RESONANCE VARIETIES OF DIFFERENTIAL GRADED ALGEBRAS

Alex Suciu

Northeastern University

Conference on Resonance, Topological Invariants of Groups, Moduli

Humboldt University, Berlin

November 18, 2022

COMMUTATIVE DIFFERENTIAL GRADED ALGEBRAS

- Let A = (A[•], d) be a commutative, differential graded algebra over a field k.
 - $A = \bigoplus_{i \ge 0} A^i$, where A^i are k-vector spaces.
 - The multiplication $: A^i \otimes A^j \to A^{i+j}$ is graded-commutative, i.e., $ab = (-1)^{|a||b|} ba$ for all homogeneous *a* and *b*.
 - The differential $d: A^i \to A^{i+1}$ satisfies the graded Leibniz rule, i.e., $d(ab) = d(a)b + (-1)^{|a|}ad(b)$.
- $H^{\bullet}(A)$ inherits an algebra structure from A.
- A cdga morphism φ: A → B is both an algebra map and a cochain map. Hence, it induces a morphism φ*: H•(A) → H•(B).
- φ is a quasi-isomorphism if φ^* is an isomorphism. Likewise, φ is a q-quasi-isomorphism (for some $q \ge 1$) if φ^* is an isomorphism in degrees $\le q$ and is injective in degree q + 1.
- Two cdgas, A and B, are (q-)equivalent (≃q) if there is a zig-zag of (q-)quasi-isomorphisms connecting A to B.

RESONANCE VARIETIES OF DGAS

MAURER-CARTAN SETS

- Let $MC(A) = \{a \in A^1 \mid a^2 + d(a) = 0 \in A^2\}.$
- If dim_k(A¹) < ∞, then MC(A) is an algebraic subvariety of the affine space A¹, cut out by quadratic and linear equations.
- Examples:
 - If $a^2 + d(a) = 0$ for all $a \in A^1$, then $MC(A) = A^1$.
 - If a² = 0, for all a ∈ A¹ (a condition that is always satisfied if char(k) ≠ 2), then MC(A) = Z¹(A).
 - If $a^2 = 0$ and A is connected (that is, $A^0 = \mathbb{k} \cdot 1$), then $d: A^0 \to A^1$ vanishes (since d(1) = 0), and so $MC(A) = H^1(A)$.

• If $\varphi : A \to B$ is a morphism of cdgas, then the linear map $\varphi^1 : A^1 \to B^1$ restricts to a map $\overline{\varphi} : MC(A) \to MC(B)$.

- Assume *A* is of finite type, i.e., $\dim_{\mathbb{K}} A^i < \infty$ for all *i*.
- For each $a \in MC(A)$, we have a cochain complex,

$$(A^{\bullet}, \delta^{A}_{a}): A^{0} \xrightarrow{\delta^{0}_{a}} A^{1} \xrightarrow{\delta^{1}_{a}} A^{2} \xrightarrow{\delta^{2}_{a}} \cdots,$$

with differentials $\delta_a^i \colon A^i \to A^{i+1}$ the k-linear maps given by $\delta_a^i(u) = a \cdot u + d(u)$ for $u \in A^i$.

- Let $b_i(A, a) := \dim_{\mathbb{k}} H^i(A, \delta_a^A)$. Note that $0 \in MC(A)$ and $\delta_0 = d$; thus, $b_i(A, 0) = b_i(A)$.
- Let φ: (A, d_A) → (B, d_B) be a a morphism. For each a ∈ MC(A), the map φ induces a chain map, φ_a: (A[•], δ^A_a) → (B[•], δ^B_{φ(a)}).
- In turn, φ_a induces homomorphisms in cohomology,

$$\varphi_a^i \colon H^i\left(A, \delta_a^A\right) \longrightarrow H^i\left(B, \delta_{\bar{\varphi}(a)}^B\right).$$

THE KOSZUL COMPLEX OF A CDGA

• Let $A = (A^{\bullet}, d)$ be a connected \Bbbk -CDGA with dim $_{\Bbbk} A^1 < \infty$.

- Fix a basis $\{e_1, \ldots, e_n\}$ for A^1 , and let $\{x_1, \ldots, x_n\}$ be the dual basis for $A_1 = (A^1)^{\vee}$.
- Identify the symmetric algebra $Sym(A_1)$ with the polynomial ring $R = k[x_1, \dots, x_n]$.
- The coordinate ring of the affine variety MC(A) ⊂ A¹ is the quotient, S = R/I, of the ring R by the defining ideal of MC(A).
- $A^{\bullet} \otimes S$ is both a free *S*-module and a bigraded k-algebra, with product $(a \otimes s)(a' \otimes s') = aa' \otimes ss'$. It is also a k-CDGA, with differential $d \otimes id_S$.
- Under the identification $A^1 \otimes A_1 \cong \text{Hom}(A^1, A^1)$, the "canonical element" $\omega_A = \sum_{j=1}^n e_j \otimes x_j$ corresponds to the identity map of A^1 .

- Left-multiplication by ω_A defines an endomorphism of A ⊗ S of bidegree (1, 1).
- Let $\delta_A : A \otimes S \to A \otimes S$ be the *S*-linear map given by

 $\delta_{\mathcal{A}} = \omega_{\mathcal{A}} + \boldsymbol{d} \otimes \operatorname{id}_{\mathcal{S}}.$

• We have $\delta_A^2 = 0$, and so we get a cochain complex of free *S*-modules,

$$\cdots \longrightarrow A^{i} \otimes S \xrightarrow{\delta^{i}_{A}} A^{i+1} \otimes S \xrightarrow{\delta^{i+1}_{A}} A^{i+2} \otimes S \longrightarrow \cdots$$

- $(A^{\bullet} \otimes S, \delta_A)$ is again a k-CDGA.
- The specialization of $(A \otimes S, \delta_A)$ at $a \in MC(A)$ coincides with (A, δ_a) .

ALEXANDER INVARIANTS

• S-dual chain complex:

$$(A_{\bullet}\otimes S, \delta^{A}): \cdots \longrightarrow A_{2}\otimes S \xrightarrow{\delta_{2}^{A}} A_{1}\otimes S \xrightarrow{\delta_{1}^{A}} A_{0}\otimes S.$$

• The *Alexander invariants* of CDGA (*A*•, *d*) are the homology *S*-modules of this chain complex,

 $\mathfrak{B}_i(\mathbf{A}) := H_i(\mathbf{A}_{\bullet} \otimes \mathbf{S}).$

- If *d* = 0, then the differentials δ^A_i are homogeneous, and so the S-modules 𝔅_i(A) inherit a natural grading.
- E.g., if $E = \bigwedge V$ and d = 0, then $\mathfrak{B}_i(E) = 0$ for all $i \ge 1$.
- In general, though, $\mathfrak{B}_i(A)$ does not have a natural grading.
- Assume char(k) = 0 and A⁰ = k. An explicit finite presentation for the *S*-module 𝔅(A) := 𝔅₁(A), was given in [Papadima–S. 2004] when d = 0. We generalize this presentation, as follows.

- Identify $MC(A) = Z^{1}(A)$ with $H^{1}(A)$, set $r = b_{1}(A)$, and let $S = Sym(H_{1}(A)) \cong \Bbbk[x_{1}, ..., x_{r}]$ be the coordinate ring of $H^{1}(A)$.
- Set $E = \bigwedge H^1(A)$ and identify E^1 with $Z^1(A)$.
- Let $A^1 = E^1 \oplus U^1$ and write $A_i = (A^i)^{\vee}$, etc. Then $U_1 = \operatorname{im} (d^{\vee} : A_2 \to A_1)$ and $A_1 = E_1 \oplus U_1$.
- Let $\mu_A: A^1 \wedge A^1 \rightarrow A^2$ be the multiplication map.
- Let μ_E be the restriction of μ_A to E¹ ∧ E¹ = E², and denote its dual by μ_E[∨]: A₂ → E₁ ∧ E₁ = E₂.
- Let $\pi_U \colon A_1 \to U_1$ be the projection map, and set $\beta_A^{\vee} = (\pi_U \otimes id_S) \circ (\omega_A \mu_E \circ \omega_E)^{\vee}$.

THEOREM

The Alexander invariant of A has presentation

$$(E_3 \oplus A_2) \otimes S \xrightarrow{\begin{pmatrix} \delta_3^E & 0 \\ \mu_E^{\vee} \otimes \operatorname{id}_S & d_A^{\vee} \otimes \operatorname{id}_S + \beta_A^{\vee} \end{pmatrix}} (E_2 \oplus U_1) \otimes S \longrightarrow \mathfrak{B}(A) \longrightarrow 0.$$

- Let / be the maximal ideal at 0 of the polynomial ring S.
- Its powers define a descending filtration, $\{I^n \mathfrak{B}(A)\}_{n \ge 0}$, on $\mathfrak{B}(A)$.
- Let $gr(\mathfrak{B}(A))$ be the associated graded *S*-module.

PROPOSITION

For each $n \ge 1$, there is an isomorphism of k-vector spaces,

$$\operatorname{gr}_{n}(\mathfrak{B}(A))^{\vee} \cong \operatorname{Tor}_{n-1}^{\mathcal{E}}(A, \Bbbk)_{n},$$

where on the right side A is viewed as a graded module over the exterior algebra $\mathcal{E} = \bigwedge A^1$.

THE HOLONOMY LIE ALGEBRA OF A CDGA

- Let $A = (A^{\bullet}, d)$ be a connected \Bbbk -CDGA, where char(\Bbbk) = 0 and $\dim_{\Bbbk} A^{1} < \infty$.
- Let $\mu^{\vee} : A_2 \to A_1 \land A_1$ be the k-dual of the multiplication map $\mu : A^1 \land A^1 \to A^2$, and let $d^{\vee} : A_2 \to A_1$ be the dual of $d : A^1 \to A^2$.
- We denote by $Lie(A_1)$ the free Lie algebra on A_1 , and we identify $Lie_1(A_1) = A_1$ and $Lie_2(A_1) = A_1 \land A_1$.

DEFINITION (MĂCINIC, PAPADIMA, POPESCU, S. 2017) The *holonomy Lie algebra* of *A* is $\mathfrak{h}(A) = \text{Lie}(A_1)/\langle \text{im}(d^{\vee} + \mu^{\vee}) \rangle$.

- $\mathfrak{h}(A)$ is a finitely presented Lie algebra.
- In general, the ideal $\langle im(d^{\vee} + \mu^{\vee}) \rangle$ is not homogeneous, and so $\mathfrak{h}(A)$ does not inherit a grading from $\text{Lie}(A_1)$.
- The construction is functorial.

THE INFINITESIMAL ALEXANDER INVARIANT

- Let \mathfrak{g} be a Lie algebra over \Bbbk . Set $\mathfrak{g}' = [\mathfrak{g}, \mathfrak{g}]$ and $\mathfrak{g}'' = (\mathfrak{g}')'$.
- We then have an exact sequence of Lie algebras,

$$0 \longrightarrow \mathfrak{g}'/\mathfrak{g}'' \longrightarrow \mathfrak{g}/\mathfrak{g}'' \longrightarrow \mathfrak{g}/\mathfrak{g}' \longrightarrow 0$$

- The adjoint representation of $\mathfrak{g}/\mathfrak{g}'$ on $\mathfrak{g}/\mathfrak{g}''$ defines an action of $S = \operatorname{Sym}(\mathfrak{g}/\mathfrak{g}')$ on $\mathfrak{g}'/\mathfrak{g}''$, given by $\overline{g} \cdot \overline{x} = \overline{[g, x]}$, for $g \in \mathfrak{g}$ and $x \in \mathfrak{g}'$.
- The infinitesimal Alexander invariant of g is the S-module

 $\mathfrak{B}(\mathfrak{g}) \coloneqq \mathfrak{g}'/\mathfrak{g}''.$

• The construction is functorial.

THEOREM

There is a natural isomorphism of S-modules, $\mathfrak{B}(A) \xrightarrow{\cong} \mathfrak{B}(\mathfrak{h}(A))$.

ALEX SUCIU

HOLONOMY CHEN RANKS

- For a Lie algebra \mathfrak{g} , we let $\operatorname{gr}(\mathfrak{g}) = \gamma_n(\mathfrak{g})/\gamma_{n+1}(\mathfrak{g})$, where $\gamma_1(\mathfrak{g}) = \mathfrak{g}$ and $\gamma_{n+1}(\mathfrak{g}) = [\mathfrak{g}, \gamma_n(\mathfrak{g})]$.
- The holonomy Chen ranks of A are defined as

 $\theta_n(\mathbf{A}) := \dim_{\mathbb{K}} \operatorname{gr}_n(\mathfrak{h}(\mathbf{A})/\mathfrak{h}''(\mathbf{A})).$

- Clearly, $\theta_1(A) = \dim_{\mathbb{k}} A^1$.
- When viewed as a module over S = Sym(H₁(A)), the associated graded Alexander invariant, gr(B(A)), is a finitely generated S-module, with generators in degree 0.

PROPOSITION

The generating sequence for the holonomy Chen ranks (with a shift of 2) coincides with the Hilbert series of the graded S-module $gr(\mathfrak{B}(A))$:

$$\sum_{n\geq 0} \theta_{n+2}(\mathbf{A}) \cdot t^n = \mathrm{Hilb}(\mathrm{gr}(\mathfrak{B}(\mathbf{A})), t).$$

ALEX SUCIU

RESONANCE VARIETIES OF A CDGA

- Let (A^{\bullet}, d) be a connected \Bbbk -CDGA with dim $A^1 < \infty$.
- For each $a \in MC(A)$, the operator $\delta_a := d + a$ is a differential on A.
- The resonance varieties of A:

 $\mathcal{R}^{i}_{\boldsymbol{s}}(\boldsymbol{A}) = \{ \boldsymbol{a} \in \mathsf{MC}(\boldsymbol{A}) \mid \dim_{\mathbb{k}} \boldsymbol{H}^{i}(\boldsymbol{A}, \delta_{\boldsymbol{a}}) \geq \boldsymbol{s} \} \,.$

• For each $i \ge 0$, these sets form a filtration

 $\mathsf{MC}(A) = \mathcal{R}_0^i(A) \supseteq \mathcal{R}_1^i(A) \supseteq \mathcal{R}_2^i(A) \supseteq \cdots$

• If $c_i := \dim_{\mathbb{K}} A^i < \infty$ for $i \leq q$ (for some $q \geq 1$), then $\mathcal{R}^i_s(A)$ are Zariski closed subsets of MC(*A*), for all $i \leq q$ and $s \geq 0$:

$$\mathcal{R}^{i}_{s}(A) = V\left(I_{c_{i}-s+1}\left(\delta^{i-1}_{A} \oplus \delta^{i}_{A}\right)\right).$$

PROPOSITION

If char(\mathbb{k}) = 0, then $\mathcal{R}^1_s(A) = V(\operatorname{Ann}(\bigwedge^s(\mathfrak{B}(A))))$ for all $s \ge 1$, at least away from $0 \in H^1(A)$.

13/28

POINCARÉ DUALITY ALGEBRAS

- Let *A* be a connected, finite-type **k**-CGA.
- *A* is a *Poincaré duality* \Bbbk -*algebra* of dimension *m* (*m*-pda) if there is a \Bbbk -linear map $\varepsilon : A^m \to \Bbbk$ (called an *orientation*) such that all the bilinear forms $A^i \otimes_{\Bbbk} A^{m-i} \to \Bbbk$, $a \otimes b \mapsto \varepsilon(ab)$ are non-singular.
- We then have:
 - $b_i(A) = b_{m-i}(A)$, and $A^i = 0$ for i > m.
 - ε is an isomorphism.
 - The maps PD: $A^i \to (A^{m-i})^*$, $PD(a)(b) = \varepsilon(ab)$ are isos.
- Each $a \in A^i$ has a *Poincaré dual*, $a^{\vee} \in A^{m-i}$, such that $\varepsilon(aa^{\vee}) = 1$.
- The orientation class is $\omega_A := 1^{\vee}$.
- We have $\varepsilon(\omega_A) = 1$, and thus $aa^{\vee} = \omega_A$.

- A k-CDGA (A[•], d) is a Poincaré duality differential graded algebra of formal dimension m (for short, an m-PD-CDGA) if
 - (1) The graded algebra A^{\bullet} is an *m*-PDA.
 - (2) $d(A^{m-1}) = 0.$
- Condition (2) can also be stated as $\varepsilon(d(u)) = 0$ for all $u \in A^{m-1}$.
- By condition (1), the algebra A is connected and A^m ≃ A⁰; thus, condition (2) is equivalent to H^m(A) = k.
- If (A^{\bullet}, d) is an *m*-PD-CDGA, then $H^{\bullet}(A)$ is an *m*-PDA.

LEMMA

For all $a \in A^1$ and all $0 \le i \le m$, we have a commuting square,

$$(A^{m-i})^* \xrightarrow{(\delta^{m-i-1})^*} (A^{m-i-1})^*$$
$$\cong \stackrel{}{\uparrow} \operatorname{PD}^i \qquad \cong \stackrel{}{\uparrow} (-1)^{i+1} \operatorname{PD}_{i+1}$$
$$A^i \xrightarrow{\delta^i_a} A^{i+1}.$$

RESONANCE VARIETIES OF PD-ALGEBRAS

THEOREM

Let (A^{\bullet}, d) be an *m*-PD-CDGA over a field k. Then,

(1) $H^{i}(A, \delta_{a})^{*} \cong H^{m-i}(A, \delta_{-a})$ for all $a \in MC(A)$ and $i \ge 0$.

(2) The linear isomorphism $A^1 \xrightarrow{\simeq} A^1$, $a \mapsto -a$ restricts to isomorphisms $\mathcal{R}^i_s(A) \xrightarrow{\simeq} \mathcal{R}^{m-i}_s(A)$ for all $i, s \ge 0$.

(3) $\mathcal{R}_1^m(A) = \{0\}.$

PROPOSITION

Let A be a PD₃ algebra with $b_1(A) = n$. Then $\mathcal{R}_k^i(A) = \emptyset$, except for:

- $\mathcal{R}_0^i(A) = A^1$ for all $i \ge 0$.
- $\mathcal{R}^3_1(A) = \mathcal{R}^0_1(A) = \{0\}$ and $\mathcal{R}^2_n(A) = \mathcal{R}^1_n(A) = \{0\}.$

• $\mathcal{R}^2_s(A) = \mathcal{R}^1_s(A)$ for 0 < s < n.

Moreover, $\mathcal{R}_{2k}^1(A) = \mathcal{R}_{2k+1}^1(A)$ if n is even, and $\mathcal{R}_{2k-1}^1(A) = \mathcal{R}_{2k}^1(A)$ if n is odd, for all $k \ge 0$.

ALGEBRAIC MODELS FOR SPACES

- Given any (path-connected) space X, there is an associated Sullivan ℚ-cdga, A_{PL}(X) such that H[●](A_{PL}(X)) = H[●](X, ℚ).
- An algebraic (q-)model (over field k with char(k) = 0) for X is a k-cgda (A, d) which is (q-) equivalent to A_{PL}(X) ⊗_Q k.
- A cdga A is formal (or just q-formal) if it is (q-)weakly equivalent to $(H^{\bullet}(A), d = 0)$.
- A CDGA A is of *finite-type* (or *q-finite*) if it is connected and each graded piece Aⁱ (with i ≤ q) is finite-dimensional.
- Examples of spaces having finite-type models include:
 - Formal spaces (such as compact K\u00e4hler manifolds, hyperplane arrangement complements, toric spaces, etc).
 - Smooth quasi-projective varieties, compact solvmanifolds, Sasakian manifolds, etc.

Associated graded Lie Algebra

- The *lower central series* of a group *G* is defined inductively by $\gamma_1 G = G$ and $\gamma_{n+1} G = [\gamma_n G, G]$.
- This forms a filtration of *G* by characteristic subgroups. The LCS quotients, *γ_nG/γ_{n+1}G*, are abelian groups.
- The group commutator induces a graded Lie algebra structure on

 $\operatorname{gr}(\boldsymbol{G}, \Bbbk) = \bigoplus_{n \geq 1} (\gamma_n \boldsymbol{G} / \gamma_{n+1} \boldsymbol{G}) \otimes_{\mathbb{Z}} \Bbbk.$

- Assume G is finitely generated. Then gr(G, k) is also finitely generated (in degree 1) by gr₁(G, k) = H₁(G, k).
- Let $\mathfrak{h}(G, \Bbbk) := \mathfrak{h}(H^{\bullet}(G, \Bbbk))$ be the *holonomy Lie algebra* of *G*.
- There is an epimorphism h(G, k) → gr(G, k), which is an isomorphism precisely when gr(G, k) is quadratic.

ALEXANDER INVARIANT

- Let G' = [G, G] and G'' = (G')'.
- The Alexander invariant of G is the quotient B(G) = G'/G'', viewed as a $\mathbb{Z}[G_{ab}]$ -module via $gG' \cdot xG'' = gxg^{-1}G''$.
- If X is a connected CW-complex with $\pi_1(X) = G$, then $B(G) = H_1(X^{ab}, \mathbb{Z}) = H_1(X, \mathbb{Z}[G_{ab}])$,

where $X^{ab} \rightarrow X$ is the universal abelian cover.

- [Massey 1980] Let $I = \ker(\varepsilon \colon \mathbb{Z}[G_{ab}] \to \mathbb{Z})$. Then, for all $n \ge 0$, $I^n B(G) = \gamma_{n+2}(G/G'')$, and thus $\operatorname{gr}_n(B) \cong \operatorname{gr}_{n+2}(G/G'')$
- In other words,

$$\mathsf{Hilb}(\mathsf{gr}(\boldsymbol{B}(\boldsymbol{G})\otimes\mathbb{Q}),t)=\sum_{n\geq 0}\theta_{n+2}(\boldsymbol{G})t^n,$$

where $\theta_n(G) := \operatorname{rank} \operatorname{gr}_n(G/G'')$ are the *Chen ranks* of *G*.

MALCEV LIE ALGEBRAS

• Let *G* be a f.g. group. The successive quotients of *G* by the LCS terms form a tower of finitely generated, nilpotent groups,

 $\cdots \longrightarrow G/\gamma_4 G \longrightarrow G/\gamma_3 G \longrightarrow G/\gamma_2 G = G_{ab} \; .$

- (Malcev 1951) It is possible to replace each nilpotent quotient N_k by N_k ⊗ Q, the nilpotent Lie group over Q associated to the discrete, torsion-free nilpotent group N_k/tors(N_k).
- The inverse limit, $\mathfrak{M}(G) = \lim_{n \to \infty} (G/\gamma_n G) \otimes \mathbb{Q}$, is a prounipotent, filtered Lie group, called the *prounipotent completion* of *G*.
- The pronilpotent Lie algebra m(G) := μm_n Lie((G/γ_nG) ⊗ Q) is called the *Malcev Lie algebra* of G (over k).
- [Quillen 1968/69] $\mathfrak{m}(G) \cong \operatorname{Prim}\left(\widehat{\mathbb{Q}[G]}\right)$ and $\operatorname{gr}(\mathfrak{m}(G)) \cong \operatorname{gr}(G, \mathbb{Q})$.

• [Sullivan 1977] G is 1-formal $\iff \mathfrak{m}(G)$ is quadratic.

FINITENESS OBSTRUCTIONS FOR GROUPS

THEOREM (PAPADIMA-S 2019)

G admits a 1-finite 1-model if and only if $\mathfrak{m}(G)$ is the lcs completion of a finitely presented Lie algebra.

More precisely, if A is such a model (over \Bbbk), then $\mathfrak{m}(G) \otimes \Bbbk \cong \widehat{\mathfrak{h}}(A)$.

EXAMPLE (PS19)

Let *G* be a metabelian group of the form $G = \pi/\pi''$, where π is a f.g. group which has a free, non-cyclic quotient. Then:

- G is not finitely presentable.
- G does not admit a 1-finite 1-model.

ALEXANDER INVARIANTS AND CHEN RANKS

- For a subset a ⊂ m(G), we denote by ā its closure in the topology defined by the filtration on m(G).
- Let h(G) := h(H^{*}(G, Q)) = Lie(H₁(G, Q))/(im μ[∨]) be the holonomy Lie algebra of G.
- Let B(G) := B(h(G)) = h(G)'/h(G)" be the infinitesimal Alexander invariant of G, viewed as a graded module over S = Sym(H₁(G,Q)).

THEOREM (DIMCA–PAPADIMA–S. 2009)

Let G be a finitely generated group. Then,

- There is a filtration-preserving, \widehat{S} -linear isomorphism, $B(\widehat{G}) \otimes \mathbb{Q} \cong \overline{\mathfrak{m}(G)'}/\mathfrak{m}(G)''$.
- If G is 1-formal, then $B(\widehat{G}) \otimes \mathbb{Q} \cong \widehat{\mathfrak{B}(G)}$.

THEOREM

Let G be a f.g. group. Suppose G admits a 1-finite 1-model, (A, d), over a field \Bbbk of characteristic 0. Then

- (1) $B(\widehat{G}) \otimes \Bbbk \cong \widehat{\mathfrak{B}}(\widehat{A}).$
- (2) $\operatorname{gr}(B(G) \otimes \Bbbk) \cong \operatorname{gr}(\mathfrak{B}(A)).$
- (3) $\theta_n(G) = \theta_n(A)$ for all $n \ge 1$.

PROOF.

The isomorphism in (1) is given by

$$B(\widehat{G)\otimes \Bbbk} \cong \overline{\mathfrak{m}(G)'} \otimes \Bbbk/\overline{\mathfrak{m}(G)''} \otimes \Bbbk \cong \overline{\mathfrak{h}(A)'}/\overline{\mathfrak{h}(A)''} \cong \widehat{\mathfrak{B}(A)}.$$

Passing to associated graded gives (2). Part (3) follows from (2) and the aforementioned Massey-type equalities.

RESONANCE VARIETIES OF SPACES

- Let *X* be a connected, finite-type CW-complex.
- Let k be a field, and suppose either char(k) ≠ 2, or char(k) = 2 and H₁(X, Z) has no 2-torsion.
- Then $a^2 = 0$ for all $a \in H^1(X, \Bbbk)$.
- The resonance varieties of X (over k) are the resonance varieties of the CDGA A = (H[●](X, k), 0); that is,

$$\mathcal{R}^{i}_{s}(X,\Bbbk) = \big\{ a \in H^{1}(X,\Bbbk) \mid \dim_{\Bbbk} H^{i}(A,\delta_{a}) \geq s \big\},\$$

where δ_a : $A^i \to A^{i+1}$ is given by $\delta_a(u) = au$.

PROPOSITION

Let *M* be a closed, orientable *m*-manifold. If char(\mathbb{k}) \neq 2, then $\mathcal{R}^{i}_{s}(M;\mathbb{k}) = \mathcal{R}^{m-i}_{s}(M;\mathbb{k})$ for all *i*, *s*. In particular, $\mathcal{R}^{m}_{1}(M,\mathbb{k}) = \{0\}$.

BOCKSTEIN RESONANCE VARIETIES

- Let X be a connected, finite-type CW-complex
- Let A = H[•](X, Z₂), with differential given by the Bockstein operator, β₂ = Sq¹: A[•] → A^{•+1}.
- Since $\operatorname{Sq}^1(a) = a^2$ for all $a \in A^1$, the Maurer–Cartan set for the CDGA (A, β_2) is then MC $(A) = A^1$.
- The Aomoto–Bockstein complex of A with respect to $a \in A^1$:

$$(A, \delta_a): A^0 \xrightarrow{\delta_a} A^1 \xrightarrow{\delta_a} \cdots \xrightarrow{\delta_a} A^i \xrightarrow{\delta_a} A^{i+1} \xrightarrow{\delta_a} \cdots$$

where $\delta_a(u) = au + \beta_2(u)$.

- Pick basis $\{e_1, \ldots, e_n\}$ for $A^1 = H^1(X, \mathbb{Z}_2)$, let $\{x_1, \ldots, x_n\}$ be dual basis for $A_1 = H_1(X, \mathbb{Z}_2)$, and identify $\text{Sym}(A_1) \cong \mathbb{Z}_2[x_1, \ldots, x_n]$.
- The coordinate ring of A^1 is then

$$S = \mathbb{Z}_2[x_1,\ldots,x_n]/(x_1^2+x_1,\ldots,x_n^2+x_n).$$

This is the ring of (Boolean) functions on \mathbb{Z}_2^n .

ALEX SUCIU

RESONANCE VARIETIES OF DGAS

• The *universal Aomoto–Bockstein complex* of *X* is the cochain complex of free *S*-modules,

 $(A \otimes_{\mathbb{Z}_2} S, \delta) \colon A^0 \otimes_{\mathbb{Z}_2} S \xrightarrow{\delta^0} A^1 \otimes_{\mathbb{Z}_2} S \xrightarrow{\delta^1} A^2 \otimes_{\mathbb{Z}_2} S \xrightarrow{\delta^2} \cdots,$ where $\delta^i(u \otimes 1) = \sum_{i=1}^n e_i u \otimes x_i + \beta_2(u) \otimes 1$ for $u \in A^i$.

• Example: If $X = \mathbb{RP}^{\infty}$, then $H^{\bullet}(X, \mathbb{Z}_2) = \mathbb{Z}_2[a]$, where |a| = 1, and $\beta_2(a^i) = a^{i+1}$ if *i* is odd and $\beta_2(a^i) = 0$ if *i* is even. Setting $S = \mathbb{Z}_2[x]/(x^2 + x)$, we get the (exact) cochain complex

$$S \xrightarrow{x} S \xrightarrow{x+1} S \xrightarrow{x} S \longrightarrow \cdots$$

The Bockstein resonance varieties of X are the resonance varieties of the CDGA A = (H[•](X, Z₂), β₂); that is,

 $\widetilde{\mathcal{R}}^{q}_{s}(X,\mathbb{Z}_{2}) = \big\{ a \in H^{1}(X,\mathbb{Z}_{2}) \mid \dim_{\mathbb{Z}_{2}} H^{q}(A,\delta_{a}) \geqslant s \big\},\$

where $\delta_a: A^q \to A^{q+1}$ is given by $\delta_a(u) = au + \beta_2(u)$.

• More generally, if char(\Bbbk) = 2, then $\widetilde{\mathcal{R}}^q_s(X, \Bbbk) = \widetilde{\mathcal{R}}^q_s(X, \mathbb{Z}_2) \times_{\mathbb{Z}_2} \Bbbk$.

- If $H_1(X,\mathbb{Z})$ has no 2-torsion, then $\mathcal{R}^1_s(X,\mathbb{Z}_2) = \widetilde{\mathcal{R}}^1_s(X,\mathbb{Z}_2), \forall s$.
- $\mathcal{R}^q_s(X, \mathbb{Z}_2) \neq \widetilde{\mathcal{R}}^q_s(X, \mathbb{Z}_2)$ for q > 1 (neither inclusion needs to hold).

THEOREM

Let M be a closed m-manifold. The following are equivalent:

- (1) M is orientable
- (2) $\beta_2 \colon H^{m-1}(M, \mathbb{Z}_2) \to H^m(M, \mathbb{Z}_2)$ is zero.
- (3) $(H^{\bullet}(M, \mathbb{Z}_2), \beta_2)$ is an *m*-PD-CDGA.
- (4) $\widetilde{\mathcal{R}}_{1}^{m}(M,\mathbb{Z}_{2}) = \{0\}.$

PROPOSITION

Let M be a closed, orientable m-manifold, and assume char(\Bbbk) = 2. Then $\widetilde{\mathcal{R}}_{s}^{i}(M; \Bbbk) = \widetilde{\mathcal{R}}_{s}^{m-i}(M; \Bbbk)$ for all i, s. In particular, $\widetilde{\mathcal{R}}_{1}^{m}(M, \Bbbk) = \{0\}$.

PROPOSITION

Let M be a closed, non-orientable m-manifold such that $H_1(M, \mathbb{Z})$ has no 2-torsion. Then $\mathcal{R}_1^m(M, \mathbb{Z}_2) = \{0\}$ whereas $\widetilde{\mathcal{R}}_1^m(M, \mathbb{Z}_2) = \mathbb{Z}_2$.

References

- A.I. Suciu, Alexander invariants and cohomology jump loci in group extensions, Annali della Scuola Normale Superiore di Pisa (to appear), arXiv:2107.05148.
- A.I. Suciu, Cohomology, Bocksteins, and resonance varieties in characteristic 2, Contemporary Mathematics (to appear), arXiv:2205.10716.
- A.I. Suciu, Formality and finiteness in rational homotopy theory, EMS Surveys in Mathematical Sciences (submitted), arXiv:2210.08310.
- A.I. Suciu, Alexander invariants and holonomy Lie algebras of commutative differential graded algebras, in preparation.