such that A1 ∪ . . . ∪ Ad is in general position. Then
there exists a hyperplane h such that each open half space contains exactly
b1

2 |Ai|c points.
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Proof. We begin with an arbitrary ham sandwich hyperplane h as given by
the ham sandwich theorem. The problem is that h may contain up to d
points of some Ai.

Fix a coordinate system so that h is given by xd = 0. Let B = h ∩ (A1 ∪
. . .∪Ad). We know that B consists of at most d affinely independent points.
We want to move h slightly so that it is our desired cut. Since the points
of B are affinely independent we may make them stay on h, go above or go
below.

To see this add d − |B| new points to B so that we obtain a d-point
affinely independent set C ⊂ h. For each a ∈ C we choose a point a′ such
that either a′ = a or a′ = a + εed or a′ = a− εed. We let h′ = h(ε) be the
hyperplane defined by the points a′. Now for all ε > 0 sufficiently small, the
a′ remain affinely independent and the motion of h(ε) is continuous in ε.
Thus we can guarantee that for all sufficiently small ε > 0, h′ is our desired
hyperplane. �

5. Lunch

All this discussion about ham sandwiches has built up our appetite. Now
is the time to feast.

Theorem 5.1 (Akiyama and Alon 1989). Consider sets A1, . . . , Ad of n
points each, in general position in Rd. Let {1, . . . , d} be a set of colors and
color the points of Ai with color i. Then the points of the union A1∪ . . .∪Ad

can be partitioned into “rainbow” d-tuples with pairwise disjoint convex hulls.

Proof. We proceed by induction on the size of the sets Ai. If n = 1 we take
the convex hull of the set A1 ∪ · · · ∪ Ad. Now assume that n > 1 and odd.
Then by (4.4) there exists a hyperplane which intersects each Ai in exactly
one point and each open half space contains at most b1

2 |Ai|c points. Let
the first d-tuple be the points on the hyperplane. Then apply the inductive
hypothesis to each open half space. If n > 1 and even (4.4) guarantees there
is a hyperplane which bisects each Ai but does not intersect any Ai. We
then apply the inductive hypothesis to the resulting open half spaces. �

Theorem 5.2 (Necklace theorem). Every open necklace with d kinds of
stones, an even number of each, can be divided among two thieves using no
more than d cuts.

Before proving the theorem we need a preliminary result.

Lemma 5.3. Any affine hyperplane in Rd cuts the curve γ(t) = (t, t2, . . . , td)
in at most d points.

The curve γ(t) is commonly referred to as the moment curve. We leave
the proof of the lemma as an exercise to the reader. We now give a proof of
the theorem.
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Proof. We place the necklace into Rd along the moment curve γ(t). We then
define sets Ai by

Ai = {γ(k) | the k-th stone is of the i-th kind}.
By the general position ham sandwich theorem there is a hyperplane h which
bisects each Ai. Additionally by the lemma we know h cuts γ(t) in at most
d points. �

Definition 5.4. Let N be a set of n points, for each 1 ≤ k ≤ n write
Nk : = {S | S ⊂ N, |S| = k}. Define the Kneser graph KGn,k to be the
graph with vertex set Nk and edges given by uv ∈ E(KGn,k) if and only if
u ∩ v = ∅.

Theorem 5.5 (Lovász 1978). For all k > 0 and n > 2k − 1, the chromatic
number of the Kneser graph is given by

χ(KGn,k) = n− 2k + 2.

Proof.
Uppper bound: For a vertex v ∈ Nk color v by

φ(v) = min{min(v), n− 2k + 2}.
This defines a proper coloring since if φ(v) = φ(u) = i < n − 2k + 2 then
i ∈ v ∩ u and hence uv is not an edge. If we have φ(v) = φ(u) = n− 2k + 2
then u, v are subsets of the set {n − 2k + 2, . . . , n}, but this set contains
2k − 1 elements thus u ∩ v 6= ∅.

Lower bound: Set d = n − 2k + 1. Let X ⊂ Sd be a set of n points such
that no hyperplane passing through the origin contains more than d points
of X. Let the vertex set of KGn,k be identified with the set Xk.

Assume there is a proper coloring of KGn,k with at most n− 2k + 1 = d

colors. Fix one such coloring and define sets A1, . . . , Ad ⊂ Sd by x ∈ Ai

if there is at least one k-tuple of color i inside the open hemisphere H(x)
centered at x. Finally define Ad+1 = Sd \ (A1 ∪ · · · ∪ Ad). Clearly the
sets A1, . . . , Ad are open and Ad+1 is closed. By the general version of the
Lyusternik-Shnirel’man theorem there is a set Ai such that x,−x ∈ Ai. If
i ≤ d we obtain two disjoint k-tuples with the same color, thus the coloring
is not proper. If i = d+1 we know H(x) contains at most k− 1 points of X
and H(−x) contains at most k − 1 points of X. Therefore the complement
Sd \ (H(x) ∪ H(−x)) contains at least n − 2k + 2 = d + 1 points. But the
complement is defined by a hyperplane passing through the origin, which
contradicts our assumption that no hyperplane through the origin contains
more that d points. �
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