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COMMUTATIVE DIFFERENTIAL GRADED ALGEBRAS

o Let A= (A°,d) be a commutative, differential graded algebra over
a field k.
® A=, A, where A’ are k-vector spaces.
e The multiplication -: A'®@ A — At/ is graded-commutative,
i.e., ab = (—1)/@lblpa for all homogeneous a and b.
e The differential d: A’ — A+ satisfies the graded Leibniz rule,
i.e., d(ab) = d(a)b + (—1)1%ad(b).

@ H°*(A) inherits an algebra structure from A.

@ A cdga morphism ¢: A — B is both an algebra map and a cochain
map. Hence, it induces a morphism ¢*: H*(A) — H*(B).

@ ¢ is a quasi-isomorphism if ©* is an isomorphism. Likewise, ¢ is a
g-quasi-isomorphism (for some g > 1) if p* is an isomorphism in
degrees < g and is injective in degree q + 1.

e Two cdgas, A and B, are (g-)equivalent (~) if there is a zig-zag of
(g-)quasi-isomorphisms connecting A to B.
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MAURER—-CARTAN SETS

o Let MC(A) = {ac A" | & + d(a) = 0 € A?}.
e If dimy(A") < oo, then MC(A) is an algebraic subvariety of the
affine space A', cut out by quadratic and linear equations.
e Examples:
e If & +d(a) =0forall ae A", then MC(A) = A'.
e If @ =0, forall ae A" (a condition that is always satisfied if
char(k) # 2), then MC(A) = Z'(A).
e If @ = 0 and Ais connected (that is, A° = k - 1), then
d: A’ — A" vanishes (since d(1) = 0), and so
MC(A) = H'(A).
e If ¢: A— Bis amorphism of cdgas, then the linear map
@' A — B restricts to a map : MC(A) — MC(B).
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Assume A is of finite type, i.e., dim; A’ < oo for all /.

For each a e MC(A), we have a cochain complex,

0 1 2
(A58 A0 Jaoar ey i

with differentials 65: A" — A" the k-linear maps given by
dj(uy=a-u+d(u)forueA.

Let bi(A, a) == dimy H' (A, 54). Note that 0 € MC(A) and dp = d;
thus, b;(A,0) = b;(A).

Let ¢: (A,da) — (B, dg) be a a morphism. For each a € MC(A),
the map ¢ induces a chain map, wa: (A*,d4) — (B*, 32 ,)-

In turn, ¢4 induces homomorphisms in cohomology,

o H(A6%) — H(B,6E,,).
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THE KOSZUL COMPLEX OF A CDGA

e Let A= (A, d) be a connected k-CDGA with dim; A" < .

e Fix a basis {ey,..., ey} for A', and let {x4,..., x,} be the dual
basis for Ay = (A")".

e Identify the symmetric algebra Sym(A;) with the polynomial ring
R =Kk[x1,...,Xn].

e The coordinate ring of the affine variety MC(A) = A' is the
quotient, S = R/I, of the ring R by the defining ideal of MC(A).

e A*® Sis both a free S-module and a bigraded k-algebra, with
product (a® s)(d ® §') = ad ® ss’. It is also a k-CDGA, with
differential d ® idg.

e Under the identification A' ® Ay =~ Hom(A", A"), the “canonical
element” wy = Zf:1 e; ® x; corresponds to the identity map of A'.
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e Left-multiplication by w4 defines an endomorphism of A® S of
bidegree (1,1).

o Letig: A® S — A® S be the S-linear map given by
op=wa+d®idg.

e We have 53\ = 0, and so we get a cochain complex of free
S-modules,

, by . st
L ARS 5 AtTeS A A28 —s ...

e (A*® S,0,4) is again a k-CDGA.

e The specialization of (A® S, d4) at ae MC(A) coincides with
(A, d3).
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ALEXANDER INVARIANTS
e S-dual chain complex:

oA oA
(Ae®S,04): -+ — ARS 25 AA®S — A®S.

The Alexander invariants of CDGA (A®, d) are the homology
S-modules of this chain complex,

Bi(A) = Hi(A. ® S).

If d = 0, then the differentials ¢/ are homogeneous, and so the
S-modules B(A) inherit a natural grading.

E.g.,ifE=AVandd=0,thenB;(E)=0forallji>1.

In general, though, B;(A) does not have a natural grading.

Assume char(k) = 0 and A° = k. An explicit finite presentation for
the S-module B(A) := B4(A), was given in [Papadima-S. 2004]
when d = 0. We generalize this presentation, as follows.
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e Ildentify MC(A) = Z'(A) with H'(A), set r = by (A), and let
S = Sym(H;(A)) = k[x4,. .., x,] be the coordinate ring of H' (A).

o Set £ = \H'(A) and identify E' with Z' (A).

o Let A" = E' @ U' and write A; = (A)V, etc. Then
Ui =im(dV:A2—>A1)andA1 = E1 @ U;.

o Let us: A' A Al — A2 be the multiplication map.

e Let ug be the restriction of s to E' A E' = E?, and denote its
dual by /LEZ A — Ey A Ey = B

e Let wy: Ay — Uy be the projection map, and set
Bi = (ru®idg) o (wa — pE o we)”.

THEOREM
The Alexander invariant of A has presentation

6E 0
(ES@A2)®S(“E®"’S dA@'d“ﬁA) (2@ U;)®S — B(A) — 0.
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o Let / be the maximal ideal at O of the polynomial ring S.
e Its powers define a descending filtration, {/"B(A)},=0, on B(A).

o Let gr("B(A)) be the associated graded S-module.

PROPOSITION
For each n > 1, there is an isomorphism of k-vector spaces,

grn(B(A)" = Tor_1(A k)n,

where on the right side A is viewed as a graded module over the
exterior algebra & = \ A'.
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THE HOLONOMY LIE ALGEBRA OF A CDGA
o Let A= (A®,d) be a connected k-CDGA, where char(k) = 0 and
dimy A! < o0.
o Let uv: Ao — Ay A Aq be the k-dual of the multiplication map
pw: AU A A" A2 andlet dV: A, — A; be the dual of d: A" — A2.

e We denote by Lie(A+) the free Lie algebra on Ay, and we identify
Lieq (A1) = A1 and Lieg(A1) = A1 A A1.

DEFINITION (MACINIC, PAPADIMA, POPESCU, S. 2017)
The holonomy Lie algebra of Ais h(A) = Lie(Ay)/{im(dY + p¥)). J

e h(A) is afinitely presented Lie algebra.

e In general, the ideal {(im(d¥ + 1)) is not homogeneous, and so
h(A) does not inherit a grading from Lie(A¢).

@ The construction is functorial.
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THE INFINITESIMAL ALEXANDER INVARIANT
@ Let g be a Lie algebra over k. Set ¢’ = [g,g] and g’ = (¢')".

e We then have an exact sequence of Lie algebras,

a/¢ 0.

"

0 — ¢/¢" g/9

e The adjoint representation of g/g’ on g/g” defines an action of
S =Sym(g/g’)ong'/g", givenby g-x = [g,x]|,forge gand x € ¢'.
e The infinitesimal Alexander invariant of g is the S-module
B(g) =g'/g".
@ The construction is functorial.

THEOREM

There is a natural isomorphism of S-modules, B(A) —» B(h(A)).
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HOLONOMY CHEN RANKS
o For a Lie algebra g, we let gr(g) = vn(g)/7n+1(g), where y1(g) = g
and yn+1(g) = [g,7n(9)]-
e The holonomy Chen ranks of A are defined as
On(A) := dimi gr,(h(A)/H"(A)).
e Clearly, 01(A) = dim; A"

e When viewed as a module over S = Sym(H;(A)), the associated
graded Alexander invariant, gr(B(A)), is a finitely generated
S-module, with generators in degree 0.

PROPOSITION

The generating sequence for the holonomy Chen ranks (with a shift of
2) coincides with the Hilbert series of the graded S-module gr(B(A)):

3 6ns2(A) - 17 = Hilb(gr(B(A)), 1).

n=0
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RESONANCE VARIETIES OF A CDGA
e Let (A*,d) be a connected k-CDGA with dim A' < co.

e For each ae MC(A), the operator i, := d + a is a differential on A.
e The resonance varieties of A:

RL(A) = {ae MC(A) | dimy H'(A,6,) = s}.
e For each i > 0, these sets form a filtration

MC(A) = R5(A) 2 Ry (A) 2 RL(A) 2 --- .

e If ¢; := dim A’ < o for i < g (for some g = 1), then RL(A) are
Zariski closed subsets of MC(A), forall i < gand s > 0:

RL(A) = V(o511 (05 " @) ).

PROPOSITION
If char(k) = 0, then RL(A) = V(Ann (A°(B(A)))) forall s > 1, at least
away from 0 € H'(A).
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POINCARE DUALITY ALGEBRAS
o Let A be a connected, finite-type k-CGA.

e Ais a Poincaré duality k-algebra of dimension m (m-pda) if there
is a k-linear map ¢: A™ — k (called an orientation) such that all
the bilinear forms A’ @ A" — k, a® b — ¢(ab) are non-singular.

e We then have:
e bi(A) = by_i(A),and A" = 0 for i > m.
@ ¢ is an isomorphism.
e The maps PD: A’ — (A™=/)*, PD(a)(b) = ¢(ab) are isos.

e Each ae A’ has a Poincaré dual, a¥ € A"/, such that ¢(aa") = 1.
@ The orientation class is wa == 1V.

e We have ¢(wa) = 1, and thus aa¥ = wa.
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o Ak-CDGA (A*,d) is a Poincaré duality differential graded algebra
of formal dimension m (for short, an m-PD-CDGA) if

(1) The graded algebra A°® is an m-PDA.
(2) d(A™ 1) =0.

e Condition (2) can also be stated as <(d(u)) = 0 for all ue A™1.

e By condition (1), the algebra A is connected and A™ ~ A?; thus,
condition (2) is equivalent to H™(A) = k.
e If (A®,d)is an m-PD-CDGA, then H*(A) is an m-PDA.
LEMMA
Forallae A' and all0 < i < m, we have a commuting square,

m—i\* (T;1_1)* m—i—1y*
(AT ——— (A )

ETPD" %T(—U’“ PDjy1

1

i a i+1
A —m A*L
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RESONANCE VARIETIES OF PD-ALGEBRAS
THEOREM

Let (A®,d) be an m-PD-CDGA over a field k. Then,

(1) H'(A,62)* = H" (A, 5_,) for allae MC(A) and i > 0.

(2) The linear isomorphism A" — A', a — —a restricts to
isomorphisms RL(A) = RT'(A) forall i, s = 0.

(3) RP(A) = {0}.

PROPOSITION
Let A be a PD3 algebra with bi(A) = n. Then R} (A) = &, except for:
o RL(A) = Al foralli > 0.
o RI(A) = RY(A) = {0} and R4(A) = R} (A) = {0}.
e R2(A) = RL(A) for0 <s < n.
Moreover, R}, (A) = R}, 1(A) if n is even, and R}, _,(A) = R}, (A) ifn
is odd, for all k = 0. )
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ALGEBRAIC MODELS FOR SPACES

e Given any (path-connected) space X, there is an associated
Sullivan Q-cdga, Apr(X) such that H*(Ap.(X)) = H*(X,Q).

e An algebraic (g-)model (over field k with char(k) = 0) for X is a
k-cgda (A, d) which is (g-) equivalent to Apr,(X) ®q k.

@ Acdga Ais formal (or just g-formal) if it is (g-)weakly equivalent to
(H*(A),d = 0).

e A CDGA Alis of finite-type (or g-finite) if it is connected and each
graded piece A’ (with i < q) is finite-dimensional.
e Examples of spaces having finite-type models include:

e Formal spaces (such as compact Kahler manifolds,
hyperplane arrangement complements, toric spaces, etc).

e Smooth quasi-projective varieties, compact solvmanifolds,
Sasakian manifolds, etc.
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ASSOCIATED GRADED LIE ALGEBRA

e The lower central series of a group G is defined inductively by
711G = Gand 711G =[G, G].

e This forms a filtration of G by characteristic subgroups. The LCS
quotients, v,G/vn.1G, are abelian groups.

e The group commutator induces a graded Lie algebra structure on

gr(G.k) = D, (1G/1n+1G) @z k.
e Assume G is finitely generated. Then gr(G, k) is also finitely
generated (in degree 1) by gr{ (G, k) = H;(G, k).
o Let h(G,k) = h(H*(G,k)) be the holonomy Lie algebra of G.

e There is an epimorphism h(G, k) — gr(G, k), which is an
isomorphism precisely when gr(G, k) is quadratic.
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ALEXANDER INVARIANT
e letG =[G,Gland G" = (G)".

e The Alexander invariant of G is the quotient B(G) = G'/G”",
viewed as a Z[G.p]-module via gG' - xG" = gxg~ ' G".

e If X is a connected CW-complex with 71(X) = G, then
B(G) = Hi(X**,Z) = Hi(X,Z[Gap)) ,
where X2 — X is the universal abelian cover.

o [Massey 1980] Let / = ker(¢: Z[Gap] — Z). Then, for all n > 0,
I"B(G) = vn+2(G/G"), and thus gr,(B) = grp,»(G/G")
@ In other words,

Hilb(gr(B(G) ® Q), 1) = ) bn+2(G)1",

n=0
where 6,(G) := rank gr,(G/G") are the Chen ranks of G.
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MALCEV LIE ALGEBRAS

e Let G be af.g. group. The successive quotients of G by the LCS
terms form a tower of finitely generated, nilpotent groups,

> G/1G—= G/13G—= G/2G = Gap -
e (Malcev 1951) It is possible to replace each nilpotent quotient Ny

by Nx ® Q, the nilpotent Lie group over Q associated to the
discrete, torsion-free nilpotent group N /tors(Nk).

e The inverse limit, M(G) = lim (G/7,G) ® Q, is a prounipotent,
filtered Lie group, called the prounipotent completion of G.

o The pronilpotent Lie algebra m(G) := lim Lie((G/7G) ® Q) is
called the Malcev Lie algebra of G (over k).

o [Quillen 1968/69] m(G) =~ Prim (Q[G]) and gr(m(G)) = gr(G, Q).
e [Sullivan 1977] G is 1-formal <= m(G) is quadratic.
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FINITENESS OBSTRUCTIONS FOR GROUPS

THEOREM (PAPADIMA-S 2019)

G admits a 1-finite 1-model if and only if m(G) is the Ics completion of
a finitely presented Lie algebra.

More precisely, if A is such a model (over k), then m(G) ® k = h(A).

ExXAMPLE (PS19)

Let G be a metabelian group of the form G = =/x”, where 7 is a f.g.
group which has a free, non-cyclic quotient. Then:

e Gis not finitely presentable.
e G does not admit a 1-finite 1-model.
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ALEXANDER INVARIANTS AND CHEN RANKS

e For a subset o« « m(G), we denote by a its closure in the topology
defined by the filtration on m(G).

o Leth(G) = h(H*(G,Q)) = Lie(H1(G,Q))/(im u*) be the
holonomy Lie algebra of G.

o Let B(G) :=B(h(G)) = h(G)'/h(G)" be the infinitesimal
Alexander invariant of G, viewed as a graded module over
S = Sym(H(G,Q)).

THEOREM (DIMCA-PAPADIMA-S. 2009)
Let G be a finitely generated group. Then,
e There is a filtration-preserving, S-linear isomorphism,

—_

B(G)®Q = m(G)/m(G)".
o If G is 1-formal, then B(G)® Q = B(G).
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THEOREM

Let G be a f.g. group. Suppose G admits a 1-finite 1-model, (A, d),
over a field k of characteristic 0. Then

(1) B(G)®k = B(A).
(2) gr(B(G) ®k) = gr(B(A)).
(3) 6n(G) = 0n(A) foralln = 1.

PROOF.
The isomorphism in (1) is given by

—

B(G) @k = m(G) ® k/m(G)” ®k = h(A) /H(A)" = B(A).

Passing to associated graded gives (2). Part (3) follows from (2) and
the aforementioned Massey-type equalities. Ol

v

ALEX Suciu RESONANCE VARIETIES OF DGAS BERLIN, Nov 18, 2022 23 /28



RESONANCE VARIETIES OF SPACES

e Let X be a connected, finite-type CW-complex.

e Letk be a field, and suppose either char(k) # 2, or char(k) =2
and H;(X,Z) has no 2-torsion.

e Then a® = 0forall ae H'(X, k).

e The resonance varieties of X (over k) are the resonance varieties
of the cDGA A = (H*(X,k),0); that is,

RE(X.k) = {ae H'(X.k) | dimy H'(A, 83) > s},
where 0,: A" — A+ is given by §,(u) = au.

PROPOSITION

Let M be a closed, orientable m-manifold. If char(k) # 2, then
Rs(M; k) = RI~'(M;k) for all i, s. In particular, RT'(M, k) = {0}.
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BOCKSTEIN RESONANCE VARIETIES
e Let X be a connected, finite-type CW-complex

o Let A= H*(X,Z>), with differential given by the Bockstein
operator, 8, = Sq': A* — A*t1,

e Since Sq'(a) = &° for all ae A', the Maurer—Cartan set for the
CDGA (A, o) is then MC(A) = A'.

e The Aomoto—Bockstein complex of A with respect to ae A':

é 6 d, ) ; é
(A 6,): A oy Al 03y fag A fayopiet e

where d,(u) = au + Bz (u).

e Pick basis {ey,...,en} for A = H'(X,Zy), let {xq, ..., Xy} be dual
basis for Ay = H; (X, Zg), and |dent|fy Sym(A1) >~ 7o [X1 e 7Xn].

e The coordinate ring of A’ is then
S =1Zo[X1,..., Xn]/ (X2 + Xq,...,X2 + Xp).

This is the ring of (Boolean) functions on Zj.
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e The universal Aomoto—Bockstein complex of X is the cochain
complex of free S-modules,

0 8, At 8 a2 8
(A@ZZS,(S)ZA®Z2S*>A®228*>A®Zzs*>“-,
where 6'(u®1) = Y U X + fo(u) @ 1 for u e A'.

o Example: If X = RP*, then H*(X,Zz) = Z[a], where |a| = 1, and
Bo(a) = a*'if iis odd and fx(a') = 0 if i is even. Setting
S = Zs[x]/(x? + x), we get the (exact) cochain complex

s X, X, s x, 5

@ The Bockstein resonance varieties of X are the resonance
varieties of the CDGA A = (H*(X,Z>), 32); that is,

RIUX,Zp) = {ae H'(X,Zy) | dimz, HI(A,d,) = s},
where §,: A9 — A9 is given by 04(u) = au + Bo(u).

e More generally, if char(k) = 2, then RZ(X,k) = RI(X, Zy) %z, k.



o If H;(X,Z) has no 2-torsion, then R1(X,Zs) = RL(X, Zy), Vs.
o RI(X,Zy) +# RI(X,Zy) for g > 1 (neither inclusion needs to hold).
THEOREM
Let M be a closed m-manifold. The following are equivalent:
(1) M is orientable
(2) Bo: H™ (M, Zo) — H™(M, Zy) is zero.
(3) (H*(M,Z5), 52) is an m-PD-CDGA.
(4) R7(M, Zz) = {0}.

PROPOSITION

Let M be a closed, orientable m-manifold, and assume char(k) = 2.
Then Rg(M; k) = R$'(M; k) for all i, s. In particular, R{"(M, k) = {0}.

PROPOSITION

Let M be a closed, non-orientable m-manifold such that Hi (M, Z) has
no 2-torsion. Then R (M, Zy) = {0} whereas R{'(M,Zy) = Zs.

v
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